Math 450-586: Midterm Exam 1
 Fall 2009

- Write your name and Student ID number in the space provided below and sign.

Name, Last Name:	
ID Number:	
Signature:	

- You have One and half hours (90 minutes).
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the exam within the first 10 minutes. After this time for any question you may want to ask 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)
- (Optional) Grade your own work out of 100 . Record your estimated grade here:

Estimated Grade:

If your expected grade and actual grade will turn out to differ by 9 points or less, you will be given the highest of the two.

To be filled by the grader:

Actual Grade:	
Adjusted Grade:	

Problem 1. Let V be a real vector space of dimension $n<\infty,\left\{e_{i}\right\}$ be a basis of V with dual basis $\left\{\epsilon^{i}\right\}$, and $T=T_{p q}^{i j} e_{i} \otimes e_{j} \otimes \epsilon^{p} \otimes \epsilon^{q} \in V_{2}^{2}$, i.e., T is a tensor of type (2,2).
1.a) Derive the transformation rule for the components $T_{p q}^{i j}$ of T under the basis transformations: $e_{i} \rightarrow \tilde{e}_{i}=a_{i}^{j} e_{j}$, where $\left(a_{i}^{j}\right)$ is an $n \times n$ invertible matrix. (15 points)
1.b) Show that $T_{j i}^{i j}$ does not change under the above basis transformations, i.e., it is a scalar invariant of T. (10 points)

Problem 2. Let V be a real vector space and $\mathcal{I}: V \rightarrow V^{* *}$ be the natural injection of V into its second dual. Give the definition of \mathcal{I} and prove that it is one-to-one. (15 points)

Problem 3. Let V be a real vector space of dimension $n<\infty, V^{*}$ be its dual space, and \mathfrak{S} and \mathfrak{A} be the operation of symmetrization and anti-symmetrization of tensors. Suppose that $u, v \in V$ and $\omega, \tau \in V^{*}$ be such that

$$
\omega(u)=1, \quad \tau(u)=-2, \quad \omega(v)=2, \quad \tau(v)=-1,
$$

and $T:=\mathfrak{S}(u \otimes v) \otimes \mathfrak{A}(\omega \otimes \tau)$. Compute $T(\omega+\tau,-\tau, u, u-v) . \quad$ (25 points)

Problem 4. Let $\langle\cdot \mid \cdot\rangle$ be an inner product on a finite-dimensional real vector space V of dimension n, $\left\{e_{i}\right\}$ be a basis of V with dual basis $\left\{\epsilon^{i}\right\}$, and $g: V \times V \rightarrow \mathbb{R}$ defined by $\forall u, v \in V, g(u, v):=\langle u \mid v\rangle$.
4.a) Show that g a symmetric tensor of type (0,2). (10 points)

Note: You only need to show that g is bilinear and symmetric.
4.b) Let $g_{i j}, h^{i j} \in \mathbb{R}$ be such that $g=g_{i j} \epsilon^{i} \otimes \epsilon^{j}$ and $h^{i j} g_{j k}=\delta_{k}^{i}$ where δ_{k}^{i} is the Kronecker delta symbol. Show that under a basis transformation: $e_{i} \rightarrow \tilde{e}_{i}=a_{i}^{j} e_{j}$ with $\left(a_{i}^{j}\right)$ some $n \times n$ invertible matrix, the numbers $h^{i j}$ transform like the components of a tensor h of type (2,0). (15 points)

Hint: Let the transformation induce $g_{i j} \rightarrow \tilde{g}_{i j}$ and $h^{i j} \rightarrow \tilde{h}^{i j}$. The aim is to use $h^{i j} g_{j k}=\delta_{k}^{i}$ and $\tilde{h}^{i j} \tilde{g}_{j k}=\delta_{k}^{i}$ to express $\tilde{h}^{i j}$ in terms of $h^{i j}$ and a_{j}^{i} or b_{j}^{i}, where $\left(b_{j}^{i}\right)$ is the inverse of $\left(a_{j}^{i}\right)$. To do this proceed as follows.
(i) Express $g_{i j}$ in terms of $\tilde{g}_{i j}$ and a_{j}^{i} or b_{j}^{i}. (ii) Substitute this expression for $g_{i j}$ in $h^{i j} g_{j k}=\delta_{k}^{i}$ making sure you use dummy indices different from i, j, k, ℓ, r, s. (iii) Multiply both sides of the resulting expression by $\tilde{h}^{\ell r} a_{\ell}^{k} b_{i}^{s}$ and sum over repeated indices. (iv) Using $\tilde{h}^{i j} \tilde{g}_{j k}=\delta_{k}^{i}$ and the fact that g is a symmetric tensor, you should be able to determine $\tilde{h}^{i j}$ in terms of $h^{i j}$ and a_{j}^{i} or b_{j}^{i}.
4.c) Show that $h:=h^{i j} e_{i} \otimes e_{j}$ is a symmetric tensor. (10 points)

Hint: Multiply both sides of $h^{i j} g_{j k}=\delta_{k}^{i}$ by $g_{i \ell}$ and try to relabel the dummy indices and use the fact that g is symmetric to show that $h^{i j}=h^{j i}$.

