
A. An Elementary Introduction to Manifolds 
and Lie Groups 

A.I Introduction 

The following is an elementary introduction to some basic concepts in modern 
differential geometry. The aim is to provide the reader with a clear under-
standing of the key ideas and to motivate the concepts rather than to promote 
the rigor and generality pursued in mathematical texts. Specifically, our main 
objective is to arrive at a comprehensive description of smooth manifolds, Lie 
groups, and their most basic properties. 

In particular, we shall introduce the following specific concepts: 

1. metric space; 
2. open and closed subsets of a metric space; 
3. equivalence relation; 
4. bijection; 
5. isometry; 
6. continuous function between metric spaces; 
7. topological space; 
8. continuous function between topological spaces; 
9. homeomorphism; 

10. connected topological space; 
11. compact topological space; 
12. topological manifold; 
13. differentiable and smooth manifolds; 
14. diffeomorphism; 
15. complex projective space; 
16. smooth curve on a smooth manifold; 
17. tangent and cotangent spaces; 
18. vector and tensor fields; 
19. associative algebra; 
20. differential forms and exterior differentiation; 
21. push-forward map; 
22. pullback map for differential forms; 
23. compact manifold; 
24. group; 
25. group homomorphism and isomorphism; 
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26. Lie group; 
27. action of a Lie group on a manifold; 
28. transitive and free actions; 
29. Lie algebra of a Lie group; 
30. abstract Lie algebra; 
31. unitary groups; 
32. representation of a Lie group; 
33. irreducible representation; 
34. representation of a Lie algebra; 
35. enveloping algebra; 
36. Casimir operator. 

The abstract definitions are supplemented with concrete examples. 
For a more thorough treatment of this material, we wish to refer the 

reader to the following introductory textbooks: 

- B. Schutz: Geometrical Methods of Mathematical Physics (Cambridge Uni-
versity Press, Cambridge, 1980); 

- C. Isham: Modern Differential Geometry for Physicists (World Scientific, 
Singapore, 1989); 

- M. Nakahara: Geometry, Topology and Physics (Adam Hilger, Bristol, 
1990); 

- C. Nash and S. Sen: Topology and Geometry for Physicists (Academic 
Press, London, 1983); 

- Y. Choquet-Bruhat, C. De Witt-Morette, and M. Dillard-Bleick: Analysis, 
Manifolds and Physics, Parts I and IT (North-Holland, Amsterdam, 1989); 

- R. Geroch: Mathematical Physics (The University of Chicago Press, Chi-
cago, 1985); 

- V. Guillemin and A. Pollack: Differential Topology (Prentice-Hall, Inc., 
New Jersey, 1974). 

A more advanced book on the subject is: 

- S. Helgason: Differential Geometry, Lie Groups, and Symmetric Spaces 
(Academic Press, New York, 1978). 

Before going through the discussion of manifolds and Lie groups, we would 
like to introduce the reader to some more basic mathematical concepts. 

Consider the real line JR as a set of points (numbers). Let [a, b] and (a, b) 
denote the "closed" and "open" intervals in JR, with a < b. The points a 
and b are called the "boundary" or "limit points" of both [a, b] and (a, b). 
Alternatively, we say that the set {a, b} is the "boundary" of [a, b] and (a, b). 
The distinguishing feature between these two intervals is that [a, b] includes 
its boundary whereas (a, b) does not. We can use this property to define the 
notions of "open" and "closed" sets in JR, namely we define a closed set to be 
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a subset of JR that includes its boundary. Similarly, we call a subset open, if 
it does not include any of its boundary points. 1 

In view of these definitions, we can make several interesting observations. 
First, the complement of an open set is closed and vice versa. However, this 
does not contradict the existence of subsets that are neither open nor closed. 
The half-open (half-closed) intervals such as [a, b) are examples of such sub-
sets. Next, we can easily convince ourselves that the union and the inter-
section of two open (closed) sets are open (respectively closed). The only 
trouble seems to be the case where the two open (closed) sets have an empty 
intersection. This is remedied by postulating that the empty set and the uni-
versal set, in this case JR, are both open and closed. This assumption is also 
in agreement with the statement that the complement JR - 0 of an open 
(closed) set 0 is closed (open). Furthermore, we can show that the union of 
any infinite collection of open sets is also open whereas their intersections 
mayor may not be open. A standard example is the infinite family of open 
intervals defined by 

Evidently, the union of all such intervals is the open interval 

whereas their intersection, 

f\ ( -n: 1, n: 1) = [-1,1] 

is a closed interval. 
An important fact about point sets such as JR is that each point p can 

be included in some open interval. For example, for every positive number 
E E JR+, P E (p - E,p + E). The open subset 

OE(P) := (p - E,p + E) = {x E JR : Ix - pi < E} 

is called an "open neighborhood" or simply a "neighborhood" of p. 
So far, we have introduced several simple mathematical concepts using the 

example of the real line as our universal set. The set of real numbers enjoys 
the property of having a natural notion of distance between its elements. This 
is indeed the main ingredient that allows us to define limit points, open and 

1 These definitions are clearly based on the definition of a boundary or limit point. 
We do not offer the latter at this stage hoping that the reader is guided by his 
or her intuition. We shall present precise definitions of open and closed sets later 
in this appendix. 
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closed subsets, and the neighborhoods of points. The set lR with its usual 
notion of distance is an example of a large class of mathematical structures 
called metric spaces. These are sets of points with a well-defined concept of 
distance between their elements. The following definition describes metric 
spaces in precise terms. 

Definition 1: Let X be a set of points and d : X x X ----+ [0,00) be a 
function that assigns a non-negative real number to any two elements of X 
and satisfies the following conditions: 

1) For every p, q E X, d(p, q) = ° if and only if p = q. 
2) For every p,q E X, d(p,q) = d(q,p). 
3) For every p, q, rEX, d(p, q) + d(q, r) d(p, r). 

Then, the pair (X, d) is said to be a metric space and d is called a metric or 
a distance function. Alternatively, it is said that X has a metric structure 
specified by d. 

Once a set is endowed with a metric structure we can immediately define 
the open neighborhoods of its points. For every p E X and E > 0, we define 
the open neighborhoods of p by 

N� (p) := {x EX: d(x,p) < E}. 

These are also called the open balls centered at p. Having defined the notion 
of an open neighborhood, we proceed with the definitions of open and closed 
subsets of a metric space. 

Definition 2: Let (X, d) be a metric space. A subset 0 <::;; X is said to 
be an open subset if every point x E 0 has at least an open neighborhood 
N� (x) that lies entirely inside 0, i.e., N� (x) cO. A subset C <::;; X is said to 
be a closed subset if its complement, X - C, is open.2 

Using this definition and assuming that the empty set 0 and the universal 
set X are both open and closed, we can show that the finite and infinite 
unions and finite intersections of open sets are open. We shall see that these 
properties play an important role in generalizing the concepts of openness and 
closedness to the structures that lack the notion of distance. This is a general 
pattern in the methodology of mathematics. The results or theorems that 
are derived as logical consequences for special structures can be employed 
as postulates for more general structures. In this case, these more general 
structures are called topological spaces. 

In mathematics once one defines a structure such as a metric space, the 
next task becomes to investigate the problem of the classification of such 
structures. In order to pursue the classification problem, one first needs to 

2 We can alternatively give a definition of limit points for metric spaces and retain 
our definitions of open and closed sets for R. Following this approach, a point p 
is said to be a limit point of a subset Y C X, if every open neighborhood of p 
intersects both Y and X - Y. Then, a subset is called open if it does not include 
any of its limit points. It is called closed if it includes all its limit points. 
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have a clear understanding of the notion of "equivalence" of two structures. 
For example, to be able to compare two metric spaces one must know under 
what conditions they are "identical" or "equivalent." This raises the ques-
tion of what "equivalence" means in precise mathematical language. It does 
not take much effort to realize that an "equivalence" is a sort of "relation" 
between two objects. It has three intuitively sound and simple properties. 

Definition 3: Let S be a collection of objects and", be a relation between 
any two of its elements. The relation", is said to be an equivalence relation 
if it satisfies the following conditions: 

1) For every s E S, s '" s (reflexivity). 
2) For every SI,S2 E S, SI '" S2 implies S2 '" SI (symmetry). 
3) For every SI,S2,S3 E S, if SI '" S2 and S2 '" S3, then SI '" S3 (transitivity). 

An important property of an equivalence relation is that it divides the 
universal collection S into distinct (non-intersecting) subcollections. These 
are called the equivalence classes. As is clear from the nomenclature, each 
equivalence class consists of objects that are equivalent, i.e., related by the 
equivalence relation. Whence, each member of an equivalence class can rep-
resent the whole class as equally well as any other member. 

In physics, one usually uses the word symmetry when such a situation 
occurs. Physicists would say that there is a symmetry between the members 
of each equivalence class that allows one to represent the whole class using 
a particular member. Symmetry is a desirable quality because it permits the 
freedom of choice of the representative for each class. 3 In this sense, the notion 
of symmetry is associated with the notion of equivalence. In the following, 
we shall examine some examples of equivalence relations in the mathematical 
arena. 

