Math 450/586: Quiz # 4 Fall 2009

• Write your name and Student ID number in the space provided below and sign.

Name, Last Name:	
ID Number:	
Signature:	

- You have <u>45 minutes</u>.
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the quiz within the first 5 minutes. After this time for any question you may want to ask, 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)

Give the definition of the following objects. (30 points)
A C[∞]-structure on a topological manifold:

1.b) A C^{∞} -function $f: M \to N$ for a pair of C^{∞} -manifolds M and N:

1.c) Two compatible C^{∞} -atlases:

1.d) A product manifold:

2. Show that $M := \{(x, y, z) \in \mathbb{R}^3 \mid 2 < e^{xyz} < 3\}$ endowed with the subspace (induced) topology is a topological manifold. (30 points)

3. Let M be a 2-dimensional C^{∞} -manifold, $(U_{\alpha}, \phi_{\alpha})$ be a coordinate chart of M, (x^1, x^2) denote the coordinates assigned to points q of U_{α} by ϕ_{α} , i.e., $\phi_{\alpha}(q) = (x^1, x^2)$, $f: U_{\alpha} \to \mathbb{R}$ be a function given by

$$f(q) = f(\phi_{\alpha}^{-1}(x^1, x^2)) := x^1 + (x^2)^2,$$

and

$$X^{1} = (x^{1})^{2} - (x^{2})^{2}, \quad X^{2} = (x^{1})^{2} + (x^{2})^{2}, \quad \omega_{1} = x^{1} + x^{2}, \quad \omega_{2} = 1 + x^{1} - x^{2},$$

be the components of $X \in T_q M$ and $\omega \in T_q M^*$ in the coordinate chart (U_α, ϕ_α) , i.e., $X = X^i \frac{\partial}{\partial x^i}$ and $\omega = \omega_i dx^i$. Compute the following quantities for $p := \phi_\alpha^{-1}(1,2) \in U_\alpha$. (40 points) **3.a)** X(f(p)) =

3.b) $\omega(X) =$