Math 450/586: Final Exam Fall 2009

- Name, Last Name:

 ID Number:

 Signature:
- Write your name and Student ID number in the space provided below and sign.

- You have <u>2 hours and 45 minutes</u>.
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the exam within the first 10 minutes. After this time for any question you may want to ask 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)

To be filled by the grader:

Grade:

Problem 1. Give the definition of the following concepts. (20 points)

1.a) A tensor of type (r, s) for a finite-dimensional real vector space:

1.b) Tensor product of two covariant tensors:

1.c) A basis of a topological space:

1.d) A locally Euclidean topological space:

1.e) A C^{∞} -atlas and a C^{∞} -manifold:

1.f) Tangent vectors and tangent spaces of a C^{∞} -manifold:

1.g) Grassmann algebra of a C^{∞} -manifold:

1.h) A Riemannian manifold:

Problem 2. Let ω be a C^{∞} -one-form and X be a C^{∞} -vector field defined on a C^{∞} manifold M. Use local coordinate representation of ω and X in a coordinate chart of Mto prove the identity:

$$d(i_X\omega) + i_X(d\omega) = \mathcal{L}_X\omega.$$

Here d, i_X , and \mathcal{L}_X stand for the exterior derivative, interior product, and the Lie derivative. (20 points) **Problem 3.** Let (r, θ) be the polar coordinates on \mathbb{R}^2 , (x, y, z) be Cartesian coordinates on \mathbb{R}^3 , and $x^1 := r$, $x^2 := \theta$, $y^1 := x$, $y^2 := y$, $y^3 := z$. Consider the function $F : \mathbb{R}^2 \to \mathbb{R}^3$ defined by $F(x^1, x^2) := (x^1 \cos x^2, x^1 \sin x^2, \sqrt{3} x^1)$, let

$$O := \left\{ (x^1, x^2) \in \mathbb{R}^2 \mid x^1 > 0, -\frac{\pi}{2} < x^2 < \frac{3\pi}{2} \right\},$$
$$M := \operatorname{Im}(O) = \left\{ F(x^1, x^2) \mid x^1 > 0, -\frac{\pi}{2} < x^2 < \frac{3\pi}{2} \right\}$$

and $\phi := F^{-1}: M \to O$. Then M is a C^{∞} -manifold and $\{(M, \phi)\}$ is a C^{∞} -atlas for M.

3.a) Let $i : M \to \mathbb{R}^3$ be the inclusion map, i.e., i(p) := p for all $p \in M$, and $i_* : TM_p \to T\mathbb{R}^3_p$ be the differential of i at p. Compute $i_*(\frac{\partial}{\partial x^1})$ and $i_*(\frac{\partial}{\partial x^2})$ in the co-ordinate chart (M, ϕ) . (10 points)

Hint: Note that $\iota_*(\frac{\partial}{\partial x^i}) = V_i^j \frac{\partial}{\partial y^j}$. You should determine the components V_i^j of $\iota_*(\frac{\partial}{\partial x^i})$.

3.b) Let $g_E := \sum_{i=1}^3 dy^i \otimes dy^i$ be the Euclidean metric tensor on \mathbb{R}^3 and $g := i^*(g_E)$ be the pullback of g_E onto M. Compute the components of g in the coordinate chart (M, ϕ) , i.e., write $g = g_{jk} dx^j \otimes dx^j$ and determine g_{jk} for all $j, k \in \{1, 2\}$. (15 points) Hint: Check that $\Gamma_{jk\ell} := \frac{1}{2}(g_{jk,\ell} + g_{j\ell,k} - g_{k\ell,j})$ have the following values.

$$\Gamma_{111} = \Gamma_{112} = \Gamma_{121} = \Gamma_{211} = \Gamma_{222} = 0, \quad \Gamma_{122} = -x^1, \quad \Gamma_{212} = \Gamma_{221} = x^1.$$

3.c) Let $\gamma : [0, \pi] \to M$ be the curve defined by $\gamma(t) = (\cos t, \sin t, \sqrt{3})$. Use the Levi Civita connection defined by g (i.e., the symmetric connection that is compatible with g) to parallel transport the vector $\frac{\partial}{\partial x^1}$ from $\gamma(0)$ to $\gamma(\pi)$ along γ . You must express the parallel transported vector in the form $V^i(t)\frac{\partial}{\partial x^i}$ and determine $V^i(\pi)$. Note that you may use the values of Γ_{ijk} given in problem 3.b. (15 points) **Problem 4.** Let M be a two-dimensional Riemannian manifold. Suppose that in some local coordinate chart $(U_{\alpha}, \phi_{\alpha})$ the components of the metric tensor are given by

$$g_{11}(x^1, x^2) = g_{22}(x^1, x^2) = f(x^1, x^2), \quad g_{12}(x^1, x^2) = g_{21}(x^1, x^2) = 0, \qquad \forall (x^1, x^2) \in U_{\alpha},$$

where $f: U_{\alpha} \to \mathbb{R}^+$ is a C^{∞} -function.

4.a) Express the Christoffel symbols for the Levi Civita connection in terms of f and its partial derivatives. Use the notation $f_{,j}$ for $\frac{\partial f}{\partial x^j}$ and simplify your result as much as possible. (10 points)

4.b) Compute R_{212}^1 . (10 points) Hint: $R_{ijk}^{\ell} = \Gamma_{ik,j}^{\ell} - \Gamma_{ij,k}^{\ell} + \Gamma_{jm}^{\ell}\Gamma_{ki}^m - \Gamma_{km}^{\ell}\Gamma_{ji}^m$. (10 points)