Math 503, Fall 2006
 Assignment for Nov. 30 - Dec. 04

- Read pages 782-796 of Riley-Hobson-Bence.
- Solve Problems 22.1, 22.2, 22.20, 22.22, on pages 797-799 of Riley-Hobson-Bence.
- Solve the following problems.

1. Find the stationary points of the following functionals.

$$
\begin{aligned}
\mathcal{F}[y(x)] & =\int_{a}^{b} \sqrt{1+\frac{y^{\prime 2}}{y^{2}}} d x, \\
\mathcal{G}[y(x)] & =\int_{a}^{b} \frac{\sqrt{1+y^{\prime 2}}}{1+y} d x,
\end{aligned}
$$

2. Let S be the surface of revolution of the curve $z=x^{2}$ about z-axis. Find the differential equation determining the geodesics on S and obtain its solution.
3. Let \mathcal{F} and \mathcal{G} be functionals. Prove that

$$
\frac{\delta}{\delta y(t)}(\mathcal{F}[y(s)] \mathcal{G}[y(s)])=\frac{\delta \mathcal{F}[y(s)]}{\delta y(t)} \mathcal{G}[y(s)]+\mathcal{F}[y(s)] \frac{\delta \mathcal{G}[y(s)]}{\delta y(t)} .
$$

4. Show that if $\mathcal{F}[y(x)]:=\int_{a}^{b} y^{\prime 2}(x) d x$. The second functional derivative of $\mathcal{F}[y(s)]$ is given by

$$
\frac{\delta}{\delta y(u)} \frac{\delta}{\delta y(t)} \mathcal{F}[y(s)]=-\frac{\partial^{2}}{\partial t^{2}} \delta(t-u) .
$$

