Math 503: Midterm Exam \# 1

Fall 2006

- Write your name and Student ID number in the space provided below and sign.

Student's Name:	
ID Number:	
Signature:	

- You have 80 minutes.
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the exam within the first 10 minutes. After this time for any question you may want to ask 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)
- (Optional) Grade your own work out of 100 . Record your estimated grade here:

Estimated Grade:

If your expected grade and actual grade will turn out to differ by 9 points or less, you will be given the highest of the two.

To be filled by the grader:

Actual Grade:	
Adjusted Grade:	

Problem 1. Let f_{1}, f_{2}, f_{3} be the functions defined by: $\forall x \in \mathbb{R}, f_{1}(x):=1, f_{2}(x):=e^{i x}$, and $f_{3}(x):=x e^{i x}$. Prove that these functions are linearly independent. (15 points)

Problem 2. Let V be the complex inner product space of polynomials $p:[0,1] \rightarrow \mathbb{C}$ with the inner product $\langle\cdot, \cdot\rangle: V^{2} \rightarrow \mathbb{C}$ defined by

$$
\forall f, g \in V, \quad\langle f, g\rangle:=\int_{0}^{1} x^{2} \overline{f(x)} g(x) d x
$$

and $W:=\operatorname{Span}\left(\left\{p_{1}, p_{2}\right\}\right)$ where $p_{1}, p_{2} \in V$ are defined by: $\forall x \in[0,1], p_{1}(x):=1$ and $p_{2}(x):=x$. Let $L: W \rightarrow W$ be defined by

$$
\forall f \in W, \forall x \in[0,1], \quad(L f)(x):=\frac{1}{x^{2}} \int_{0}^{x} t f(t) d t
$$

2.a) Find the matrix representation of L in the basis $\left\{p_{1}, p_{2}\right\}$. (15 points)
2.b) Solve the eigenvalue problem for L in W, i.e., find the eigenvalues and eigenvectors of L. (15 points)
2.c) Determine whether L is a self-adjoint operator. You must justify your response. (10 points) Hint: You may use your response to part 2.b.

Problem 3. Use the fact that $y_{1}(x):=x^{2}$ solves $y^{\prime \prime}-2 x^{-2} y=0$ to find the general solution of $y^{\prime \prime}-2 x^{-2} y=x$. (25 points)

Problem 4. Find a solution of $x^{2} y^{\prime \prime}+4 x y^{\prime}-\left(x^{2}-2\right) y=0 . \quad(25$ points $)$

