1 Consider a system with phase space \mathbb{R}^{2} and let $\mathscr{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $\mathscr{T}(q, p):=$ (\tilde{q}, \tilde{p}) where \tilde{p} and \tilde{q} satisfy

$$
\left[\begin{array}{l}
\tilde{q} \\
\tilde{p}
\end{array}\right]=\left[\begin{array}{ll}
a(t) & b(t) \\
c(t) & d(t)
\end{array}\right]\left[\begin{array}{l}
q \\
p
\end{array}\right]+\left[\begin{array}{l}
e(t) \\
f(t)
\end{array}\right]
$$

and $a(t), b(t), c(t), d(t), e(t)$, and $f(t)$ are real-valued functions of t.
1.a (10 points) Find the necessary and sufficient conditions on these functions such that \mathscr{T} is a canonical transformation.
1.b (15 points) Consider the infinitesimal canonical transformation that belong to those you find in part a of the problem. Show that their generator is a quadratic polynomial with time-dependent coefficients.

2 (10 points) Do Exercise 2.8.1 on Page 100 of Shankar's book.
3 (15 points) Do Exercise 2.8.3 on Page 100 of Shankar's book.
4 (15 points) Do Exercise 2.8.4 on Page 101 of Shankar's book.
5 (10 points) Do Exercise 1.1.3 on Page 4 of Shankar's book.
6 (10 points) Do Exercise 1.3.1 on Page 15 of Shankar's book.
7 (15 points) Do Exercise 1.4.1 on Page 18 of Shankar's book.

