## Math 503, Fall 2007 Assignment for October 09-15

- Read pages 333-348 of the textbook (Kreyszig, 9th Edition)
- Solve Problems 6, 10, 14, 29, 30 on pages 338 - 339 of the textbook.
- Solve the following problems.

1. Let $V$ and $W$ be complex vector spaces and $L: V \rightarrow W$ be a linear operator.
(a) Prove that the null space of $L$, i.e., $\operatorname{null}(L):=\{v \in V \mid L v=0\}$, is a subspace of $V$.
(b) Prove that the range of $L$, i.e., $\operatorname{range}(L):=\{w \in W \mid \exists v \in V, w=L v\}$, is a subspace of $W$.
2. Let $f_{1}, f_{2}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $\forall x \in \mathbb{R}, f_{1}(x):=\sin x$ and $f_{2}(x):=\cos x$, $V:=\left\{a_{1} f_{1}+a_{2} f_{2} \mid a_{1}, a_{2} \in \mathbb{R}\right\}$, and $D: V \rightarrow V$ denote the differentiation.
(a) Prove that $V$ is a subspace of the real vector space $\mathcal{C}(\mathbb{R})$ of all real-valued functions $f: \mathbb{R} \rightarrow \mathbb{R}$ having $\mathbb{R}$ as their domain.
(b) Prove that $D: V \rightarrow V$ is a linear operator.
(c) Determine the null space and range of $D$.
(d) Find the matrix representation of $D$ in the basis $\left\{f_{1}, f_{2}\right\}$.
(e) Use your response to (d) to determine the matrix representation of $D^{2}$ in the basis $\left\{f_{1}, f_{2}\right\}$.
(f) Use your response to (d) to show that $D$ is invertible and find $D^{-1}: V \rightarrow V$.
(g) Let $g_{1}:=f_{1}+f_{2}$ and $g_{2}:=f_{1}-f_{2}$. Show that $\left\{g_{1}, g_{2}\right\}$ is a basis of $V$.
(h) Find the matrix representation of $D$ in the basis $\left\{g_{1}, g_{2}\right\}$.
(i) Use your response to (h) to determine the matrix representation of $D^{2}$ in the basis $\left\{g_{1}, g_{2}\right\}$.
3. Let $p_{1}, p_{2}, p_{3}: \mathbb{R} \rightarrow \mathbb{R}$ be the polynomials defined by $\forall x \in \mathbb{R}, p_{1}(x):=1 p_{2}(x):=x$, and $p_{3}(x):=x^{2}, V$ be the vector space of real polynomials of degree at most two, i.e.,

$$
V:=\left\{a_{1} p_{1}+a_{2} p_{2}+a_{3} p_{3} \mid a_{1}, a_{2}, a_{3} \in \mathbb{R}\right\},
$$

and $L: V \rightarrow V$ be defined by

$$
\forall p \in V, \forall x \in \mathbb{R} \quad(L p)(x):=x \frac{d}{d x} p(x)+p(x) .
$$

(a) Prove that $L: V \rightarrow V$ is a linear operator.
(b) Determine the null space and range of $L$.
(c) Show that $\left\{p_{1}, p_{2}, p_{3}\right\}$ is a basis of $V$.
(d) Find the matrix representation of $L$ in the basis $\left\{p_{1}, p_{2}, p_{3}\right\}$.
(e) Use your response to (d) to determine the matrix representation of $L^{3}$ in the basis $\left\{p_{1}, p_{2}, p_{3}\right\}$.
(f) Use your response to (e) to compute $L^{3}\left(p_{2}+p_{3}\right)$.
4. Let $X$ be a complex inner product space and $A:=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ be an orthonormal set of vectors in $X$. Prove that $A$ is a linearly independent set.
5. Let $V$ be the complex vector space of functions $f:[-\pi, \pi] \rightarrow \mathbb{C}$ of the form

$$
\forall x \in[-\pi, \pi], \quad f(x)=\alpha_{1}+\alpha_{2} e^{i x}+\alpha_{3} e^{-i x}
$$

where $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{C}$. Let $\langle\cdot, \cdot\rangle: V^{2} \rightarrow \mathbb{C}$ be defined by

$$
\forall f, g \in V, \quad\langle f, g\rangle:=\int_{-\pi}^{\pi} \overline{f(x)} g(x) d x
$$

Let for all $m \in\{1,2,3\}, f_{m} \in V$ be defined by

$$
\forall x \in[-\pi, \pi], \quad f_{1}(x):=1, \quad f_{2}(x):=e^{i x}, \quad f_{3}(x):=e^{-i x}
$$

and $L: V \rightarrow V$ be defined by

$$
\forall f \in V, \forall x \in[-\pi, \pi], \quad(L f)(x):=\int_{-\pi}^{\pi} \sin (x-t) f(t) d t .
$$

(a) Prove that $\left\{f_{1}, f_{2}, f_{3}\right\}$ is a basis of $V$.
(b) Prove that $(V,\langle\cdot, \cdot\rangle)$ is a complex inner product space.
(c) Construct an orthonormal basis of $V$ by applying the Gram-Schmidt process to $\left\{f_{1}, f_{2}, f_{3}\right\}$.
(d) Find the domain of $L$ and show that $L$ is a linear operator.
(e) Find the matrix representation of $L$ in the orthonormal basis you construct in part (c).
(f) Find the null space of $L$ and determine if it is invertible.
(g) Determine whether $L$ is a self-adjoint operator.
(h) Find the eigenvalues of $L$ and obtain an eigenvector for each eigenvalue.

