Math 450/586: Quiz # 2 Fall 2009

• Write your name and Student ID number in the space provided below and sign.

1.e) Tensor product of two vector spaces V and W:

			_	
		Name, Last Name:		
		ID Number:		-
		Signature:		
• 7	You have <u>75 1</u>	minutes.		
	-	any statement which has been oduce the proof of that statem	proven in class, except for the cases ent.	where you are
g	question you get an answer **	may want to ask, 5 points will to your question(s).) **********************************	within the first 5 minutes. After this be deduced from your grade (You manner ***********************************	ay or may not
		tion of the following objects.	(25 points)	
ŕ	A linear map A bilinear ma			
·				
1.c) A	algebraic dua	al of a vector space:		
1. d) [Oual basis:			

- **2.** Let V be a real vector space.
 - a) Give the definition of the natural injection $\mathcal{I}: V \to V^{**}$ of V into V^{**} . (10 points)
 - b) Prove that $\forall v_1, v_2 \in V$ and $\forall \alpha^1, \alpha^2 \in \mathbb{R}$, $\mathcal{I}(\alpha^1 v_1 + \alpha^2 v_2) = \alpha^1 \mathcal{I}(v_1) + \alpha^2 \mathcal{I}(v_2)$. (10 points)

c) Prove that \mathcal{I} is one-to-one. (10 Bonus points)

- **3.** Let V be a finite-dimensional vector space.
- **3.a)** Let $v \in V$ and $\sigma \in V^*$. Give the definition of $v \otimes \sigma$. (5 points)

Hint: Recall that $\forall u \in V, \ \forall \omega \in V^*, \ v(\omega) := \omega(v).$

3.b) Show that $v \otimes \sigma \in \mathcal{L}(V^*, V; \mathbb{R})$, i.e., it is a real-valued bilinear map with domain $V^* \times V$. (20 points)

3.c) Let $\mathscr{B} = \{e_1, e_2, \dots e_n\}$ be a basis of V, and $\mathscr{B}^* = \{\epsilon^1, \epsilon^2, \dots \epsilon^n\}$ be the basis dual to \mathscr{B} . Show that $\mathscr{E} := \{e_i \otimes \epsilon^j | i, j \in I_n\}$ is a basis of $V \otimes V^*$, where $I_n := \{1, 2, \dots, n\}$. (30 points)