- 1) Let V and W be a complex vector spaces and $L: V \to W$ be a one-to-one linear operator. Show $L^{-1}: W \to V$ is also a linear operator. Warning: Do not assume that domain of L is V or that L is onto.
- 2) Let V be the set of polynomial $p: [-1,1] \to \mathbb{C}$ of degree not greater than 2, r be an arbitrary element of V, i.e., $r(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2$ for some $\alpha_0, \alpha_1, \alpha_2 \in \mathbb{C}, D: V \to V$ be the differentiation operator, $(Dr)(x) := r'(x) = \alpha_1 + 2\alpha_2 x$, $\mathscr{B} := \{p_0, p_1, p_2\}$ be the monomial basis of V (with $p_i(x) = x^i$ for $i \in \{0, 1, 2\}$) and for all $\gamma \in [0, 1]$, and every $p, q \in V$,

$$\langle p,q \rangle_{\gamma} := \int_{-1}^{1} (1+\gamma x) \overline{p(x)} q(x) dx,$$

- 2.a) Find the null space and range of D and determine whether it is one-to-one or onto.
- 2.b) Find the matrix representation of D in the bases \mathscr{B} .
- 2.c) Show that $\langle \cdot, \cdot \rangle_{\gamma}$ is an inner product on V.

2.d) Apply the Gram-Schmidt process on \mathscr{B} to construct an orthonormal basis \mathscr{E} for the inner-product space $(V, \langle \cdot, \cdot \rangle_{\gamma})$.

2.e) Find the matrix representation of D in the basis \mathscr{E} .

2.f) Construct the complete orthonormal system of orthogonal projection operators, $\{P_1, P_2, P_3\}$, associated with the basis \mathscr{E} , i.e., give an explicit formula for $(P_i r)(x)$ for each $i \in \{0, 1, 2\}$.

3) Let V be the set of 2×2 complex matrices,

$$\begin{split} \mathbf{M}_1 &:= \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{M}_2 &:= \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{M}_3 &:= \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \quad \mathbf{M}_1 &:= \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \\ \mathscr{B} &:= \{\mathbf{M}_1, \mathbf{M}_2, \mathbf{M}_3, \mathbf{M}_4\}, \, \alpha, \beta, \gamma, \delta \in \mathbb{C}, \, \mathbf{A} &:= \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}, \, \text{and for all } \mathbf{L}, \mathbf{M} \in V, \\ \langle \mathbf{L}, \mathbf{M} \rangle &:= \operatorname{Trace}(\mathbf{L}^{\dagger} \mathbf{M}). \end{split}$$

3.a) Show that \mathscr{B} is a basis of V.

<

3.b) Find the matrix representation of **A** in the basis \mathscr{B} . Recall that the result is 4×1 matrix.

3.c) Show that $\langle \cdot, \cdot \rangle$ is an inner product on V.

3.d) Apply the Gram-Schmidt process on \mathscr{B} to construct an orthonormal basis of the inner-product space $(V, \langle \cdot, \cdot \rangle)$.

3.e) Find the matrix representation of **A** in the basis you find in part 3.d.

4) Let V be a complex inner-product space. Find complex numbers $\alpha, \beta, \gamma, \delta$ such that for all $a, b \in V$,

 $\langle a,b\rangle = \alpha \parallel a-b\parallel^2 +\beta \parallel a+b\parallel^2 +\gamma \parallel a-ib\parallel^2 +\delta \parallel a+ib\parallel^2.$

Note that this shows that the inner product is uniquely determined by the norm it defines.

5) Let V and W be complex inner-product spaces with inner products $\langle \cdot, \cdot \rangle_V$ and $\langle \cdot, \cdot \rangle_W$, and $U: V \to W$ be a linear operator such that for all $v \in \text{Dom}(U)$, $\langle v, v \rangle_V = \langle Uv, Uv \rangle_W$.

5.a) Show that for all $a, b \in \text{Dom}(U), \langle a, b \rangle_V = \langle Ua, Ub \rangle_W$.

- 5.b) Show that U is one-to-one.
- 6) Let V and W be complex inner-product spaces, $U: V \to W$ is a unitary operator and $H: V \to V$ be a Hermitian operator with domain V. Show that $UHU^{-1}: W \to W$ is a Hermitian operator with domain W.
- 7) Let $\mathcal{E} := \{e_1, e_2, \cdots, e_n\}$ be an orthonormal basis of an inner-product space $V, P_i : V \to V$ be defined by $P_i v := \langle e_i, v \rangle e_i$, where $i \in \{1, 2, \cdots, n\}$ and $v \in V$ are arbitrary, and for each $m \in \{1, 2, \cdots, n-1\}, \Pi_m := P_1 + P_2 + \cdots + P_m$.

7.a) Determine $\operatorname{Nul}(\Pi_m)$ and $\operatorname{Ran}(\Pi_m)$.

7.b) Show that for all $a \in V$, $\| \prod_m a \|^2 = \sum_{i=1}^m |\langle e_i, a \rangle|^2$.

7.c) Show that $\Pi_m : V \to V$ is a projection operator and determine if it is an orthogonal projection operator.

7.d) Show that for all $u \in V$, $\| \Pi_m u \| \le \| u \|$. This is known as Bessel's inequality.

8) Let V be a complex inner-product space and $J, K, L \in \mathcal{G}\ell(V)$. Show that

 $\operatorname{Trace}(JKL) = \operatorname{Trace}(LJK).$