In the following problems \hat{X} and \hat{P} denote the standard position and momentum operators acting in $L^{2}(\mathbb{R})$.

1 (20 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a real-valued analytic function, i.e., it has a convergent Maclaurin series with an infinite radius of convergence, so that $f(x)=\sum_{n=1}^{\infty} a_{n} x^{n}$ for all $x \in \mathbb{R}$ and $a_{n}:=f^{(n)}(0) / n!$, and $f^{\prime}(x)$ denotes the first derivative of f. Show that the following identities hold.
a) $[\hat{X}, f(\hat{P})]=i \hbar f^{\prime}(\hat{P})$.
b) $[\hat{P}, f(\hat{X})]=-i \hbar f^{\prime}(\hat{X})$.

2 (10 points) Let α and κ be real parameters with the dimension of length and momentum, respectively, and $\psi \in L^{2}(\mathbb{R})$. Show that the following identities hold.
a) $\langle x| e^{-i \alpha \hat{P} / \hbar}|\psi\rangle=\langle x-\alpha \mid \psi\rangle$.
b) $\langle p| e^{-i \kappa \hat{X} / \hbar}|\psi\rangle=\langle p+\kappa \mid \psi\rangle$.

3 (15 points) A particle of mass m is described by the Hilbert space $L^{2}(\mathbb{R})$ and the Hamiltonian operator $\hat{H}=\hat{P}^{4} / 2 m^{3} c^{2}$, where c is the speed of light. Find the spectrum, degeneracy of the energy levels, and the position wave functions for the (generalized) eigenvectors of \hat{H}.

4 Consider a free particle of mass m that moves in a straight line. Suppose that at time $t=0$ the particle in a state given by the position wave function:

$$
\psi_{0}(x)=e^{i p_{0} x / \hbar} e^{-(x-a)^{2} / 4 \sigma^{2}},
$$

where p_{0}, a, σ are real parameters, and $\sigma>0$. Calculate the following quantities:
4.a (10 points) The position wave function at times $t>0$.
4.b (10 points) Expectation value of the position \hat{X} of this particle at times $t>0$.
4.c (10 points) Uncertainty in the position of this particle at times $t>0$.
4.d (5 points) The momentum wave function at times $t>0$.
4.e (5 points) Expectation value of the momentum \hat{P} of this particle at times $t>0$.
4.f (5 points) Uncertainty in the momentum of this particle at times $t>0$.
4.g (10 points) Explain how the expectation value of the momentum of the particle compares with the time-derivative of the expectation value of its position.

