Math 450/586: Quiz \# 3

- Write your name and Student ID number in the space provided below and sign.

Name, Last Name:	
ID Number:	
Signature:	

- You have 45 minutes.
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the quiz within the first 5 minutes. After this time for any question you may want to ask, 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)

1. Give the definition of the following objects. (20 points)
1.a) Boundary of a subset of a metric space:
1.b) Basis of a topological space:
1.c) Hausdorff topological space:
1.d) A disconnected subspace of a topological space:
2. Let X be a nonempty set and $d_{0}: X^{2} \rightarrow[0, \infty)$ is the discrete metric on X. Show that every subset of X is an open subset of the metric space (X, d_{0}). (30 points)
Hint: Is $\{p\}$ open for every $p \in X$?
3. Let $\left(M_{1}, d_{1}\right)$ and $\left(M_{2}, d_{2}\right)$ be metric spaces. Show that if $f: M_{1} \rightarrow M_{2}$ is an isometry, then it is one-to-one. (20 points)
4. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and $a, b \in \mathbb{R}^{3}$ be defined as

$$
f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right):=\binom{x^{2}-2 y^{2}+z^{3}}{x^{3}+y^{2}-3 z^{2}}, \quad a:=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right), \quad b=\left(\begin{array}{l}
0 \\
1 \\
3
\end{array}\right) .
$$

Compute $D f(a) b$, where $D f(a)$ is the derivative of f at a and $D f(a) b$ stands for the value of $D f(a)$ at b. (30 points)

