1) Let V and W be a complex vector spaces and $L: V \rightarrow W$ be a one-to-one linear operator. Show $L^{-1}: W \rightarrow V$ is also a linear operator.
Warning: Do not assume that domain of L is V or that L is onto.
2) Let V be the set of polynomial $p:[-1,1] \rightarrow \mathbb{C}$ of degree not greater than $2, r$ be an arbitrary element of V, i.e., $r(x)=\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}$ for some $\alpha_{0}, \alpha_{1}, \alpha_{2} \in \mathbb{C}, D: V \rightarrow V$ be the differentiation operator, $(D r)(x):=r^{\prime}(x)=\alpha_{1}+2 \alpha_{2} x, \mathscr{B}:=\left\{p_{0}, p_{1}, p_{2}\right\}$ be the monomial basis of V (with $p_{i}(x)=x^{i}$ for $i \in\{0,1,2\}$) and for all $\gamma \in[0,1]$, and every $p, q \in V$,

$$
\langle p, q\rangle_{\gamma}:=\int_{-1}^{1}(1+\gamma x) \overline{p(x)} q(x) d x
$$

2.a) Find the null space and range of D and determine whether it is one-to-one or onto.
2.b) Find the matrix representation of D in the bases \mathscr{B}.
2.c) Show that $\langle\cdot, \cdot\rangle_{\gamma}$ is an inner product on V.
2.d) Apply the Gram-Schmidt process on \mathscr{B} to construct an orthonormal basis \mathscr{E} for the inner-product space $\left(V,\langle\cdot, \cdot\rangle_{\gamma}\right)$.
2.e) Find the matrix representation of D in the basis \mathscr{E}.
2.f) Construct the complete orthonormal system of orthogonal projection operators, $\left\{P_{1}, P_{2}, P_{3}\right\}$, associated with the basis \mathscr{E}, i.e., give an explicit formula for $\left(P_{i} r\right)(x)$ for each $i \in\{0,1,2\}$.
3) Let V be the set of 2×2 complex matrices,

$$
\begin{gathered}
\mathbf{M}_{1}:=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right], \quad \mathbf{M}_{2}:=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right], \quad \mathbf{M}_{3}:=\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right], \quad \mathbf{M}_{1}:=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right], \\
\mathscr{B}:=\left\{\mathbf{M}_{1}, \mathbf{M}_{2}, \mathbf{M}_{3}, \mathbf{M}_{4}\right\}, \alpha, \beta, \gamma, \delta \in \mathbb{C}, \mathbf{A}:=\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right], \text { and for all } \mathbf{L}, \mathbf{M} \in V, \\
\langle\mathbf{L}, \mathbf{M}\rangle:=\operatorname{Trace}\left(\mathbf{L}^{\dagger} \mathbf{M}\right) .
\end{gathered}
$$

3.a) Show that \mathscr{B} is a basis of V.
3.b) Find the matrix representation of \mathbf{A} in the basis \mathscr{B}. Recall that the result is 4×1 matrix.
3.c) Show that $\langle\cdot, \cdot\rangle$ is an inner product on V.
3.d) Apply the Gram-Schmidt process on \mathscr{B} to construct an orthonormal basis of the inner-product space $(V,\langle\cdot, \cdot\rangle)$.
3.e) Find the matrix representation of \mathbf{A} in the basis you find in part 3.d.
4) Let V be a complex inner-product space. Find complex numbers $\alpha, \beta, \gamma, \delta$ such that for all $a, b \in V$,

$$
\langle a, b\rangle=\alpha\|a-b\|^{2}+\beta\|a+b\|^{2}+\gamma\|a-i b\|^{2}+\delta\|a+i b\|^{2} .
$$

Note that this shows that the inner product is uniquely determined by the norm it defines.
5) Let V and W be complex inner-product spaces with inner products $\langle\cdot, \cdot\rangle_{V}$ and $\langle\cdot, \cdot\rangle_{W}$, and $U: V \rightarrow W$ be a linear operator such that for all $v \in \operatorname{Dom}(U),\langle v, v\rangle_{V}=\langle U v, U v\rangle_{W}$.
5.a) Show that for all $a, b \in \operatorname{Dom}(U),\langle a, b\rangle_{V}=\langle U a, U b\rangle_{W}$.
5.b) Show that U is one-to-one.
6) Let V and W be complex inner-product spaces, $U: V \rightarrow W$ is a unitary operator and $H: V \rightarrow V$ be a Hermitian operator with domain V. Show that $U H U^{-1}: W \rightarrow W$ is a Hermitian operator with domain W.
7) Let $\mathcal{E}:=\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ be an orthonormal basis of an inner-product space $V, P_{i}: V \rightarrow V$ be defined by $P_{i} v:=\left\langle e_{i}, v\right\rangle e_{i}$, where $i \in\{1,2, \cdots, n\}$ and $v \in V$ are arbitrary, and for each $m \in\{1,2, \cdots, n-1\}, \Pi_{m}:=P_{1}+P_{2}+\cdots+P_{m}$.
7.a) Determine $\operatorname{Nul}\left(\Pi_{m}\right)$ and $\operatorname{Ran}\left(\Pi_{m}\right)$.
7.b) Show that for all $a \in V,\left\|\Pi_{m} a\right\|^{2}=\sum_{i=1}^{m}\left|\left\langle e_{i}, a\right\rangle\right|^{2}$.
7.c) Show that $\Pi_{m}: V \rightarrow V$ is a projection operator and determine if it is an orthogonal projection operator.
7.d) Show that for all $u \in V,\left\|\Pi_{m} u\right\| \leq\|u\|$. This is known as Bessel's inequality.
8) Let V be a complex inner-product space and $J, K, L \in \mathcal{G} \ell(V)$. Show that

$$
\operatorname{Trace}(J K L)=\operatorname{Trace}(L J K)
$$

