Assume that the operators appearing in what follows are defined in the whole Hilbert space and there are no domain issues when they are composed, i.e., ignore all the domain-related problems.

1 (12 points) Let A, B, and C be linear operators acting in a Hilbert space, and $\{A, B\} := AB + BA$. Show that the following identities hold.

a) [A, B + C] = [A, B] + [A, C].

- **b)** [A, BC] = [A, B]C + B[A, C].
- c) [A, [B, C]] + [C, [A, B]] + [B, [C, A]] = 0.
- d) $[A, BC] = \{A, B\}C B\{A, C\}.$
- **2** (6 points) Let A and B be Hermitian operators acting in a Hilbert space, and $\{A, B\} := AB + BA$. Show that
 - **a)** $\{A, B\}$ is Hermitian.
 - **b**) i[A, B] is Hermitian.
- **3** (10 points) Let A be a linear operator acting in (a finite-dimensional) Hilbert space. Show that there is a unique pair of Hermitian operators B and C such that A = B + iC.
- 4 (20 points) Let $a \in \mathbb{R}$ and $\hat{\mathcal{P}}_a : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ be the parity operator defined by $\hat{\mathcal{P}}_a \psi(x) := \psi(2a x)$. Show that
 - a) $\hat{\mathcal{P}}_a$ is Hermitian.
 - b) $\hat{\mathcal{P}}_a$ is unitary.
 - c) $\{\hat{X}, \hat{\mathcal{P}}_a\} = 2a\hat{\mathcal{P}}_a.$
 - d) $\{\hat{P}, \hat{\mathcal{P}}_a\} = 0.$
- 5 (12 points) Let a and \mathcal{P}_a be as in Problem 4. Express the following operators as linear combinations of $\hat{\mathcal{P}}_a$, \hat{X} , \hat{P} , and the identity operators \hat{I} .
 - a) $\hat{\mathcal{P}}_a \hat{X} \hat{\mathcal{P}}_a$.
 - **b**) $\hat{\mathcal{P}}_a \hat{P} \hat{\mathcal{P}}_a$.
 - c) $\hat{\mathcal{P}}_a \hat{X}^2 \hat{\mathcal{P}}_a$.
 - d) $\hat{\mathcal{P}}_a \hat{P}^2 \hat{\mathcal{P}}_a$.
- 6 (20 points) Let a and $\hat{\mathcal{P}}_a$ be as in Problem 4. Solve the eigenvalue problem for $\hat{\mathcal{P}}_a$, i.e., find its eigenvalues and determine the form of the most general eigenvector for each eigenvalue.
- 7 (20 points) Let *a* and $\hat{\mathcal{P}}_a$ be as in Problem 4. Show that for every real number α , $e^{\alpha \hat{\mathcal{P}}_0} = \cosh \alpha \hat{I} + \sinh \alpha \hat{\mathcal{P}}_0$.