Let us consider the set of positive integers (natural numbers) Z+. For any 
pair p, n E Z+, we have 

P= mn+r, 

where m and r are integers such that m 2 0 and 0 :::; r < n. "r" is called the 
remainder (of the division of P by n). We know from arithmetic that m and 
r are uniquely determined. We can use this result to set up an equivalence 
relation between any two integers. Let us choose a positive integer nand 
define any two positive integers PI and P2 to be equivalent if they correspond 
to the same remainder r upon division by n. In mathematical symbols, we 
write 

PI == P2 (mod n). 

This means that there are ml, m2 E Z+, such that 

3 Often, a clever choice can simplify the study of the particular problem apprecia-
bly. A concrete example of this is the gauge symmetry of electromagnetism. 
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We can check that, indeed, this satisfies the requirements of Def. 3. The equiv-
alence classes of this equivalence relation are labelled by r E {O, I, ... ,n - I} 
and denoted by T. The set of all the equivalence classes 

Zn:= {O,l,··· ,n-I} 

is called integers modulo n. For example, let us choose n = 2. Then, there are 
two equivalence classes 0 and 1. These are known as even and odd numbers. 

Next, let us consider the collection of all finite sets with no further struc-
tures on them. Two finite sets are distinguished by the "number" of their 
elements. In other words, two sets are said to be equivalent if they have the 
same "number" of elements. This is obviously an equivalence relation. It di-
vides the collection of all finite sets into equivalence classes of sets with the 
same number of elements. The same definition is rather unsatisfactory for 
infinite sets since the notion of the number of elements is not well defined. A 
simple generalization of this notion, however, works perfectly well. 

Definition 4: Let X and Y be two sets and f : X --+ Y be a function 
(map), i.e., f assigns to each element of X one and only one element of Y. 
The subset 

f(X) := {y E Y : y = f(x) for some x E X} <;:;: Y 

is called the image of X under f. In some cases f(X) is identical to Y but 
not always. If f(X) = Y, then f is called an onto or surjective function. Let 
Y1 be a subset of Y. Then the subset 

r 1 (Yd := {x EX: f (x) E YI} <;:;: X 

is called the preimage or inverse image of Y1 under f. Inverse images of 
subsets of Yare subsets of X. The inverse image of a subset Y1 of Y which 
includes only a single point, i.e., Y1 = {y}, is called the inverse image of that 
point, y E Y. It may happen that the inverse image of a point y E Y is empty, 
y tf- f(X), or that it consists of many elements. If the inverse images of all 
the points of Y have at most a single element, then f is called a one-to-one 
or injective function. This simply means that every y E f(X) is the image of 
a single point x E X. The condition of one-to-oneness is the necessary and 
sufficient condition for the existence of the inverse function 

r 1 : f(X) <;:;: Y ----7 X 

of f. The function f is said to be a bijection or a one-to-one correspon-
dence, if it is both onto and one-to-one. Two sets X and Yare said to be 
bijective if there exists a bijection f between them.4 

The relation of being bijective for arbitrary sets is the appropriate gener-
alization of having the same number of elements for finite sets. We can easily 

4 A bijection is also called a bijective function. 
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show that bijective finite sets have the same number of elements. Moreover, 
we can check that the relation defined in this way is an equivalence relation, 
i.e., it satisfies all the necessary requirements of Def. 3. The utility of this 
equivalence relation is in the classification of all point sets. In fact, in set 
theory, one does not distinguish between bijective sets. 

Let us return to our discussion of metric spaces where the issues of the 
identification and classification of mathematical structures were raised. N atu-
rally, two "equivalent" metric spaces must be necessarily "equivalent" as sets. 
Therefore, the notion of equivalence is again linked to the existence of cer-
tain functions between metric spaces. Since a metric space has an additional 
metric structure besides the point set structure, the notion of equivalence of 
metric spaces is a refinement of that of point sets. 

Definition 5: Let (X I, d d and (X 2, d2 ) be two metric spaces and f : 
Xl -+ X 2 be a bijection. f is said to be an isometry if f preserves the 
metric structures, dl and d2.5 In more precise language, for all PI, ql E Xl 
and P2, q2 E X 2 

Two metric spaces are said to be isometric if there exists an isometry be-
tween them. 

Once more, the relation of isometry satisfies the axioms of an equivalence 
relation and it divides the collection of all metric spaces into distinct classes 
of isometric metric spaces. 

We saw that the notions of open and closed subsets can be easily defined 
for metric spaces. Let us collect all the open sets of a metric space and then 
consider this collection without any reference to the metric structure on the 
universal set. There are important properties of this derived structure which 
can be defined and analyzed regardless of the details of the metric structure, 
i.e., the distance function. One of these properties is related to the existence 
of "continuous" functions. 

The definition of a continuous function between two metric spaces is al-
most identical to the one presented in elementary calculus texts for the con-
tinuity of a function of a real variable. 

Definition 6: Let (Xl, dl ) and (X2' d2) be two metric spaces. A function 
f : Xl -+ X 2 is said to be continuous at a point PI E Xl if for every E > 0, 
there is a t5 > 0 such that 

for all such Xl EX. Alternatively, f is continuous at PI, if for every neigh-
borhood NE(f(pd) C X 2 of the point f(pd there is a neighborhood N8(pd 
of PI such that 

5 It is not difficult to see that if f preserves the metric structure, so does its inverse. 
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This definition is a little abstract. The reader is advised to draw the graph 
of a simple function of a real variable and examine the utility of the above 
definition in practice. 

An important characterization of continuous functions is the following 
result. 

Proposition 1: A function f : Xl ---+ X 2 is continuous if and only if the 
inverse image of every open subset of X 2 is open in Xl. 

A simple but rather instructive consequence of this result is that the notion 
of continuity does not directly depend on the particular metric structures of 
the corresponding metric spaces. For example, let us assume that (Xl, is 
another metric structure on Xl such that both distance functions, d1 and 
define the same collection of open subsets in Xl. This is to say that every open 
set in (Xl, dd is also open in (Xl, dD and vice versa. Then, the continuity of 
a function f will not depend on which metric function we choose on Xl. The 
same is true for X 2 . The concept of continuity, therefore, is only sensitive to 
the collection of open sets of the two spaces. 

Let us consider the following two choices of metric function on ]R2: 

d1(x,y)'- J(X1 _ y1)2+(X2 _ y2)2 
(x, y) .- Ix1 _ y11 + Ix2 _ y21. 

It is easy to observe that both d1 and satisfy the axioms of a metric func-
tion. Further, they define the same notion of open subsets and consequently 
continuity in ]R2. 

As we argued in the preceding paragraphs, the continuity of a function 
does not depend on the details of the metric structure. This triggers the 
question of identifying the minimal structure on a point set that allows for the 
concept of continuity to be defined. Evidently, such a structure will be more 
general than a metric structure and less trivial than a plain set structure. 
This structure is called a topological structure or simply a topology on a set. 

Definition 7: Let X be a set and T be a family of subsets of X such 
that 

1) The empty set 0 and the universal set X belong to T. 
2)If 0 1 and O2 belong to T, then so does 0 1 n O2 , i.e., the intersection of a 

finite number of elements of T is also an element of T. 
3) The union of any finite or infinite number of elements of T is also an 

element of T. 

Then, the pair (X, T) is said to be a topological space. The collection T 
is called a topology on X. The elements of T are called the open subsets of 
X. 

In other words, a topology on a set is an assignment of the word "open" 
to a collection of its subsets that possess certain properties of open subsets 
of say metric spaces. If the set is endowed with a metric structure, then the 
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open subsets defined by the metric satisfy the requirements of a topological 
space. Thus any metric space has a canonical topological structure which is 
called the metric topology. However, there is no unique topology on a given 
set (unless the set is empty). In particular, a metric space may be given a 
non-metric topology. 

The notion of continuity can be easily defined for functions between topo-
logical spaces. This can be done either by first defining the open neighbor-
hoods and then using a similar definition to the one presented for metric 
spaces, namely Def. 6, or by promoting Proposition 1 to a definition. 

Definition 8: Let (XI ,11) and (X2 ,72) be two topological spaces and 
f : Xl ---+ X 2 be a function. Then, f is said to be continuous if the inverse 
image of every open subset of X 2 (every element of 72) is an open subset of 
Xl (an element of 11). 

Having defined topological spaces, we shall next try to define an appropri-
ate concept of "equivalence" for topological spaces. This is done in complete 
analogy to the cases of point sets and metric spaces. Again the equivalence 
of topological spaces must reduce to that of total or universal sets. Thus, we 
need a bijection that preserves the topological structures. Such a function is 
called a homeomorphism. 

Definition 9: A function f : Xl ---+ X 2 between two topological spaces 
(X1 ,11) and (X2' 72) is said to be a homeomorphism, if it is a continuous 
bijection with a continuous inverse. If there exists a homeomorphism between 
two topological spaces, they are called homeomorphic. 

