Math 450-586: Midterm Exam 2
 Fall 2009

- Write your name and Student ID number in the space provided below and sign.

Name, Last Name:	
ID Number:	
Signature:	

- You have One and half hours (90 minutes).
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the exam within the first 10 minutes. After this time for any question you may want to ask 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)
- (Optional) Grade your own work out of 100 . Record your estimated grade here:

Estimated Grade:

If your expected grade and actual grade will turn out to differ by 9 points or less, you will be given the highest of the two.

To be filled by the grader:

Actual Grade:	
Adjusted Grade:	

Problem 1. Let $\left(M_{1}, d_{1}\right)$ and $\left(M_{2}, d_{2}\right)$ be metric spaces, and $f: M_{1} \rightarrow M_{2}$ be an isometry.
1.a) Show that f is continuous. (10 points)
1.b) Is f a homeomorphism? Why? (5 points)

Problem 2. Let \mathcal{M} denote the set of 2×2 matrices, $N:=\{A \in \mathcal{M} \mid \operatorname{det}(A)>1\}$, and $f: \mathcal{M} \rightarrow \mathbb{R}^{4}$ be defined by: For all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathcal{M}, f\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=(a, b, c, d)$.
2.a) Given that f is a bijection, determine a topology on \mathcal{M} such that f is a homeomorphism. You must give the open subsets in this topology and show that f has this property. (10 points)
2.b) Giving \mathcal{M} this topology, we can turn N into a topological space using the induced (subspace) topology. Show that this makes N into a topological manifold. (10 points)

Problem 3. Let $\phi_{1}: \mathbb{R} \rightarrow \mathbb{R}$ and $\phi_{2}: \mathbb{R} \rightarrow \mathbb{R}$, be defined by $\forall x \in \mathbb{R}, \phi_{1}(x):=x$ and $\phi_{2}(x):=x^{5}$. Let $M_{1}=\mathbb{R}$ be the topological manifold having $\left\{\left(\mathbb{R}, \phi_{1}\right)\right\}$ as an atlas, and M_{2} be the topological manifolds having $\left\{\left(\mathbb{R}, \phi_{2}\right)\right\}$ as an atlas.
3.a) Is M_{2} a C^{∞}-manifold? Why? (5 points)
3.b) Let $f: M_{2} \rightarrow M_{2}$ be defined by $\forall x \in \mathbb{R}, f(x):=x^{1 / 5}$. Is f a C^{∞}-function?
3.c) Let $h: M_{1} \rightarrow M_{2}$ be defined by $\forall x \in \mathbb{R}, h(x):=x^{1 / 5}$. Is g a C^{∞}-function?

Problem 4. Let M be a three-dimensional C^{∞}-manifold with a coordinate chart $\left(U_{\alpha}, \phi_{\alpha}\right)$, and $F: M \rightarrow M$ be a function such that $F\left(U_{\alpha}\right) \subseteq U_{\alpha}$. Let X and ω be respectively a vector field and a differential form, and $f: M \rightarrow \mathbb{R}$ be function. Suppose that X, ω, F, and f have the following local expressions in the coordinate chart $\left(U_{\alpha}, \phi_{\alpha}\right)$. For all $p \in U_{\alpha}$ with $\phi(p)=\left(x^{1}, x^{2}, x^{3}\right)$,

$$
\begin{aligned}
X(p) & =\left(x^{2}-x^{3}\right) \frac{\partial}{\partial x^{1}}+\left(x^{3}-x^{1}\right) \frac{\partial}{\partial x^{2}}+\left(x^{1}-x^{2}\right) \frac{\partial}{\partial x^{3}} \\
\omega(p) & =\sin \left(x^{3}\right) d x^{1} \wedge d x^{2}+\cos \left(x^{1}\right) d x^{2} \wedge d x^{3} \\
F(p) & =\phi_{\alpha}^{-1}\left(x^{3}, 2 x^{1}, 3 x^{2}\right), \quad f(p)=\left(x^{1}+x^{2}-x^{3}\right)^{2}
\end{aligned}
$$

Calculate the following quantities.
4.a) $X(f)$. (10 points)
4.b) $\left(F^{*}(X)\right)(f)$. (10 points)
4.c) $d \omega$. (10 points)
4.d) $i_{X}(\omega)$. (10 points)

Hint: First express all the components $\omega_{i j}$ of ω.

