Consider a quantum system whose state vectors belong to the 2-dimensional complex Euclidean space \mathbb{E}^2 . At t = 0, the system is in the state given by the density operator

$$M_0 := \frac{1}{4} (P_{\psi} + 3P_{\phi}).$$

where

$$\psi := \frac{1}{\sqrt{2}}(1,1), \qquad \phi := \frac{1}{\sqrt{2}}(1,-i), \qquad P_{\psi} := |\psi\rangle\langle\psi|, \qquad P_{\phi} := |\phi\rangle\langle\phi|$$

The system's dynamics is determined by the Hamiltonian operator,

$$H := E(|e_1\rangle\langle e_1| + |e_2\rangle\langle e_2|),$$

where $E \in \mathbb{R}^+$ and $\{e_1, e_2\}$ is the standard basis of \mathbb{C}^2 , i.e., $e_1 := (1, 0)$ and $e_2 := (0, 1)$. At $t = T := \pi E/4\hbar$, an observer measures the observable

$$A := a(|\alpha_1\rangle\langle\alpha_1| - 2|\alpha_2\rangle\langle\alpha_2|),$$

where $a \in \mathbb{R}^+$, $\alpha_1 := (2, i) / \sqrt{5}$ and $\alpha_2 := (i, 2) / \sqrt{5}$.

- 1) Find the matrix representation of the following quantities in the standard basis of \mathbb{C}^2 : ψ , ϕ , P_{ψ} , P_{ϕ} , M_0 , e_1 , e_2 , H, α_1 , α_2 , and A.
- 2) Find the eigenvalues and eigenvectors of M_0 , H, and A. Explain why ϕ and ψ are not eigenvectors of M_0 . Notice that the eigenvectors are elements of \mathbb{C}^2 , i.e., they have the form (z_1, z_2) for a pair of complex numbers z_1 and z_2 .
- **3**) Find the explicit form of the time-evolution operator $U(t, t_0) := e^{-i(t-t_0)H/\hbar}$ and its matrix representation in the standard basis of \mathbb{C}^2 .
- 4) Find the explicit form of the standard matrix representation $\mathbf{M}(t)$ of the density operator M(t) that describes the evolving state of the system for $t \in (0, T)$ (in the Schrödinger picture of dynamics).
- 5) Find the explicit form of the standard matrix representation $\mathbf{A}(t)$ of evolving observable A(t) with A(0) = A for $t \in (0, T)$ (in the Heisenberg picture of dynamics).
- 6) Compute the expectation value and the uncertainty (variance) of A for $t \in (0, T)$ in the Schrödinger picture of dynamics.
- 7) Compute the expectation value and the uncertainty (variance) of A(t) for $t \in (0, T)$ in the Heisenberg picture of dynamics.
- 8) What is the probability of finding each of the values: -2a, -a, 0, a, and 2a, by measuring A at t = T.
- 9) Find the explicit form of the standard matrix representation $\mathbf{M}(t)$ of the density operator M(t) that describes the evolving state of the system for $t \in (T, 2T)$ (in the Schrödinger picture of dynamics). Notice that this depends on the outcome of the measurement of A at t = T. Therefore you must produce separate formulas for the possible outcomes (each having certain probability to be realized.)
- **10**) What is the probability of finding each of the values: -2a, -a, 0, a, and 2a, by measuring A at t = 2T.
- 11) What is the expectation value and the uncertainty of A at t = 2T?