Math 450/586: Final Exam

Fall 2009

- Write your name and Student ID number in the space provided below and sign.

Name, Last Name:	
ID Number:	
Signature:	

- You have 2 hours and 45 minutes.
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the exam within the first 10 minutes. After this time for any question you may want to ask 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)

To be filled by the grader:
Grade:

Problem 1. Give the definition of the following concepts. (20 points)
1.a) A tensor of type (r, s) for a finite-dimensional real vector space:
1.b) Tensor product of two covariant tensors:
1.c) A basis of a topological space:
1.d) A locally Euclidean topological space:
1.e) A C^{∞}-atlas and a C^{∞}-manifold:
1.f) Tangent vectors and tangent spaces of a C^{∞}-manifold:
1.g) Grassmann algebra of a C^{∞}-manifold:
1.h) A Riemannian manifold:

Problem 2. Let ω be a C^{∞}-one-form and X be a C^{∞}-vector field defined on a C^{∞} manifold M. Use local coordinate representation of ω and X in a coordinate chart of M to prove the identity:

$$
d\left(i_{X} \omega\right)+i_{X}(d \omega)=\mathcal{L}_{X} \omega .
$$

Here d, i_{X}, and \mathcal{L}_{X} stand for the exterior derivative, interior product, and the Lie derivative. (20 points)

Problem 3. Let (r, θ) be the polar coordinates on $\mathbb{R}^{2},(x, y, z)$ be Cartesian coordinates on \mathbb{R}^{3}, and $x^{1}:=r, x^{2}:=\theta, y^{1}:=x, y^{2}:=y, y^{3}:=z$. Consider the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $F\left(x^{1}, x^{2}\right):=\left(x^{1} \cos x^{2}, x^{1} \sin x^{2}, \sqrt{3} x^{1}\right)$, let

$$
\begin{aligned}
O & :=\left\{\left(x^{1}, x^{2}\right) \in \mathbb{R}^{2} \mid x^{1}>0,-\frac{\pi}{2}<x^{2}<\frac{3 \pi}{2}\right\} \\
M & :=\operatorname{Im}(O)=\left\{F\left(x^{1}, x^{2}\right) \mid x^{1}>0,-\frac{\pi}{2}<x^{2}<\frac{3 \pi}{2}\right\} .
\end{aligned}
$$

and $\phi:=F^{-1}: M \rightarrow O$. Then M is a C^{∞}-manifold and $\{(M, \phi)\}$ is a C^{∞}-atlas for M.
3.a) Let $\imath: M \rightarrow \mathbb{R}^{3}$ be the inclusion map, i.e., $\imath(p):=p$ for all $p \in M$, and $\imath_{*}: T M_{p} \rightarrow T \mathbb{R}_{p}^{3}$ be the differential of \imath at p. Compute $\imath_{*}\left(\frac{\partial}{\partial x^{1}}\right)$ and $\imath_{*}\left(\frac{\partial}{\partial x^{2}}\right)$ in the coordinate chart (M, ϕ). (10 points)
Hint: Note that $\imath_{*}\left(\frac{\partial}{\partial x^{i}}\right)=V_{i}^{j} \frac{\partial}{\partial y^{j}}$. You should determine the components V_{i}^{j} of $\imath_{*}\left(\frac{\partial}{\partial x^{i}}\right)$.
3.b) Let $g_{E}:=\sum_{i=1}^{3} d y^{i} \otimes d y^{i}$ be the Euclidean metric tensor on \mathbb{R}^{3} and $g:=\imath^{*}\left(g_{E}\right)$ be the pullback of g_{E} onto M. Compute the components of g in the coordinate chart (M, ϕ), i.e., write $g=g_{j k} d x^{j} \otimes d x^{j}$ and determine $g_{j k}$ for all $j, k \in\{1,2\}$. (15 points)

Hint: Check that $\Gamma_{j k \ell}:=\frac{1}{2}\left(g_{j k, \ell}+g_{j \ell, k}-g_{k \ell, j}\right)$ have the following values.

$$
\Gamma_{111}=\Gamma_{112}=\Gamma_{121}=\Gamma_{211}=\Gamma_{222}=0, \quad \Gamma_{122}=-x^{1}, \quad \Gamma_{212}=\Gamma_{221}=x^{1}
$$

3.c) Let $\gamma:[0, \pi] \rightarrow M$ be the curve defined by $\gamma(t)=(\cos t, \sin t, \sqrt{3})$. Use the Levi Civita connection defined by g (i.e., the symmetric connection that is compatible with g) to parallel transport the vector $\frac{\partial}{\partial x^{1}}$ from $\gamma(0)$ to $\gamma(\pi)$ along γ. You must express the parallel transported vector in the form $V^{i}(t) \frac{\partial}{\partial x^{i}}$ and determine $V^{i}(\pi)$. Note that you may use the values of $\Gamma_{i j k}$ given in problem 3.b. (15 points)

Problem 4. Let M be a two-dimensional Riemannian manifold. Suppose that in some local coordinate chart $\left(U_{\alpha}, \phi_{\alpha}\right)$ the components of the metric tensor are given by

$$
g_{11}\left(x^{1}, x^{2}\right)=g_{22}\left(x^{1}, x^{2}\right)=f\left(x^{1}, x^{2}\right), \quad g_{12}\left(x^{1}, x^{2}\right)=g_{21}\left(x^{1}, x^{2}\right)=0, \quad \forall\left(x^{1}, x^{2}\right) \in U_{\alpha},
$$

where $f: U_{\alpha} \rightarrow \mathbb{R}^{+}$is a C^{∞}-function.
4.a) Express the Christoffel symbols for the Levi Civita connection in terms of f and its partial derivatives. Use the notation $f_{, j}$ for $\frac{\partial f}{\partial x^{j}}$ and simplify your result as much as possible. (10 points)
4.b) Compute R_{212}^{1}. (10 points)

Hint: $R_{i j k}^{\ell}=\Gamma_{i k, j}^{\ell}-\Gamma_{i j, k}^{\ell}+\Gamma_{j m}^{\ell} \Gamma_{k i}^{m}-\Gamma_{k m}^{\ell} \Gamma_{j i}^{m} . \quad$ (10 points)

