In the following problems \hat{X} and \hat{P} denote the standard position and momentum operators acting in $L^{2}(\mathbb{R})$.

1 (5 points) Solve Exercise Problem 4.2.2 on Page 139 of Shankar.
2 (5 points) Solve Exercise Problem 4.2.3 on Page 139 of Shankar.
3 (10 points) Solve Exercise Problem 5.1.3 on Page 155 of Shankar.
4 (10 points) Solve Exercise Problem 5.2.1 on Page 163 of Shankar.
5 A particle of mass m moving in a straight line interacts with a potential of the form

$$
v(x)=\left\{\begin{array}{ccc}
-V_{0} & \text { for } & |x|<a \\
0 & \text { for } & |x| \geq a
\end{array}\right.
$$

where V_{0} and a are positive real parameters.
$5 \mathbf{a}$ (30 points) Obtain all possible nonzero solutions of the time-independent Schrödinger equation and determine the structure of the energy spectrum of the system.
5.b (25 points) For each positive value of energy $E>0$ the time-independent Schrödinger equation admits a pair of solutions $\psi_{E \pm}(x)$ satisfying

$$
\begin{aligned}
& \psi_{E-}(x)=\left\{\begin{array}{cl}
T_{r}(E) e^{-i k_{E} x} & \text { for } x<-a, \\
e^{-i k_{E} x}+R_{r}(E) e^{i k_{E} x} & \text { for } \quad x>a,
\end{array}\right. \\
& \psi_{E+}(x)=\left\{\begin{array}{cl}
e^{i k_{E} x}+R_{l}(E) e^{-i k_{E} x} & \text { for } \quad x<-a, \\
T_{l}(E) e^{i k_{E} x} & \text { for } \quad x>a,
\end{array}\right.
\end{aligned}
$$

where $k_{E}:=\sqrt{2 m E} / \hbar$, and R_{r}, T_{r}, R_{l}, and T_{l} are functions of E. Obtain explicit expressions for these functions, i.e., give their formula in terms of E, a, V_{0} and m.
5.c (5 points) Show that $\left|R_{l}\right|=\left|R_{r}\right|$.
5.d (10 points) Show that $\left|R_{l}\right|^{2}+\left|T_{l}\right|^{2}=1$ and $\left|R_{r}\right|^{2}+\left|T_{r}\right|^{2}=1$.

