Math 503: Final Exam
 Fall 2007

You are two and half hours.

Problem 1. Let \mathcal{M} denote the complex vector space of 3×2 complex matrices, V be the subset of \mathcal{M} consisting of the matrices of the form $\left(\begin{array}{cc}a & 0 \\ 0 & b \\ c & 0\end{array}\right)$ where $a, b, c \in \mathbb{C}$, and $\langle\cdot, \cdot\rangle: V^{2} \rightarrow \mathbb{C}$ be defined by: $\langle A, B\rangle:=\operatorname{tr}\left(A^{\dagger} B\right)$, where $A, B \in V$, "tr" stands for the trace of a square matrix (sum of its diagonal entries) and $A^{\dagger}=\bar{A}^{t}$ is the transpose of the complex-conjugate of A.
1.a) Show that V is a subspace of \mathcal{M}. (3 points)
1.b) Find a linear operator $L: \mathcal{M} \rightarrow \mathcal{M}$ such that V is the null space of L. (3 points)
1.c) Use the definition of an inner product on a complex vector space to show that $\langle\cdot, \cdot\rangle$ is an inner product on V. (9 points)
1.d) Let $A_{1}:=\left(\begin{array}{cc}i & 0 \\ 0 & 1 \\ 1 & 0\end{array}\right), A_{2}:=\left(\begin{array}{ll}1 & 0 \\ 0 & i \\ 1 & 0\end{array}\right), A_{3}:=\left(\begin{array}{cc}1 & 0 \\ 0 & 1 \\ i & 0\end{array}\right)$. Show that $\left\{A_{1}, A_{2}, A_{3}\right\}$ is a basis of V. (7 points)
1.e) Perform the Gram-Schmidt process on $\left\{A_{1}, A_{2}, A_{3}\right\}$ to construct an orthonormal basis for the inner product space $(V,\langle\cdot, \cdot\rangle)$. (8 points)

Problem 2. Verify the Stokes' theorem for the surface

$$
S:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=\sqrt{1-x^{2}-y^{2}}\right\}
$$

and the vector field $\mathbf{F}(x, y, z):=-y \mathbf{i}+x \mathbf{j}+x y \mathbf{k}$ where $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are the unit vectors along the x-, y-, and z-axes. (15 points)

Problem 3. Find a power series solution for the following integral equation about $x=0$.

$$
\int_{0}^{x} e^{\frac{t}{x}} y(t) d t+y(x)=1
$$

You may express your solution in terms of $c_{n}:=\int_{0}^{1} t^{n} e^{t} d t$ where $n \in \mathbb{N}$. Note that $\int_{0}^{x} e^{\frac{t}{x}} t^{n} d t=c_{n} x^{n+1}, c_{0}=e-1$, and $c_{n}=e-n c_{n-1}$ for all $n \geq 1$.

Problem 4. Find the general form of a stationary point of the following functional with fixed boundary conditions. (10 points)

$$
\mathcal{F}[y(x)]:=\int_{0}^{1}\left[e^{y^{\prime}(x)}+y(x)\right] d x .
$$

Problem 5. Find $u(x, y, t)$ for all $0 \leq x \leq \pi, \quad 0 \leq y \leq \pi, \quad t \geq 0$ such that

$$
\begin{array}{ll}
u_{t}=u_{x x}+u_{y y}, & \text { for } \quad 0 \leq x \leq \pi, \quad 0 \leq y \leq \pi, t \geq 0, \\
u(0, y, t)=u(\pi, y, t)=0, & \text { for } 0 \leq y \leq \pi, \quad t \geq 0 \\
u_{y}(x, 0, t)=u_{y}(x, \pi, t)=0, & \text { for } \quad 0 \leq x \leq \pi, \quad t \geq 0 \\
u(x, y, 0)=1, & \text { for } \quad 0 \leq x \leq \pi, \quad 0 \leq y \leq \pi .
\end{array}
$$

(15 points)

Problem 6. Let $u(x, y, t)$ be the solution of the following initial-value problem.

$$
\begin{aligned}
& u_{t}=u_{x y}, \quad \text { for } \quad x, y \in \mathbb{R}, t \geq 0 \\
& u(x, y, 0)=\left\{\begin{array}{lll}
1 & \text { for } & |x| \leq 1,|y| \leq 1 \\
0 & \text { for } & |x|>1,|y|>1
\end{array}\right.
\end{aligned}
$$

Use the method of Fourier transform to express $u(x, y, t)$ in the form

$$
u(x, y, t)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(x, y, t, k_{1}, k_{2}\right) d k_{1} d k_{2}
$$

and obtain an explicit expression for $f\left(x, y, t, k_{1}, k_{2}\right)$. (15 points)