The existence of a homeomorphism between two topological spaces defines 
an equivalence relation. This equivalence relation divides the collection of 
all topological spaces into equivalence classes of homeomorphic topological 
spaces. The members of each class share the same topological properties. These 
are properties that are defined using the notion of open subsets. An intuitively 
simple example of a topological property is connectedness. 

Definition 10: A topological space (X, T) is said to be disconnected if 
there are two open subsets 0 1 and O2 such that X = 0 1 U02 and 0 1 n02 = 0. 
If a topological space is not disconnected, it is said to be connected. 

We can show that under a homeomorphism a connected topological space 
is mapped to another connected topological space. Alternatively, there is no 
homeomorphism between a connected and a disconnected topological space. 
Hence, connectedness is a topological property. 

We saw that in a topological space the unions of open sets are also open. 
This simple property suggests a practical way of generating all the open 
subsets as the unions of some "more basic" ones. The collection of these 
basic open sets is called a basis of the topological space. More precisely, a 
subfamily B of a topology T is called a basis if all the elements of T, i.e., all 
the open subsets, are obtained as the unions of the elements of B. 

There are other important collections of open subsets of a topological 
space (X, T), subfamilies of T. For example, let 0 be a subset and consider a 
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family of open subsets C = {On}, i.e. a subfamily of T, such that 0 UnOn. 
Then, C is called an open covering of O. Certainly, a basis of T is an open 
covering of every subset of X. The converse is certainly not true. A subset C' 
of an open covering C is naturally called a subcovering. 

Definition 11: A topological space (X, T) is said to be compact if every 
(infinite) open covering of X has a finite subcovering. 

Compactness is also a topological property, i.e., under a homeomorphism 
a compact topological space is mapped to another compact topological space. 
Compactness plays a very substantial role in the study of a special class of 
topological spaces, called manifolds, and particularly Lie groups. We shall 
give a more intuitive definition of compactness which is valid for manifolds 
in Sect. A.2. 

A simple example of a topological space is the space jRn with a metric 
topology. Usually, we choose the Euclidean metric, 

n 

d(x,y) = 2)xi - yi)2, 
i=l 

to define the open neighborhoods and hence the open subsets. A simple basis 
for this topological space is given by the subfamily of all open balls: 

Now, let us consider the following family of open subsets: 

C is an open covering of jRn. It is however not a basis. One can easily show 
that none of these coverings has a finite subcovering. Hence jRn with the 
Euclidean metric topology is not compact. 

There are other topological structures on the set jRn. In fact, there is an 
infinite number of them. Two rather trivial examples of non-metric topologies 
on jRn are 

1)10 := {0,jRn}, i.e., the only open subsets are the empty set and the total 
space. 

2)Tdiscrete := {O : 0 jRn}, i.e., all the subsets are open. 

Similar topologies can be given to any other point set X. They are known as 
the trivial topology and the discrete topology On X, respectively. 

We shall always assume that jRn is endowed with the Euclidean metric 
topology. 

Another useful fact about topological spaces is that we can induce a topol-
ogy on a subset Xl ofthe universal set X. This is simply done by defining the 
open subsets of Xl to be the intersections of the open subsets of X and Xl. 
This topology is called the subspace topology. This allows us, for example, to 
speak of a homeomorphism between the subsets of two topological spaces. 



A.2 Differentiable Manifolds 371 

As for point sets, we can define the Cartesian product of two topological 
spaces (X, T) and (XI,7/). The result is called the product topology. It is 
naturally defined to be a topology on the Cartesian product X x X', whose 
elements (open subsets) are the Cartesian products of the elements of 7 
and 7 ' (open subsets of X and X'). An example of a product topology is 
the metric topology on ]Rm+n. This is the product of the metric topologies 
on ]Rm and ]Rn. Therefore, the metric topology on ]R generates ]Rm, for all 
m E Z+, as its products. 

So far, we have introduced many mathematical concepts that are usually 
not familiar to non-mathematicians. We shall need these concepts to arrive 
at a fairly precise definition of a manifold. Our list of related topological 
concepts is however far from being complete. We wish to refer the interested 
reader to textbooks on topology, such as 

- J. G. Hocking and G. S. Young: Topology (Dover Publications Inc., New 
York, 1988); 

- G. F. Simmons: Topology and Modern Analysis (R. E. Krieger Publishing 
Company, Malabar, Florida, 1983). 

A.2 Differentiable Manifolds 

Throughout the development of geometry and topology the space ]Rm has 
served mathematicians as a source of key ideas and properties. Many of 
these ideas and properties could be generalized to define various abstract 
mathematical structures which are occasionally used to formulate and solve 
concrete physical problems. An important class of such structures that are 
extensively used in theoretical physics is the class of the so-called manifolds. 
Manifolds are certain topological spaces which are obtained by patching to-
gether open pieces of ]Rm. In other words, a manifold is the union of a number 
of open subsets each of which is homeomorphic to (an open subset) of ]Rm. 
These open subsets are called coordinate patches or charts. On each of these 
patches one can set up a coordinate system. This is done by mapping the 
points of the patch into ]Rm using the corresponding homeomorphism. In this 
way, one translates the local properties of a manifold into those of ]Rm and 
employs the knowledge of]Rm to develop calculus, analysis, and even geome-
try. The main complication arises from the fact that the results obtained in 
one patch are only valid locally. Thus, it is necessary to check the validity 
of local results when applied to the whole space. On the other hand, since 
the choice of the coordinate charts is not unique, the physical results of any 
computation must be independent of this choice. 

Definition 12: Let M be a topological space with a countable basis. 6 

M is said to be a topological manifold of dimension m, if there exists an 

6 This means that the elements of the basis can be labelled by integers. 
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open covering {Oo:} of M such that each 0 00 is homeomorphic to (some open 
subset of) for a fixed m. The homeomorphisms 

together with the open subsets 0 00 are called the charts of the manifold. A 
complete collection of charts is called an atlas. For every pair of intersecting 
charts, e.g., 0 00 n 0(3 #- 0, the functions 

are homeomorphisms between open subsets of These functions are called 
the transition or overlap functions. 

The topology of a manifold, i.e., the collection of all its open subsets, can 
be recovered from the (Euclidean metric) topology of In fact, all the 
open subsets of a manifold are unions of images of open subsets of under 
the ¢;;1 'so Moreover, since all m-dimensional manifolds are locally "identi-
cal" , the global or topological properties of a manifold depend on the way 
these open subsets are patched or glued together. This is done by the tran-
sition functions. Therefore, the topology of a manifold is determined by its 
transition functions. 

Definition 13: Let U and V Then, a function g : U -7 V 
is said to be a eN, 0 < N ::; 00, function if g is N-times differentiable. 7 A Coo 
function is also called a smooth function. g is called a diffeomorphism if 
it is a differentiable homeomorphism with a differentiable inverse. Similarly, 
one defines eN diffeomorphisms by requiring a diffeomorphism and its inverse 
to be eN. If the transition functions ga(3 are eN diffeomorphisms, then the 
manifold is called a eN manifold. In particular, e 1 and Coo manifolds are 
called differentiable and smooth manifolds, respectively. Throughout this 
book all the manifolds are assumed to be smooth. 

The homeomorphisms ¢a and their inverses ¢;;1 enable us to treat the 
points of 0 00 as those of a subset of Clearly, the space is itself 
a manifold. It can be covered by a single chart. If the minimum number 
of charts that cover a manifold is more than one, then the manifold has a 
different topology than A simple example of such a manifold is the two-
dimensional sphere, 8 2 • We shall examine the manifold structure of 8 2 in 
detail. 

As the reader must have noticed, the concept of a manifold is quite ab-
stract. A practical way of thinking about manifolds is to think about them 
as the generalizations of surfaces. In fact, the simplest, and at the same time 
interesting, examples of a manifold are two-dimensional surfaces such as the 
sphere and torus. These examples are easily understood, for they can be vi-
sualized as sitting inside In mathematical language, one says that these 

7 Occasionally, the symbol CO is used for the set of continuous functions. 
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manifolds are submanilolds of jR3. A submanifold is a manifold which is a sub-
set of another manifold. Its charts are the restrictions of those of the "bigger" 
manifold. If M' is a submanifold of M, then the charts of M' are 
given by 

:= M' n Oa, := <Palo;,. 

A substantial result of differential geometry is the Whitney Embedding The-
orem. This theorem says that every manifold is a submanifold of jRd for some 
d E Z+. Thus, we can always think of manifolds as direct generalizations of 
two-dimensional surfaces to higher dimensions. Nevertheless, we must keep 
in mind that manifolds are well-defined mathematical objects by themselves. 
They can be studied independently of their relation to an embedding space. 

As we mentioned earlier, the sphere 8 2 is an example of a "non-trivial" 
smooth manifold.s It is usually thought of as the submanifold of jR3 defined 
by the set of unit vectors, 

{x E jR3 : Ixl = I} C jR3. 

