## Math 503: Midterm Exam 1

## Fall 2007

- Write your name and Student ID number in the space provided below and sign.

| Name, Last Name: |  |
| :---: | :--- |
| ID Number: |  |
| Signature: |  |

- You have two hours.
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the exam within the first 10 minutes. After this time for any question you may want to ask 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)
- (Optional) Grade your own work out of 100 . Record your estimated grade here:


## Estimated Grade:

If your expected grade and actual grade will turn out to differ by 9 points or less, you will be given the highest of the two.

## To be filled by the grader:

| Actual Grade: |  |
| :---: | :--- |
| Adjusted Grade: |  |

Problem 1. Let $V$ and $W$ be a complex inner product spaces and $L: V \rightarrow W$ be a linear operator.
1.a) Show that the null space of $L$ is a subspace of $V$.
(5 points)
1.b) Show that the range of $L$ is a subspace of $W$. (5 points)
1.c) Show that if $V=W$ and $L$ is self-adjoint, then every element of the null-space of $L$ is orthogonal to every element of its range. (5 points)
1.d) Show that if $V=W, L$ is self-adjoint, and $L^{2}=0$, then $L=0$. (5 points)

Problem 2. Let $V$ be a finite dimensional complex inner product, $B$ be an orthonormal basis of $V$, and $L: V \rightarrow V$ be a linear operator having $V$ as it domain. Show that if the matrix representation of $L$ in the basis $B$ is a Hermitian matrix, then $L$ must be self-adjoint. (15 points)

Problem 3. Let $\mathcal{C}(\mathbb{R})$ be the real vector space of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with domain $\mathbb{R}, D: \mathcal{C}(\mathbb{R}) \rightarrow \mathcal{C}(\mathbb{R})$ and $I: \mathcal{C}(\mathbb{R}) \rightarrow \mathcal{C}(\mathbb{R})$ be the derivative operator and the identity operator, respectively, $f, g \in \mathcal{C}(\mathbb{R})$ be nonzero differentiable functions, and $L:=f D+g I$. Determine the most general first order differential operator $J$ satisfying $L J=J L$ and express $J$ in terms of $L$. (15 points)

Problem 4. Given that $y_{1}(x):=e^{x}$ is a solution of $x y^{\prime \prime}-(1+x) y^{\prime}+y=0$ find the general solution of the following equation for $x>0$.

$$
x y^{\prime \prime}-(1+x) y^{\prime}+y=x^{2} e^{x} . \quad(20 \text { points })
$$

Note: Try to check whether your solution actually solves the equation.

Problem 5. Consider the equation: $x y^{\prime \prime}-y=0$.
5.a) Find a nonzero power series solution of this equation that satisfies $y^{\prime}(0)=1$. ( 15 points)
5.b) Denote the solution you found in part 5.a of this problem by $y_{1}$. Use the ratio test to find the radius of convergence of $y_{1}$. (5 points)
5.c) Find a recurrence relation for $b_{n}$ such that $y_{2}(x):=\ln (x) y_{1}(x)+\sum_{n=0}^{\infty} b_{n} x^{n}$ is a solution of $x y^{\prime \prime}-y=0$ for $x>0 . \quad$ ( 10 points)

