Math 450/586: Quiz \# 2

Fall 2009

- Write your name and Student ID number in the space provided below and sign.

Name, Last Name:	
ID Number:	
Signature:	

- You have 75 minutes.
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the quiz within the first 5 minutes. After this time for any question you may want to ask, 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)

1. Give the definition of the following objects. (25 points)
1.a) A linear map:
1.b) A bilinear map:
1.c) Algebraic dual of a vector space:
1.d) Dual basis:
1.e) Tensor product of two vector spaces V and W :
2. Let V be a real vector space.
a) Give the definition of the natural injection $\mathcal{I}: V \rightarrow V^{* *}$ of V into $V^{* *}$. (10 points)
b) Prove that $\forall v_{1}, v_{2} \in V$ and $\forall \alpha^{1}, \alpha^{2} \in \mathbb{R}, \mathcal{I}\left(\alpha^{1} v_{1}+\alpha^{2} v_{2}\right)=\alpha^{1} \mathcal{I}\left(v_{1}\right)+\alpha^{2} \mathcal{I}\left(v_{2}\right)$. (10 points)
c) Prove that \mathcal{I} is one-to-one. ($\mathbf{1 0}$ Bonus points)
3. Let V be a finite-dimensional vector space.
3.a) Let $v \in V$ and $\sigma \in V^{*}$. Give the definition of $v \otimes \sigma$. (5 points)

Hint: Recall that $\forall u \in V, \forall \omega \in V^{*}, v(\omega):=\omega(v)$.
3.b) Show that $v \otimes \sigma \in \mathcal{L}\left(V^{*}, V ; \mathbb{R}\right)$, i.e., it is a real-valued bilinear map with domain $V^{*} \times V . \quad(20$ points $)$
3.c) Let $\mathscr{B}=\left\{e_{1}, e_{2}, \cdots e_{n}\right\}$ be a basis of V, and $\mathscr{B}^{*}=\left\{\epsilon^{1}, \epsilon^{2}, \cdots \epsilon^{n}\right\}$ be the basis dual to \mathscr{B}. Show that $\mathscr{E}:=\left\{e_{i} \otimes \epsilon^{j} \mid i, j \in I_{n}\right\}$ is a basis of $V \otimes V^{*}$, where $I_{n}:=\{1,2, \cdots, n\} . \quad$ (30 points)