This is called the round sphere. The round sphere has more structure than a 
smooth manifold. Specifically, it inherits a "geometric" or "metric structure" 
from jR3. This brings us to the problem of the classification and the neces-
sity of a definition of "equivalence" for smooth manifolds. We know that 
a manifold is a topological space. Thus, the concept of equivalence should 
be defined via certain homeomorphisms between two manifolds so that the 
equivalent manifolds have the same topological structures. Furthermore, this 
homeomorphism must reflect the information about the smoothness and the 
chart structures. Such a function is also called a diffeomorphism. 

Definition 14: Let Ml and M2 be two differentiable (eN) manifolds 
whose charts are given by (Oall <PaJ and (Oa2' <Pa2)' Then, any function 
1 : Ml ---; M 2, can be defined by its restrictions: 

These are functions from jRm1 to jRm2, where ml and m2 are the dimensions 
of Ml and M 2, respectively. If all l a 1.2 are differentiable (eN) functions then 
the function 1 is said to be differentiable (eN). Similarly, a homeomorphism 
1 : Ml ---; M2 is said to be a (eN) diffeomorphism of manifolds, if the 
corresponding functions 1 a 1 2 are (eN) diffeomorphisms. 9 

The notion of (eN) diffeomorphy defines an equivalence relation. This 
relation divides the collection of all (eN) differentiable manifolds into the 
equivalence classes of (eN) diffeomorphic manifolds. The elements of each 
class are treated as identical manifolds. In this respect, the round sphere is a 

8 A trivial manifold means that it is topologically equivalent (homeomorphic) to 
for some m E Z+. In other words, a manifold is called trivial if it can be 

covered by a single chart. 
9 Note that we have already defined the notion of a (eN) diffeomorphism for Rm. 
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representative of an infinite class of smooth manifolds which are diffeomorphic 
to one another. For example, the surface of an ellipsoid can be obtained by a 
smooth deformation of the round sphere and vice versa. Thus, it belongs to 
the same diffeomorphy class and can represent the sphere 52 equally well. 

Let us examine the manifold structure of 52. As we mentioned, 52 is 
(topologically) different from ]R2. In fact, we need at least two charts to cover 
52. A practical choice of coordinates for the points of 52 is the spherical 
coordinates ((), <p). The fact that the global ((), <p) coordinate system is ill 
defined at () = 0 and () = 7r, is an indication of the necessity for at least two 
different coordinate charts. A rather standard set of coordinate charts for 52 

is obtained by what is known as the stereographic projection of 52 on ]R2. The 
corresponding open covering consists of two open subsets: 

Here Sand N denote the south and the north poles of 52, respectively. The 
homeomorphisms 

cPi: Oi --+ ]R2, i = 1,2, 

are defined by the following projective procedure. 
Consider the tangent plane PI to 52 at the north pole, N. Let R be an 

arbitrary point of 0 1 and draw a line through R and the south pole, S (Fig. 
A.l). This line intersects PI at a point Pl. The map cPl is defined by 

By interchanging the roles of the north and the south poles we define cP2 
similarly. It is clear that cPl and cP2 are homeomorphisms of a punctured 
sphere to ]R2. 

Using cPl and cP2, we can treat the points of 52 as those of PI or P2. On 
each of these planes, we can set up a coordinate system and use our knowledge 

\ 

Fig. A.I. Stereographic projection of sphere. 
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of to do calculations. Let us choose the usual Cartesian coordinates on PI 
and P2 , 

PI E PI: PI == (Xl, yd 

P2 E P2 : P2 == (X2' Y2). 

(A.l) 

We can use the Euclidean geometry of to obtain an explicit formula for 
the transition function, 

g21 := (h 0 rPl1. 

Let us choose the Xl and Y1 axes in PI to be parallel to the X2 and Y2 axes in 
P2 . On the intersection of 0 1 and O2 , i.e., for any R different from the north 
and the south poles, we have 

P2 = rP2(R) 

rP2 (rPl 1 (pd) 

(rP2 orPl1) (x1,yd 

=: g21(X1,yd· 

Then, a simple calculation shows that 

(A.2) 

Note that on 0 1 n O2, xi + yi =1= O. Thus, the transition function g21 : 
{O} --+ - {O} is a well-defined smooth diffeomorphism, and consequently 
8 2 is a smooth manifold. 

The Cartesian coordinates (Xi, Yi), i = 1,2, have the disadvantage that 
they do not reflect the desirable symmetries of 8 2 . The natural choice of a 
coordinate system that inherits these symmetries is the spherical coordinates 
(0, cp). We pointed out that this coordinate system cannot be used globally 
as one uses the spherical coordinates (r, 0, cp) on R3. A compromise can be 
reached, however, by adopting two sets of spherical coordinates to represent 
the points of 0 1 and O2. Denoting these by (01 , CP1) and (02, CP2), respectively, 
we find the following simple expression for the transition function: 

This choice has its ambiguities at the poles. Nevertheless, these turn out to be 
unimportant. The situation is analogous to the use of the polar coordinates 
(r, cp) on At r = 0, cP is not well defined. However, this does not prevent 
us from using polar coordinates on 

If we use complex coordinates in (A.l), namely 

Pi == Wi := Xi + iYi, i = 1,2, 
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then the expression (A.2) for the transition function takes the particularly 
simple form 

(A.3) 

As a function of a complex variable g21 : C - {O} ---t C - {O} is a complex 
analytic (holomorphic) function. This makes S2 an example of a complex 
(holomorphic) manifold. Briefly, a complex manifold is an even-dimensional 
manifold that is locally homeomorphic to Cm and whose transition functions 
are analytic functions from Cm to Cm . m is called the complex dimension of 
the manifold. Its real dimension is 2m. 

S2 is a member of an important class of smooth (complex) manifolds 
called complex projective spaces. 

Definition 15: Consider the space of (N + I)-tuple complex numbers, 
CN +1 . As a point set the complex projective space CP(N) is the set of all 
complex lines in CN +1 that pass through the origin. These lines are also called 
"rays". Each ray is represented by a non-zero complex vector, Z E CN +1 , via 

I = [z] := {>.z : ). E C - {O}}. (A.4) 

In fact, as seen in (A.4), Z can be chosen to have unit length (norm). The 
length or the norm of z is defined by 

where Zi are the complex components of z and Izil are their moduli. lO The 
set of all unit vectors in C N +1 defines the unit sphere S2N +1 , 

S2N+l := {z E C N + 1 : II z 11= I} C jR2N+2 = C N + 1. 

However, the rays are still not in one-to-one correspondence with the points of 
S2N+l. This is because we can represent I with another unit vector z' := wz, 
where w E C is of unit modulus. Clearly, I = [z] = [z'] and z' E S2N+l, but 
z i= z'. This suggests that although CP(N) i= S2N+l, it may be viewed as a 
set of equivalence classes of points of S2N+l. The desired equivalence relation 
is given by 

Z rv z' iff there is w E C with z' = wz. 

The equivalence class of z E S2N+l is denoted by [z] as defined in (A.4). 
These equivalence classes are precisely the points of CP(N). 

There is a standard choice of coordinate charts for CP(N). These are 
called homogeneous coordinate charts. They are naturally induced from 
CN + 1 - {O}. Let us use the notation z for the coordinates of z in CN +1 , 

i.e., z := (z 1 , ... ,zN + 1 ). Consider the N + 1 open sets in CP( N) defined by 

Oi := {[z] E CP(N) : Zi i= O}, i = 1,2,··· N + 1. 
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Clearly every point in CP(N) is included in at least one ofthese open subsets. 
Thus, {Oih=l,. .. N+l forms an open covering of CP(N). The homogeneous 
coordinate charts are given by (Oi,<Pi), where for every [z] E Oi 

(
Zl Zi-l zHl zN+l) 

<Pi([Z]) = --0-,"', -.-, 1, -.-,'" ,--. - , 
z" z" z" z" 

or more correctly 

We shall next obtain the transition functions. In order to do this, we compare 
the coordinates of a point associated with two different coordinate charts. Let 
[z] E CP(N) such that zi -=f. 0 and zj -=f. 0 for some i -=f. j. Then [z] E Oi n OJ, 
and we have 

<pj([z]) = gji (<Pi ([z])) . 

Since Zi and zj are both non-zero, we have 

(
Zl Zi-l zHl zN+l) 
--0-,'" ,-.-,1, -.-,'" ,--.- == [z] 
z" z" z" z" 

_ (Zl zj-l zj+1 zN+I) 
== ----:-,'" ,-.-,1,-.-"" ,--.- . 

Zl Zl Zl Zl 

The action of the transition function gji on an arbitrary element w 
(WI, ... ,wN) = <Pi ([ z]) E CN is described by the following steps: 

I)Identify (wI ... wN ) with (wI ... wi-II Wi ... wN ) , , , , '" , . 
2) Multiply this (N + I)-tuple by to obtain 

(A.5) 

3) Since w = <Pi([Z]), 

{ 

zk for k = 1 ... i-I 
z'L " 

w k = 
for k = i, ... ,N. 

