Math 450/586: Quiz \# 4

Fall 2009

- Write your name and Student ID number in the space provided below and sign.

Name, Last Name:	
ID Number:	
Signature:	

- You have 45 minutes.
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the quiz within the first 5 minutes. After this time for any question you may want to ask, 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)

1. Give the definition of the following objects. (30 points)
1.a) A C^{∞}-structure on a topological manifold:
1.b) A C^{∞}-function $f: M \rightarrow N$ for a pair of C^{∞}-manifolds M and N :
1.c) Two compatible C^{∞}-atlases:
1.d) A product manifold:
2. Show that $M:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 2<e^{x y z}<3\right\}$ endowed with the subspace (induced) topology is a topological manifold. (30 points)
3. Let M be a 2-dimensional C^{∞}-manifold, $\left(U_{\alpha}, \phi_{\alpha}\right)$ be a coordinate chart of $M,\left(x^{1}, x^{2}\right)$ denote the coordinates assigned to points q of U_{α} by ϕ_{α}, i.e., $\phi_{\alpha}(q)=\left(x^{1}, x^{2}\right), f: U_{\alpha} \rightarrow \mathbb{R}$ be a function given by

$$
f(q)=f\left(\phi_{\alpha}^{-1}\left(x^{1}, x^{2}\right)\right):=x^{1}+\left(x^{2}\right)^{2}
$$

and

$$
X^{1}=\left(x^{1}\right)^{2}-\left(x^{2}\right)^{2}, \quad X^{2}=\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}, \quad \omega_{1}=x^{1}+x^{2}, \quad \omega_{2}=1+x^{1}-x^{2},
$$

be the components of $X \in T_{q} M$ and $\omega \in T_{q} M^{*}$ in the coordinate chart $\left(U_{\alpha}, \phi_{\alpha}\right)$, i.e., $X=X^{i} \frac{\partial}{\partial x^{i}}$ and $\omega=\omega_{i} d x^{i}$. Compute the following quantities for $p:=\phi_{\alpha}^{-1}(1,2) \in U_{\alpha} . \quad$ (40 points)
3.a) $X(f(p))=$
3.b) $\omega(X)=$

