Math 503: Midterm Exam 2

Fall 2007

You have two hours.
Problem 1. Let (ρ, θ) denote the polar coordinates in \mathbb{R}^{2}, i.e., $\rho=\sqrt{x^{2}+y^{2}}$ and $\theta=$ $\tan ^{-1} \frac{y}{x}$, where (x, y) are the Cartesian coordinates in \mathbb{R}^{2}. Let $\mathbf{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a vector field that only depends on θ, i.e., $\mathbf{F}(\rho, \theta)=F_{1}(\theta) \mathbf{i}+F_{2}(\theta) \mathbf{j}$, where $F_{1}: \mathbb{R} \rightarrow \mathbb{R}$ and $F_{2}: \mathbb{R} \rightarrow \mathbb{R}$ are differentiable periodic functions with period 2π, and \mathbf{i} and \mathbf{j} are respectively the unit vectors along the x - and y-axes.
1.a) Let R be the unit disc defined by $\rho \leq 1$ and C be the unit circle defined by $\rho=$ 1. Verify the statement of the Green's theorem in plane for \mathbf{F} and R, i.e., evaluate the left- and right-hand sides of the formula given by Green's theorem and show that they are identical. (20 points)
1.b) Show that if \mathbf{F} is conservative, one can express F_{1} in terms of F_{2}. Obtain the expression of F_{1} in terms of F_{2} and use it to compute $F_{1}(\theta)$ if $F_{2}(\theta)=\cos ^{3} \theta$. (15 points)

Problem 2. Let (ρ, θ, z) denote the cylindrical coordinates, i.e., $\rho=\sqrt{x^{2}+y^{2}}$ and $\theta=$ $\tan ^{-1} \frac{y}{x}$, where (x, y, z) are the Cartesian coordinates in \mathbb{R}^{3}. Let S denote the paraboloid defined by $z=\frac{\rho^{2}}{2}$. Find the general form of the geodesics (curves of minimum distance) on S. (20 points)

Hint: Parameterize the curves on S by ρ, i.e., denote their points as $\left(\rho, \theta(\rho), \frac{\rho^{2}}{2}\right)$ in the cylindrical coordinates and obtain $\theta(\rho)$.

Problem 3. Let K and L be differential operators defined by: $K u:=u_{x}+f(x, y) u_{y}$ and $L u:=u_{x}+g(x, y) u_{y}$, where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are differentiable functions.
3.a) Find f and g such that the equation $u_{x x}-x^{2} u_{y y}-u_{y}=0$ can be expressed in the form $K L u=0 . \quad(10$ points)
3.b) Use (3.a) to reduce $u_{x x}-x^{2} u_{y y}-u_{y}=0$ into first order equations and solve these equations to obtain the general solution of $u_{x x}-x^{2} u_{y y}-u_{y}=0$. (20 points)

Problem 4. Solve the following initial-boundary-value problem. (15 points)

$$
\begin{aligned}
& u_{t}(x, t)=u_{x x}(x, t)+u(x, t), \quad 0 \leq x \leq \pi, \quad t \geq 0 \\
& u(0, t)=u(\pi, t)=0, \quad t \geq 0 . \\
& u_{t}(x, 0)=\sin (2 x)-\sin (3 x), \quad 0 \leq x \leq \pi .
\end{aligned}
$$