This implies that one of the components displayed in (A.5) is identically 
. . 1 . 

1. In fact, if we assume that i < j, wj - I = that is, w J
: j z· = 1. This 

allows us to undo the first step by dropping this 1 from (A.5) and obtain 

(
WIZi ... Wi-IZ i zi Wiz i ... wj - 2zi wjz i ... wNz i ).=_ 

., , .,', ., , ., ., , . . W. 
zJ Zl Zl Zl zJ Zl Zl 

This is an N-tuple of complex numbers that we denote by w. For i > j, 
we obtain another N-tuple similarly. 
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4) The transition function 9ji is given by 

We could have associated each step of this list with a function and define 
the transition functions as the composition of these functions. Clearly, the 
transition functions are (complex) analytic. 

Let us look at the case of N = 1. There are two coordinate charts: 

On 0 1 n O2, both Zl and z2 are non-zero and 

2 
( 1 2) z (PI [(z, z)] = l' and 

1 2 Zl 
<P2 ([(z ,z )]) = 2' z 

2 
Following the above procedure, we denote by w. Then, 

1 
921(W) = -. 

W 

z 

This is exactly the expression given in (A.3). Thus, in view of the fact that 
the structure of a manifold is determined by its transition functions, we have 
the following identity 

The symbol c:::: stands for the word "diffeomorphic." 
We have given many examples of smooth manifolds of dimension two or 

higher. As for one-dimensional manifolds, there are two possibilities. These 
are the real line lR and the circle Sl. In fact, a more correct statement is that 
these are the only connected one-dimensional manifolds that do not have a 
boundary. The adjective "connected" refers to the same property as defined 
for topological spaces: Connectedness is a topological property. 

Another basic concept that generalizes to the discussion of manifolds is 
that of taking products of manifolds. The resulting objects, which are them-
selves manifolds, are called product manifolds. As a topological space, a prod-
uct manifold, M = M1 X M2, has the product topology. The coordinate 
charts of M are obtained as the products of the coordinate charts of M1 and 
M2· In particular, if M1 and M2 are of dimension m1 and m2, then M is 
(m1 +m2)-dimensional. Some of the higher-dimensional manifolds are prod-
uct manifolds. A typical example of this is the torus, T2, that is the product 
of two circles, 

More trivial examples of product manifolds are 

lRm c:::: lR x ... x lR . 
"-v-----" 

m-times 
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We have also higher dimensional tori, 

T m := Sl X ... X Sl . 

m-times 

The examples we have considered are all connected manifolds. The dis-
connected manifolds are usually not quite as interesting. They are essentially 
a collection of two or more copies of connected manifolds. An example of a 
one-dimensional disconnected manifold is {-I, I} X Sl. Here, we view the 
finite set {-I, I} as a zero-dimensional manifold. In fact, every finite set can 
be seen as a submanifold 11 of R In particular, {-I, I} is also called the 
zero-dimensional circle, So. 

We have discussed the importance of the notion of a diffeomorphism in 
some detail. The action of a diffeomorphism can be represented by its effect 
on the transition functions. In fact, a diffeomorphism takes one set of smooth 
transition functions into another. What remains unchanged is a little more 
than the topological structure of the manifold. There are cases in which we 
can find a function between two manifolds which is a homeomorphism but not 
a diffeomorphism. In this case, we say that the two manifolds have identical 
topological structures but different differential (smooth) structures. 12 

The differentiability or smoothness requirement enables us to introduce 
the notion of a tangent space. This is an essential step towards defining anal-
ysis and geometry on a smooth manifold. 

Tangent spaces of a manifold are direct generalizations of the tangent 
spaces of a two-dimensional surface in ]R3. They can be defined without any 
reference to the embedding of the manifold into ]Rd. However, we would like 
to give a "geometric" definition of the tangent space at a point of a mani-
fold. This approach makes use of such an embedding. We shall first give the 
definition of a curve on a manifold. 

Definition 16: Let M be an m-dimensional smooth manifold. Then, any 
smooth function C : [0, T]-7 M is called a smooth curve in M.13 

A smooth curve C on M can be viewed as a smooth curve in a Euclidean 
space ]Rd by embedding Minto ]Rd, where d is a sufficiently large positive 
integer. 

Definition 17: Let M be a smooth manifold and C : [0, T] -7 M be a 
smooth curve on M with C(O) = p E M. Choose a Euclidean space ]Rd such 
that M is a submanifold of ]Rd. The vector v := iC(t)!t=o E ]Rd is called 
the tangent vector to C C ]Rd at t = O. It is also called the tangent vector 
to C c M at p E M. The set of all tangent vectors to all curves in M that 

11 The topology given to a finite set is the subset topology which is, in this case, 
the same as the discrete topology. This means that every subset of a finite set is 
postulated to be open. 

12 For a precise definition of a differential structure of a manifold see [186]. 
13 Consider [0, T] as a sub manifold of R Then, C is a function between two smooth 

manifolds. The notion of smoothness for such a function is defined earlier. 
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originate at p E M forms an m-dimensional vector space This 
vector space is called the tangent space of M at p and denoted by TpM. 
The dual (vector) space of TpM - the space of all linear real-valued functions 
on TpM - is called the cotangent space of M at p. It is denoted by TpM*. 

The elements of a cotangent space are called cotangent vectors or simply 
covectors. Another terminology is to call the tangent and cotangent vectors, 
contravariant and covariant vectors, respectively. 

Let us consider the set of all the tangent spaces of a manifold. This set 
inherits the structure of a smooth manifold from M. It has the special prop-
erty that the tangent vectors belonging to the tangent space of each point 
behave as the elements of a finite-dimensional vector space. In other words, 
this manifold consists of an infinite collection of vector spaces which are la-
beled by the points of the original manifold M. This is an example of a vector 
bundle. Specifically, it is called the tangent bundle of M and denoted by T M. 
Similarly, the set of all cotangent vectors is called the cotangent bundle and 
denoted by T M*. A review of vector bundles is provided in Chap. 5. We 
suffice to say that a vector bundle is locally homeomorphic to the Cartesian 
product of an open subset of a manifold and a vector space. For example, 
if {( 0"" 4>",)}", is an atlas of M, then the subsets of T M consisting of the 
tangent vectors at the points of 0", are homeomorphic to 0", x This 
allows us to represent the points of T M by pairs of the form: (p, vp ), where 
p E M and vp E TpM. 

Definition 18: Let V : M -+ T M be a (smooth) function such that for 
every p E M, V(p) = (p, v(p)) for some v(p) E TpM. Then, V is called a 
(smooth) vector field on M. Because V is determined by its values, v(p), 
we usually identify V(p) and v(p) and write V(p) E TpM. Similarly, a smooth 
function f2 : M -+ TpM* with f2(p) = (p, w(p)) and w(p) E TpM*, is called a 
differential one-form or simply a one-form. Again, we identify f2(p) with 
w(p). 

Vector fields and one-forms are also called contravariant and covariant 
vector fields, respectively. They have many applications in theoretical physics. 
This is because we can write explicit local formulas for their components 
and use them to do calculations. Let us choose a local coordinate chart, 
(0""4>,,,), that includes p E M. The open subset 0", is represented by its 
image 4>",(0",) C We have the following identification: 

VpEO",. 

The same applies for the points of a curve C : [0, T]-+ M. The portion of C 
that belongs to 0", is mapped to a curve in 4>",(0",): 

C(t) == (Xl(t), ... ,xm(t)) =: x(t). 

Let us now consider an arbitrary tangent vector vp = -;AC(t) It=o' The tangent 
curve C can be assumed to lie entirely inside 0",. vp is given by 

14 We shall often use to denote an isomorphism. 
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Vp == (dx1 (t) I ,'" , dxm(t) I ). (A.6) 
dt t=O dt t=O 

The m numbers" I "are called the components of vp associated with 
t=o 

the local coordinate chart (Oa, ¢a). 
As we emphasized in the beginning of our discussion of manifolds, an im-

portant problem in doing analysis on manifolds is the problem of coordinate 
transformations. In physics, we usually associate a physical quantity with 
the points of a manifold. These quantities are nothing but different types 
of functions which assign one or more numbers to each point. These num-
bers are also called "components" of the quantity in question. They obey 
different transformation rules under coordinate transformations. In fact, one 
way of distinguishing different quantities on a manifold is by examining their 
transformation properties. The simplest mathematical objects that we can 
associate with a manifold are the real (complex) scalar fields. These are real 
(complex) valued functions on the manifold. By definition, a scalar function 
has a single component that is independent of the choice of the coordinate 
chart. Two simple examples of quantities with non-trivial coordinate trans-
formation rules are vector fields and one-forms, respectively, contravariant 
and covariant vector fields. 

