Consider a quantum system whose state vectors belong to the 2-dimensional complex Euclidean space \mathbb{E}^{2}. At $t=0$, the system is in the state given by the density operator

$$
M_{0}:=\frac{1}{4}\left(P_{\psi}+3 P_{\phi}\right),
$$

where

$$
\psi:=\frac{1}{\sqrt{2}}(1,1), \quad \phi:=\frac{1}{\sqrt{2}}(1,-i), \quad P_{\psi}:=|\psi\rangle\langle\psi|, \quad P_{\phi}:=|\phi\rangle\langle\phi| .
$$

The system's dynamics is determined by the Hamiltonian operator,

$$
H:=E\left(\left|e_{1}\right\rangle\left\langle e_{1}\right|+\left|e_{2}\right\rangle\left\langle e_{2}\right|\right),
$$

where $E \in \mathbb{R}^{+}$and $\left\{e_{1}, e_{2}\right\}$ is the standard basis of \mathbb{C}^{2}, i.e., $e_{1}:=(1,0)$ and $e_{2}:=(0,1)$. At $t=T:=\pi E / 4 \hbar$, an observer measures the observable

$$
A:=a\left(\left|\alpha_{1}\right\rangle\left\langle\alpha_{1}\right|-2\left|\alpha_{2}\right\rangle\left\langle\alpha_{2}\right|\right),
$$

where $a \in \mathbb{R}^{+}, \alpha_{1}:=(2, i) / \sqrt{5}$ and $\alpha_{2}:=(i, 2) / \sqrt{5}$.

1) Find the matrix representation of the following quantities in the standard basis of $\mathbb{C}^{2}: \psi$, $\phi, P_{\psi}, P_{\phi}, M_{0}, e_{1}, e_{2}, H, \alpha_{1}, \alpha_{2}$, and A.
2) Find the eigenvalues and eigenvectors of M_{0}, H, and A. Explain why ϕ and ψ are not eigenvectors of M_{0}. Notice that the eigenvectors are elements of \mathbb{C}^{2}, i.e., they have the form $\left(z_{1}, z_{2}\right)$ for a pair of complex numbers z_{1} and z_{2}.
3) Find the explicit form of the time-evolution operator $U\left(t, t_{0}\right):=e^{-i\left(t-t_{0}\right) H / \hbar}$ and its matrix representation in the standard basis of \mathbb{C}^{2}.
4) Find the explicit form of the standard matrix representation $\mathbf{M}(t)$ of the density operator $M(t)$ that describes the evolving state of the system for $t \in(0, T)$ (in the Schrödinger picture of dynamics).
5) Find the explicit form of the standard matrix representation $\mathbf{A}(t)$ of evolving observable $A(t)$ with $A(0)=A$ for $t \in(0, T)$ (in the Heisenberg picture of dynamics).
6) Compute the expectation value and the uncertainty (variance) of A for $t \in(0, T)$ in the Schrödinger picture of dynamics.
7) Compute the expectation value and the uncertainty (variance) of $A(t)$ for $t \in(0, T)$ in the Heisenberg picture of dynamics.
8) What is the probability of finding each of the values: $-2 a,-a, 0, a$, and $2 a$, by measuring A at $t=T$.
9) Find the explicit form of the standard matrix representation $\mathbf{M}(t)$ of the density operator $M(t)$ that describes the evolving state of the system for $t \in(T, 2 T)$ (in the Schrödinger picture of dynamics). Notice that this depends on the outcome of the measurement of A at $t=T$. Therefore you must produce separate formulas for the possible outcomes (each having certain probability to be realized.)
10) What is the probability of finding each of the values: $-2 a,-a, 0, a$, and $2 a$, by measuring A at $t=2 T$.
11) What is the expectation value and the uncertainty of A at $t=2 T$?
