Math 503, Fall 2006 Assignment for October 12-15

- Read pages 333-348 of the textbook (Kreyszig, 9th Edition)
- Solve Problems 6, 10, 14, 29, 30 on pages 338-339 of the textbook and the following problems.

1. Let X be a complex inner product space and $A:=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ be an orthonormal set of vectors in X. Prove that A is a linearly independent set.
2. Let V be the complex vector space of functions $f:[-\pi, \pi] \rightarrow \mathbb{C}$ of the form

$$
\forall x \in[-\pi, \pi], \quad f(x)=\alpha_{1}+\alpha_{2} e^{i x}+\alpha_{3} e^{-i x}
$$

where $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{C}$. Let $\langle\cdot, \cdot\rangle: V^{2} \rightarrow \mathbb{C}$ be defined by

$$
\forall f, g \in V, \quad\langle f, g\rangle:=\int_{-\pi}^{\pi} \overline{f(x)} g(x) d x
$$

Let for all $m \in\{1,2,3\}, f_{m} \in V$ be defined by

$$
\forall x \in[-\pi, \pi], \quad f_{1}(x):=1, \quad f_{2}(x):=e^{i x}, \quad f_{3}(x):=e^{-i x}
$$

and $L: V \rightarrow V$ be defined by

$$
\forall f \in V, \forall x \in[-\pi, \pi], \quad(L f)(x):=\int_{-\pi}^{\pi} \sin (x-t) f(t) d t
$$

(a) Prove that $\left\{f_{1}, f_{2}, f_{3}\right\}$ is a basis of V.
(b) Prove that $(V,\langle\cdot, \cdot\rangle)$ is a complex inner product space.
(c) Construct an orthonormal basis of V by applying the Gram-Schmidt process to $\left\{f_{1}, f_{2}, f_{3}\right\}$.
(d) Find the domain of L and show that L is a linear operator.
(e) Find the matrix representation of L in the orthonormal basis you construct in part (c).
(f) Find the null space of L and determine if it is invertible.
(g) Determine whether L is a self-adjoint operator.
(h) Find the eigenvalues of L and obtain an eigenvector for each eigenvalue.