Let us choose two intersecting coordinate charts (Oa,¢a) and (0{3,¢{3)' 
For convenience, we will place a "prime" to indicate that a quantity is eval-
uated in the coordinate chart labeled by the index (3. For example, in this 
chart the coordinates of a point p E Oa n 0{3 will be denoted by 

_ ( 111m) I p = X ,"', X =: X . 

If f : M ----+ lR is a real scalar field, then 

f(p) == f(x) = f'(x' ). 

Let us next examine the behavior of the components of a (contravariant) 
vector (field) under a coordinate transformation. Consider the vector vp of 
(A.6). In the primed coordinate chart, we have 

C(t) == (x'1 (t), ... ,x'm(t)) := X'(t), 

and consequently 

= (dX I1 (t) ... dx'm(t) ) 
vp - dt "dt . 

t=O t=O 

The coordinates x' are related to X via the transition function 
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Let us denote the components of vp in the two coordinate charts by and 

Then, the chain rule 

dX'i ox'i dxj 

dt oxj Tt, i = 1,··· ,m, (A.7) 

dictates the following transformation rule: 

(A.8) 

All the repeated indices are understood to be summed over their ranges. This 
is known as the Einstein summation convention. 

Relation (A.8) can be taken as the definition of a (contravariant) vector. 
According to this definition a (contravariant) vector on an m-dimensional 
manifold is an object with m local components which satisfy the coordinate 
transformation rule given by (A.8). A simple way of remembering this trans-
formation rule is to use the symbols for the local coordinate basis vectors, 
i.e., 

i 0 
vp = vp oxi . (A.9) 

Then, recognizing that vp does not depend on the choice of coordinates, 

i 0 'i 0 
vp oxi = vp = vp ox'i' 

and enforcing the chain rule, 

o ox'j 0 
oxi oxi ox' j , 

we recover (A.8). 
The same line of reasoning applies for (contravariant) vector fields. After 

all, a vector field is a vector-valued function. The only additional fact is that 
for a vector field, the point p in (A.9) becomes an independent variable. It is 
represented by its coordinates (Xl, ... ,xm) or collectively by x. Therefore, a 
(contravariant) vector field Von Oa M is expressed by 

. 0 
V = 

uX' 
(A.10) 

where Vi(x) satisfy the coordinate transformation rule listed as (A.8). 
The transformation properties of covectors (covariant vectors) is obtained 

similarly. Let wp E TpM* be a covector. Then, for any vp E TpM, wp(vp) is 
a real scalar. We know from elementary linear algebra that TpM* as an 
m-dimensional vector space is isomorphic to ]Rm. Thus, in the local chart 
(Oa, ¢a), we can write wp in terms of its components (Wp)i, i = 1,··· ,m. The 
scalar obtained by the action of wp on vp can then be written componentwise, 
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However, as we pointed out earlier, a scalar is independent of the choice of 
coordinate charts. Hence, if we choose another coordinate chart, say, (0 j3, ¢j3) 
we must obtain the same result, namely 

This equality together with (A.8) yield the transformation rule for the com-
ponents of a covector (covariant vector): 

(A.12) 

A convenient notation for the local basis covectors is dxi. In this notation, 
any covector is locally written as 

The independence of covectors from the choice of coordinate charts and the 
chain rule 

d 'i _ ax'i d j 
x x, 

uxJ 

reproduces (A.12) immediately. 
We would like to remark that at this stage the use of (the operators) 

for the basis vectors and similarly the use of dxi for the basis covectors are 
for practical purposes. In this notation, the duality of the basis vectors and 
covectors takes the following form 

. a . 
= 6;, 

uxJ 

where 6{ are the components of the Kronecker delta function, 

i {lifi=j 
6j := 0 if i #- j. 

Letting p be an independent variable, we obtain the local expression for a 
covariant vector field or a one-form, 

The transformation rule for the components of a one-form is given by 

'( ') ax j 
() Wi X = x. ux 2 

(A.13) 

Again, we can take (A.13) as a definition of a covariant vector field. 
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Covariant and contravariant vector fields are simple examples of tensor 
fields. In general, a tensor is an elements of the tensor products of a bunch of 
vector spaces. A tensor at a point p E M is defined similarly as an element 
of the tensor product space 

TpM* ® ... ® TpM* ® TpM ® ... ® TpM . (A.14) 
\, I \, 

V v 
r-times s-times 

An element of this space is called an r-times covariant and s-times contravari-
ant tensor at p EM. rand s are also called the covariant and contravariant 
ranks of the tensor, respectively. Alternatively, we can define a tensor as a 
multilinear real-valued function of several vectors and covectors. Consider a 
function 

T: TpM x ... x TpM x TpM* x ... x TpM* ---+ JR., 
\, I \, .I v v 

r-times s-times 

such that T is linear in all its entries. Then, T is said to be a tensor of 
covariant and contravariant ranks rand s, respectively. The vector space 
depicted by (A.14) is the set of all such multilinear functions. This set forms 
a vector space under the operations of pointwise addition and multiplication 
by real numbers. 

Tensor fields are tensor valued functions on a manifold. They play an 
important role in describing various physical quantities. Probably, the best 
example of the use of tensor fields in physics is in the theory of electromag-
netism where the electromagnetic field strength15 F is a tensor field [117,146]. 
Tensor (fields) are also defined according to their coordinate transformation 
properties. For instance, the electromagnetic field tensor F is a covariant 
tensor of rank 2, because its components, Ff.Lv , satisfy the following transfor-
mation rule 

(A.15) 

The use of the Greek indices in (A.15) is to indicate that they refer to the 
Minkowski spacetime coordinates. Let us use the notation dxf.L for the basic 
covectors. Then, we have 

In general, a (mixed) tensor of rank (r,s) is expressed locally according to 

T(x) = Tj1···js dXi1 ® ... ® dxir ® ® ... 
'1 ···tr OX)1 ox)a 

The transformation properties of the components are easily obtained by re-
quiring that T(x) is coordinate independent. 

15 In the text we used the symbol peel) to denote the electromagnetic field strength 
tensor to avoid any ambiguity. Here we drop the label (el) for simplicity. 
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An important class of tensor fields is the totally antisymmetric covariant 
tensor fields. These are more commonly called differential forms. As the 
name indicates, differential forms are covariant tensor fields whose compo-
nents are antisymmetric in all their indices. The electromagnetic field tensor 
F is an example of a differential form of rank 2, a two-form. We shall occa-
sionally drop the adjective "differential" for simplicity. 

The space of all tensors (tensor fields) form a vector space. This is, by 
definition, the tensor product of copies of the tangent and cotangent spaces. 
The operation of tensor product makes this vector space into an (associative) 
algebra. This means that not only we can add tensors and multiply them by 
numbers, but we can multiply tensors by other tensors as well. To obtain 
the tensor product of two tensors, we multiply the components and take the 
tensor product of the basic tensors. For example, suppose 

Then, we have 

. . 8 k 
T = Tl dx' 0 -8 ., S = Skdx . 

xJ 

. . 8 k 
T 0 S := Tl Sk dx' 0 -8 . 0 dx . 

xJ 

In the next section we shall encounter other examples of an associative 
algebra. Therefore we next present the definition of an associative algebra. 

Definition 19: Let (A, +,.) be a vector space and 0 : A x A -7 A be a 
binary operation satisfying the following conditions: 

1) (al + a2) 0 a3 = al 0 a3 + a2 0 a3; 
2)a30 (al + a2) = a3 0 al + a3 0 a2; 
3)c· (al 0 a2) = (c· al) 0 a2 = al 0 (c· a2); 
4)al 0 (a2 0 a3) = (al 0 a2) 0 a3, 

where al, a2, and a3 are arbitrary elements of A and c E lR. (c E C if A 
is a complex vector space). Then (A, +, ., 0) is said to be an associative 
algebra. A subset {Ji} of A is said to generate A if every element of A can 
be written as a linear combination of products of Ji. The elements Ji are 
called the generators of the algebra. 

Similarly to the space of tensor fields, the space of all differential forms is a 
vector space. The tensor product, however, does not respect the requirement 
of antisymmetry. By this, we mean that the tensor product of two forms 
is in general a tensor whose components are not antisymmetric in all its 
indices. Thus, we need an alternative algebra operation for differential forms 
that preserves the antisymmetry. This is called the "antisymmetric tensor 
product" or the wedge product, 1\. For example, we have 

dxl-' 1\ dxv := dxl-' 0 dxv - dxv 0 dxl-' = -dxv 1\ dxl-'. 

The electromagnetic field tensor can be written as 

_IF dl-' d V F- 2 I-'v xl\x. (A.16) 
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The vector space of all differential forms together with the wedge product 
form an algebra known as the exterior algebra or the Grassmann algebra. A 
detailed introduction to differential forms can be found in H. Flanders' book: 
Differential Forms with Applications to the Physical Sciences (Dover, New 
York, 1989). 

Nowadays, differential forms are used extensively in theoretical physics. 
They provide a remarkable tool for keeping the calculations short. In par-
ticular, they are useful in keeping track of the transformation properties of 
physical quantities. We can also develop a sort of calculus on differential forms 
by defining the so-called "exterior differentiation". This is an operation that 
takes a p-form to a (p+ I)-form. The components of the resultant differential 
form are linear combinations of the first derivatives of the components of the 
original p-form. 

