Math 450/586: Quiz \# 5

- Write your name and Student ID number in the space provided below and sign.

Name, Last Name:	
ID Number:	
Signature:	

- You have 60 minutes.
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the quiz within the first 5 minutes. After this time for any question you may want to ask, 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)

1. Give the definition of the following objects. (15 points)
1.a) An integral curve of a vector field:
1.b) A geodesic in a C^{∞}-manifold with an affine connection:
1.c) A Riemannian manifold:
2. Let $X:=x^{2} \frac{\partial}{\partial x^{1}}+x^{1} \frac{\partial}{\partial x^{2}}$ be a vector field on \mathbb{R}^{2}, where $\left(x^{1}, x^{2}\right)$ are coordinates of points in \mathbb{R}^{2} in a coordinate system. Find the Lie derivative of the following fields along X.
2.a) The scalar field $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $f\left(x^{1}, x^{2}\right)=x^{1}-x^{2}: \quad(10$ points)
2.b) The vector field $Y=x^{2} \frac{\partial}{\partial x^{1}}-x^{1} \frac{\partial}{\partial x^{2}}: \quad$ (10 points)
2.c) The one-form $\omega=x^{2} d x^{1}-x^{1} d x^{2}$: (15 points)

Hint: Recall that $\mathcal{L}_{X} d x^{i}=X_{, j}^{i} d x^{j}$.
3. Let the Christoffel symbols for an affine connection on \mathbb{R}^{2} be given by

$$
\begin{gathered}
\Gamma_{11}^{1}=x^{1}, \quad \Gamma_{12}^{1}=\Gamma_{21}^{1}=x^{1}+x^{2}, \quad \Gamma_{22}^{1}=-2 x^{2}, \\
\Gamma_{11}^{2}=x^{2}, \quad \Gamma_{12}^{2}=\Gamma_{21}^{2}=x^{1}-x^{2}, \quad \Gamma_{22}^{2}=0,
\end{gathered}
$$

$\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ be the curve defined by $\gamma(t)=(t, t)$, and $V_{0}=\frac{\partial}{\partial x^{1}}$ belong to the tangent space of \mathbb{R}^{2} at $\gamma(0)$. Find the components V^{i} of the tangent vector $V^{i} \frac{\partial}{\partial x^{i}}$ obtained by parallel transportation of the vector V_{0} along γ to the point $\gamma(1)$. (50 points)
Hint: The equation for parallel transportation is $\frac{d V^{i}}{d t}+\Gamma_{j k}^{i} \frac{d x^{j}}{d t} V^{k}=0$.

