Math 503, Fall 2007 Assignment for October 09-15

- Read pages 333-348 of the textbook (Kreyszig, 9th Edition)
- Solve Problems 6, 10, 14, 29, 30 on pages 338-339 of the textbook.
- Solve the following problems.
 - 1. Let V and W be complex vector spaces and $L: V \to W$ be a linear operator.
 - (a) Prove that the null space of L, i.e., null $(L) := \{v \in V \mid Lv = 0\}$, is a subspace of V.
 - (b) Prove that the range of L, i.e., $\operatorname{range}(L) := \{ w \in W \mid \exists v \in V, w = Lv \}$, is a subspace of W.
 - 2. Let $f_1, f_2 : \mathbb{R} \to \mathbb{R}$ be defined by $\forall x \in \mathbb{R}, f_1(x) := \sin x$ and $f_2(x) := \cos x$, $V := \{a_1 f_1 + a_2 f_2 | a_1, a_2 \in \mathbb{R}\}$, and $D : V \to V$ denote the differentiation.
 - (a) Prove that V is a subspace of the real vector space $\mathcal{C}(\mathbb{R})$ of all real-valued functions $f: \mathbb{R} \to \mathbb{R}$ having \mathbb{R} as their domain.
 - (b) Prove that $D: V \to V$ is a linear operator.
 - (c) Determine the null space and range of D.
 - (d) Find the matrix representation of D in the basis $\{f_1, f_2\}$.
 - (e) Use your response to (d) to determine the matrix representation of D^2 in the basis $\{f_1, f_2\}$.
 - (f) Use your response to (d) to show that D is invertible and find $D^{-1}: V \to V$.
 - (g) Let $g_1 := f_1 + f_2$ and $g_2 := f_1 f_2$. Show that $\{g_1, g_2\}$ is a basis of V.
 - (h) Find the matrix representation of D in the basis $\{g_1, g_2\}$.
 - (i) Use your response to (h) to determine the matrix representation of D^2 in the basis $\{g_1, g_2\}$.
 - 3. Let $p_1, p_2, p_3 : \mathbb{R} \to \mathbb{R}$ be the polynomials defined by $\forall x \in \mathbb{R}, p_1(x) := 1 \ p_2(x) := x$, and $p_3(x) := x^2$, V be the vector space of real polynomials of degree at most two, i.e.,

$$V := \{a_1p_1 + a_2p_2 + a_3p_3 \mid a_1, a_2, a_3 \in \mathbb{R} \},\$$

and $L: V \to V$ be defined by

$$\forall p \in V, \forall x \in \mathbb{R} \quad (Lp)(x) := x \frac{d}{dx} p(x) + p(x).$$

(a) Prove that $L: V \to V$ is a linear operator.

- (b) Determine the null space and range of L.
- (c) Show that $\{p_1, p_2, p_3\}$ is a basis of V.
- (d) Find the matrix representation of L in the basis $\{p_1, p_2, p_3\}$.
- (e) Use your response to (d) to determine the matrix representation of L^3 in the basis $\{p_1, p_2, p_3\}.$
- (f) Use your response to (e) to compute $L^3(p_2 + p_3)$.
- 4. Let X be a complex inner product space and $A := \{x_1, x_2, \dots, x_k\}$ be an orthonormal set of vectors in X. Prove that A is a linearly independent set.
- 5. Let V be the complex vector space of functions $f: [-\pi, \pi] \to \mathbb{C}$ of the form

$$\forall x \in [-\pi, \pi], \quad f(x) = \alpha_1 + \alpha_2 e^{ix} + \alpha_3 e^{-ix},$$

where $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{C}$. Let $\langle \cdot, \cdot \rangle : V^2 \to \mathbb{C}$ be defined by

$$\forall f, g \in V, \ \langle f, g \rangle := \int_{-\pi}^{\pi} \overline{f(x)} g(x) \, dx.$$

Let for all $m \in \{1, 2, 3\}, f_m \in V$ be defined by

$$\forall x \in [-\pi, \pi], f_1(x) := 1, f_2(x) := e^{ix}, f_3(x) := e^{-ix},$$

and $L: V \to V$ be defined by

$$\forall f \in V, \forall x \in [-\pi, \pi], \quad (Lf)(x) := \int_{-\pi}^{\pi} \sin(x - t) f(t) dt.$$

- (a) Prove that $\{f_1, f_2, f_3\}$ is a basis of V.
- (b) Prove that $(V, \langle \cdot, \cdot \rangle)$ is a complex inner product space.
- (c) Construct an orthonormal basis of V by applying the Gram-Schmidt process to $\{f_1, f_2, f_3\}.$
- (d) Find the domain of L and show that L is a linear operator.
- (e) Find the matrix representation of L in the orthonormal basis you construct in part (c).
- (f) Find the null space of L and determine if it is invertible.
- (g) Determine whether L is a self-adjoint operator.
- (h) Find the eigenvalues of L and obtain an eigenvector for each eigenvalue.