Definition 20: Let [2P denote the space of all p-forms on a smooth man-
ifold M. Then the exterior derivative is the map 

defined locally by 

(a) .. . 
dw:= ... i dxJ A dX'" A ... A dx'l' , 

u:rJ p 

where 
W = Wil ... ipdxil A ... A dxip E [2P. 

An important observation is the following result. 

Proposition 2: d2 := dod = 0. 

A simple application of differential forms and exterior differentiation is in 
the theory of electromagnetism. It is not difficult to check that the compo-
nents of the vector potential All [117,146]' transform like the components of 
a one-form: 

A := Alldxll , J.l = 0, 1,2,3. 

Let us calculate 

dA = ) dxll A dx V 
axil v 

- - -A --A 1 [ a a] 
- 2 axil v axv Il 

We immediately recognize the content of the last bracket as the components 
of the electromagnetic field strength tensor, 
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Thus, we have the simple identity 

F=dA. 

An application of Proposition 2 is 

This simple equation is known as the "homogeneous Maxwell's equations" (in 
component form). These (two) equations together with the "inhomogeneous 
Maxwell's equations" describe all electromagnetic phenomena. 

So far, we have defined different types of vector and tensor fields on 
smooth manifolds. Let us see how we can use a function between two mani-
folds to induce these fields from one manifold to another. Consider a smooth 
function f : MI -+ M2 between two smooth manifolds. Let vp be a tangent 
vector at p E MI. vp can be "pushed forward" to define a tangent vector at 
f(p) E M 2 · 

Definition 21: Let MI and M2 be smooth manifolds, p E M I , and f : 
MI -+ M2 be a smooth function. Then f induces a linear map 

called the push-forward or the differential map. To describe this map 
let us consider an arbitrary tangent vector vp E TpM and choose a curve 
CI : [0, T] -+ MI such that vp = dZ1It=o. The image of CI under f is a 
smooth curve 

C2 := fOCI: [0, T] ---t M2 

in M 2 . The push-forward map is then defined by 

(A.17) 

A useful exercise is to show that this definition is independent of the 
choice of the curve CI . 

The same definition applies for a vector field by taking p to be an inde-
pendent variable. However, we should point out that the push-forward map 
is defined locally. This means that, in general, the push-forward map can be 
used to induce a vector field only on an open neighborhood in M 2 . There are 
cases in which a global vector field on the whole of MI cannot be pushed 
forward to define a smooth global vector field on f(Md <:;;; M2 . 

Similarly, we can induce cotangent vectors and differential forms using a 
smooth map between two manifolds. However, this time it is the cotangent 
vectors and differential forms of M2 that are "pulled back" on MI. 

Definition 22: Let M I , M 2 , and f be as in Def. 21. Then f defines a 
linear map 
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called the pullback map. To describe the pullback map we consider an ar-
bitrary cotangent vector Wf(p) at f(p) E M 2 . As an element of TpMi, the 
pullback of Wf(p) is a linear map acting on TpMl' Thus, it can be defined 
through its action on arbitrary elements up of TpMl' We have 

(A.18) 

where f*(up) is the push-forward of up. 
The pullback map is also generalized to differential forms and general co-

variant tensor fields. Interestingly, it is a global mapping. That is, every global 
differential form on M2 can be pulled back to define a global differential form 
on f- 1(M2 ) c:;;; M 1. We make extensive use of the pullback operation in our 
discussion of universal connections and their realization in the phenomenon 
of geometric phase in Chaps. 6 and 7. 

We will end this section by giving the definition of compactness for man-
ifolds. As we mentioned in our discussion of general topological spaces, com-
pactness is a topological property. It is defined for arbitrary topological 
spaces. However, the general definition is rather abstract. If a topological 
space is a subspace of ]Rd for some d E Z+, as is a manifold, we can use a 
result of real analysis to arrive at a more intuitive definition. 

Definition 23: Let M be an arbitrary (topological) manifold. Embed M 
into some ]Rd. M is said to be a compact manifold, if it is a closed and 
bounded subset of ]Rd. As usual, a closed subset is a subset whose complement 
is open. Moreover, a subset M of ]Rd is called bounded if there is an open 
ball 

Ixl<r} 
in ]Rd, such that M c 

Clearly, ]Rm or an open ball in ]Rm is not compact, whereas spheres, tori, 
and (finite-dimensional) projective spaces are all compact manifolds. 

A.3 Lie Groups 

In the preceding section, we introduced manifolds and gave several examples 
of smooth manifolds. In this section, we shall discuss another important class 
of smooth manifolds called Lie groups. The mathematical theory of Lie groups 
is one of the most well-established and substantial achievements of modern 
mathematics. It is also of great practical and theoretical use in physics. Our 
aim will be, therefore, not to attempt to present a complete review of Lie 
groups. Instead, we shall try to point out the basic concepts and emphasize a 
few of the most important and useful facts about Lie groups. More detailed 
discussions of the theory of Lie groups and its applications in physics can be 
found in 

- M. Hamermash: Group Theory and Its Application to Physical Problems 
(Dover, New York, 1989); 
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J. P. Elliot and P. G. Dawer: Symmetry in Physics, Vol. 1 and 2 (Oxford 
University Press, New York, 1990); 
R. Gilmore: Lie Groups, Lie Algebras, and Some of Their Applications 
(Wiley, New York, 1974); 
H. Georgi: Lie Algebras in Particle Physics (Addison-Wesley, New York, 
1982); and 
S. Sternberg: Group Theory and Physics (Cambridge University Press, 
Cambridge, 1994). 

Some of the more advanced textbooks on Lie groups and their representations 
are 

S. Helgason: Differential Geometry, Lie Groups, and Symmetric Spaces 
(Academic Press, New York, 1978); 
T. Brocker and T. tom Dieck: Representations of Compact Lie Groups 
(Springer-Verlag, New York, 1985); 
W. Fulton and J. Harris: Representation Theory (Springer-Verlag, New 
York, 1991). 

Definition 24: Let G be a set of points, and 

.:GxG--+G 

be a binary operation. Then the pair (G,.) is said to be a group if the 
following conditions are fulfilled. 

1). is associative: 

2) there is an identity element e E G such that 

e • 9 = 9 • e = g, \/g E G; 

3) every element 9 E G has an inverse, 9 1 such that 

9 • = • 9 = e. 

A subset H of a group G which has the structure of a group with the 
same group multiplication is called a subgroup of G. A necessary and sufficient 
condition for a subset H to be a subgroup of G is that for every hI and h2 
belonging to H, the element hI • h:;1 also belongs to H. 

Given a subgroup H of a group G, one can define a canonical equivalence 
relation on G. This equivalence relation is defined according to the require-
ment: 

\/gl, g2 E G, gl rv g2, if and only if gl. H = g2 • H. 

The last equality means that there exist hI, h2 E H with gl • hI = g2. h2· 
It is a simple exercise to show that this relation is indeed an equivalence 

relation. The equivalence class including an element 9 EGis denoted by gH 
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and called a left coset. The set of all equivalence classes is called a left coset 
space or a quotient space of G and denoted by G / H. Similarly one defines the 
right cosets by defining a similar equivalence which involves the requirement: 
H. gl = H. g2 for the equivalent elements gl and g2· 

Groups have proven to be extremely important mathematical construc-
tions. They have been used in other areas of mathematics as well as different 
branches of natural sciences. Probably, the main reason for the utility of 
groups in natural sciences is the existence of "symmetry" in nature. 

In our discussion of equivalence classes, we pointed out that once there 
is an equivalence relation, the universal set (class) of all points (objects) is 
divided into subsets of equivalence classes. The elements of each equivalence 
class could be treated equally. Hence, we associated the word "symmetry" 
with this situation. Groups, as we shall see, "quantify" symmetries. In this 
sense, "different" groups correspond to different types of symmetries. In the 
following, we shall first try to explain the meaning of the last couple of sen-
tences. We will start with a familiar example. 

In some cases, we have two different equivalence relations on a single 
universal set. In fact, we have encountered some examples of this. Let us 
consider the collection of all topological spaces. The elements are topological 
spaces (X, T) that are distributed among the distinct equivalence classes 
of homeomorphic topological spaces. Also, we have the collection of all the 
universal sets X of the above collection. This is the collection of all point 
sets. We have the equivalence relation defined by the existence of bijections. 
Obviously, topological equivalence is a stronger condition than set theoretic 
equivalence. This is simply due to the fact that every homeomorphism is 
a bijection, but not every bijection is a homeomorphism. Therefore, each 
equivalence class of bijective sets is further subdivided into equivalence classes 
of homeomorphic topological spaces. So as we see in this example, we have 
different types of "symmetries." 

