Math 503: Midterm Exam \# 2

Fall 2006

- Write your name and Student ID number in the space provided below and sign.

Student's Name:	
ID Number:	
Signature:	

- You have 80 minutes.
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the exam within the first 10 minutes. After this time for any question you may want to ask 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)
- (Optional) Grade your own work out of 100 . Record your estimated grade here:

Estimated Grade:

If your expected grade and actual grade will turn out to differ by 9 points or less, you will be given the highest of the two.

To be filled by the grader:

Actual Grade:	
Adjusted Grade:	

Problem 1. Let $\vec{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $\vec{F}(x, y)=\left(3 x^{4} y+x^{2} y^{3},-3 x y^{4}-x^{3} y^{2}\right)$ and $C:=\left\{(x, y) \in \mathbb{R}^{2} \mid y \geq 0, x^{2}+y^{2}=1\right\}$. Evaluate the line integral $\oint_{C} \vec{F} \cdot d \vec{r}$ where C is oriented counterclockwise. (20 points)

Problem 2.

a) Find $y:[0,1] \rightarrow \mathbb{R}$ such that $y(0)=0, y(1)=1$, and the functional $\mathcal{F}[y]=\int_{0}^{1} y^{2}(x) y^{\prime 2}(x) d x$ has a stationary value. (20 points)

Hint: Try to express x as a function of y.
b) Calculate the value of $\mathcal{F}[y]$ for the function y you find in part a). (5 points)

Problem 3. Find the solution $u(x, y)$ of the following initial-value problem for all $(x, y) \in \mathbb{R}^{2}$.

$$
u_{x}+e^{x} u_{y}=u^{2}, \quad u(0, y)=y^{2} . \quad(30 \text { points })
$$

Problem 4. Find $u(x, t)$ for all $x \in[0, \pi]$ and $t \in[0, \infty)$ such that

$$
\begin{aligned}
& u_{t}-u_{x x}=u, \quad \forall x \in[0, \pi], \quad \forall t \in[0, \infty), \\
& u(0, t)=u(\pi, t)=0, \quad \forall t \in[0, \infty) \\
& u(x, 0)=\sin x, \quad \forall x \in[0, \pi]
\end{aligned}
$$

(25 points)

