Math 450-586: Midterm Exam 2 Fall 2009

- Name, Last Name:

 ID Number:

 Signature:
- Write your name and Student ID number in the space provided below and sign.

- You have One and half hours (90 minutes).
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the exam within the first 10 minutes. After this time for <u>any question you may want to ask 5 points will be deduced</u> from your grade (You may or may not get an answer to your question(s).)
- (Optional) Grade your own work out of 100. Record your estimated grade here:

Estimated Grade:

If your expected grade and actual grade will turn out to differ by 9 points or less, you will be given the highest of the two.

To be filled by the grader:

Actual Grade:	
Adjusted Grade:	

Problem 1. Let (M_1, d_1) and (M_2, d_2) be metric spaces, and $f: M_1 \to M_2$ be an isometry.

1.a) Show that f is continuous. (10 points)

1.b) Is f a homeomorphism? Why? (5 points)

Problem 2. Let \mathcal{M} denote the set of 2×2 matrices, $N := \{A \in \mathcal{M} \mid \det(A) > 1\}$, and $f : \mathcal{M} \to \mathbb{R}^4$ be defined by: For all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}, f(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = (a, b, c, d).$

2.a) Given that f is a bijection, determine a topology on \mathcal{M} such that f is a homeomorphism. You must give the open subsets in this topology and show that f has this property. (10 points)

2.b) Giving \mathcal{M} this topology, we can turn N into a topological space using the induced (subspace) topology. Show that this makes N into a topological manifold. (10 points)

Problem 3. Let $\phi_1 : \mathbb{R} \to \mathbb{R}$ and $\phi_2 : \mathbb{R} \to \mathbb{R}$, be defined by $\forall x \in \mathbb{R}, \phi_1(x) := x$ and $\phi_2(x) := x^5$. Let $M_1 = \mathbb{R}$ be the topological manifold having $\{(\mathbb{R}, \phi_1)\}$ as an atlas, and M_2 be the topological manifolds having $\{(\mathbb{R}, \phi_2)\}$ as an atlas.

3.a) Is M_2 a C^{∞} -manifold? Why? (5 points)

3.b) Let $f: M_2 \to M_2$ be defined by $\forall x \in \mathbb{R}, f(x) := x^{1/5}$. Is $f \in C^{\infty}$ -function? (10 points)

3.c) Let $h: M_1 \to M_2$ be defined by $\forall x \in \mathbb{R}, h(x) := x^{1/5}$. Is $g \in C^{\infty}$ -function? (10 points)

Problem 4. Let M be a three-dimensional C^{∞} -manifold with a coordinate chart $(U_{\alpha}, \phi_{\alpha})$, and $F: M \to M$ be a function such that $F(U_{\alpha}) \subseteq U_{\alpha}$. Let X and ω be respectively a vector field and a differential form, and $f: M \to \mathbb{R}$ be function. Suppose that X, ω, F , and fhave the following local expressions in the coordinate chart $(U_{\alpha}, \phi_{\alpha})$. For all $p \in U_{\alpha}$ with $\phi(p) = (x^1, x^2, x^3)$,

$$\begin{split} X(p) &= (x^2 - x^3) \frac{\partial}{\partial x^1} + (x^3 - x^1) \frac{\partial}{\partial x^2} + (x^1 - x^2) \frac{\partial}{\partial x^3}, \\ \omega(p) &= \sin(x^3) \, dx^1 \wedge dx^2 + \cos(x^1) \, dx^2 \wedge dx^3, \\ F(p) &= \phi_{\alpha}^{-1}(x^3, 2x^1, 3x^2), \qquad f(p) = (x^1 + x^2 - x^3)^2. \end{split}$$

Calculate the following quantities.

4.a) X(f). (10 points)

4.b) $(F^*(X))(f)$. (10 points)

4.c) $d\omega$. (10 points)

4.d) $i_X(\omega)$. (10 points)

Hint: First express all the components ω_{ij} of ω .