Let us concentrate on topological symmetry and see how it is related to 
groups. Consider a point set X and let us study the set of possible topological 
structures on X. Any two topological structures on X, equivalent or not, are 
related to one another through a bijection f : X ---> X. Hence we study the 
set of all such bijections which we denote by S x. 

Consider a mapping X by two consecutive bijections, 

This is done by composing the bijections hand h. We have 

It is easy to check that the set Sx with the operation of composition forms a 
group. The operation of composition of functions is associative. The identity 
function 



A.3 Lie Groups 391 

id : X '3 P --t P E X 

is clearly a bijection. It provides the identity element of the group of all 
bijections. This is called the permutation group of the set X and denoted by 
S x. Finally, the inverses exist and they are also bijections by definition. 

Now consider a particular topological structure T on X. Under the action 
of a bijection I and its inverse I-I, the open subsets of X are either mapped 
onto the same collection T of open subsets or some of them do not. In the first 
case, the bijection I is by definition a homeomorphism mapping the topologi-
cal space (X, T) to itself. Let us denote the set of all such homeomorphism by 
H(X, T). It is not difficult to show that H(X, T) forms a subgroup ofthe per-
mutation group Sx. H(X, T) is called the homeomorphism group of (X, T). 
Furthermore, the set of all topological spaces which are not homeomorphic 
to (X, T) corresponds to the quotient set Sx /H(X, T). 

Similarly to the permutation group of a set and the homeomorphism group 
of a topological space, we can introduce the diffeomorphism group Diff(M), 
of a differentiable manifold M. This is the set of all diffeomorphisms of M 
together with the operation of composition. 

The examples of groups that we have mentioned are indeed quite compli-
cated mathematical structures. There are much simpler examples of groups 
with a finite number of elements. These are called finite groups. The group 
which has a single element is called the trivial group. The simplest non-trivial 
group is the group Z2. It has two elements. There are two defining "repre-
sentations" of Z2. These are known as the additive and the multiplicative 
representations. The additive representation is obtained by viewing Z2 as 
the set of all integers modulo 2. The group operation is the simple addition 
of integers modulo 2, i.e., a + b := a + b. The additive representation is, 
therefore, given by 

Z2 = ({a, I}, +) . 
The multiplicative representation is 

Z2 = ({ -1, I}, x) , 

where "x" means the ordinary multiplication of numbers. Other simple ex-
amples of finite groups are the groups Zn, integers modulo n with addition, 
and the permutation groups Sn. The latter consists of all the bijections from a 
finite set In of n elements onto In, i.e., Sn = SIn. Clearly, Sn has n! elements. 

We can divide all groups into two large classes based on whether the group 
operation is commutative or not. A group (G,.) is called a commutative or 
an Abelian group, if for every gl and g2 in G, 

gl • g2 = g2 • gl· 

Evidently, Zn are Abelian groups, whereas Sn (n > 2) are not Abelian. An 
instructive exercise would be to show that Sn are non-Abelian for n > 2.16 

16 Hint: Show that 53 is non-Abelian and use the fact that 53 is a subgroup of 5 n , 

for n > 2. 
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As for every class of mathematical structures, we will need to define a 
concept of equivalence for groups. This is also defined by the existence of 
certain functions between two groups that preserve the group structure. Such 
a function is called a group isomorphism. 

Let us consider two groups G and H. We will use the same notation for 
both group operations, ".", but denote the elements of G and H by g and 
h, respectively. 

Definition 25: A function f : G ---+ H is said to be a group homomor-
phism if for every gl, g2 E G 

A bijective homomorphism is called a group isomorphism. 
We can easily check that the existence of isomorphisms defines an equiv-

alence relation on the class of all groups. The elements of the isomorphism 
(equivalence) classes are not distinguished in group theory. Probably, the 
simplest example of a group isomorphism is 

Z2 82 . 

We use the notation for the word "isomorphic". The classification of all 
finite groups (up to isomorphy) is one of the most difficult tasks in mathe-
matics. 

A natural concept in group theory is the concept of a product group. The 
reader should be able to define this concept by himself or herself. 

A standard elementary textbook on group theory is Topics in Algebra 
by I. N. Herstein (Blaisdell Publishing Company, New York, 1964). A more 
advanced textbook is Algebra by T. W. Hungerford (Springer, New York, 
1987). 

We briefly mentioned that groups are associated with symmetries. A typ-
ical and rather instructive example of this is the group of the geometric 
operations on a plane that leave an equilateral triangle unchanged. These are 
three (0, 120, and 240 degrees) rotations about the center, and three reflec-
tions about the symmetry axes. These operations form a group which is also 
called the symmetry group of a triangle. This group is isomorphic to 83 . It 
is a non-Abelian group that contains the subset of the three rotations as an 
Abelian subgroup. The next example of a geometric symmetry group is the 
group of symmetries of a square. This includes four rotations and four reflec-
tions. It is not isomorphic to any of the groups that we have discussed so far, 
neither is it a product group of some "smaller" groups. We can proceed to 
introduce the symmetry groups of other geometric objects such as equilateral 
polygons. Evidently, the number of elements of the symmetry group - this 
is called the order of the finite group - depends on the number of sides of 
the polygon. The limiting object is the round circle. Its symmetry group has 
an infinite number of elements. These are the rotations about the center by 
arbitrary angles r.p E [0,2n) and reflections about any axis through the cen-
ter. The latter can also be parameterized by an angle, namely the angle that 
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the axis of reflection makes with, say, the x-axis in ]R2. Alternatively, one 
can perform an arbitrary reflection by a combination of two rotations and a 
fixed reflection, say about the x-axis. In order to do this, first one performs 
a suitable rotation so that the axis of reflection is rotated to the x-axis. This 
is followed by a reflection about the x-axis and finally a rotation by the same 
angle but in the opposite sense. This shows that the symmetry group of the 
circle is not parameterized by two independent continuous variables. 

Let us consider the subgroup of the symmetry group of the circle consist-
ing of rotations. This is an Abelian group. Its elements are parameterized by 
the angles or the points of another round circle. Let 9 be such a rotation, and 
let us view the original circle 8 1 as the set of vectors of unit length in ]R2, 

Then, 9 is represented by a matrix that "multiplies" the points of 8 1 from 
the left: 

= ( . 

In this way, we have an explicit representation of an infinite group, namely 

80(2) := {( E [0 2¢) } . 
, 

The notation 80 (2) means the set of all special (determinant = 1), orthogonal 
(inverse = transpose), two-dimensional real matrices. In ]R3, it corresponds 
to the rotations about a fixed axis. 

We can also use the identity ]R2 = C, to view 8 1 as the set of complex 
numbers with unit modulus, 

{ZEC Izl=l}. 
If Izl = 1, then z is a phase, 

() E [0,27r). 

In this representation, the rotation by an angle is performed by multipli-
cation by the phase ei<p, 

The group of rotations is then parameterized by the set of all phases, 

U(l) := {ei<P : E [0,27r) } , 

where the group multiplication is the ordinary multiplication of complex 
numbers. The letter "U" stands for "unitary", since every phase is indeed 
a unitary (inverse = Hermitian conjugate) one-by-one matrix. 
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The two groups SO(2) and U(1) are in fact the same, i.e., they are isomor-
phic. It is quite easy to see that the group elements, in this case, describe the 
points of a smooth manifold, namely the circle, SI. U(1) is a typical example 
of a (compact, connected) Lie group. 

Another example of a compact (but disconnected) Lie group is the full 
symmetry group of the round circle. This group consists of the (subgroup of) 
rotations and arbitrary reflections. We can construct this group algebraically. 
For this purpose we consider the round circle SI as the set of all unit vectors 
in]R2 originating at 0 E ]R2, and find all the linear transformations which map 
SI onto itself, i.e., preserve the magnitude of the vectors. It is not difficult 
to see that these transformations correspond to 2 x 2 orthogonal matrices. 
The set of all such matrices is denoted by 0(2). We know from elementary 
linear algebra that the determinant of any orthogonal matrix is either 1 or 
-1. As we showed above the rotations correspond to the special orthogonal 
matrices which have unit determinant. Thus the reflections are identified by 
the orthogonal matrices of determinant -1. Alternatively, we can view SI 
as the set of complex numbers of unit norm (modulus), and try to find the 
symmetry group of SI as the group of linear transformations of the complex 
numbers C which preserve the norm. In this picture, the relation between 
reflections and the operation of complex conjugation is most interesting. 

Having examined some simple examples of Lie groups, we pursue our 
review by presenting a precise definition of a Lie group. 

Definition 26: Let (G,.) be a group that has, in addition, the structure 
of a smooth manifold. Then, G is said to be a Lie group if the functions 
defined by the group multiplication, • : G x G ----+ G, 

.(gl, g2) := gl • g2, 

and inversion, i : G ----+ G 

are smooth functions. 
Other examples of Lie groups are the spaces ]Rm, where the group mul-

tiplication is simply the addition of vectors. We also have the multiplicative 
group (]R - {O}, .) which is a disconnected Lie group. Similarly, the multiplica-
tive group (C - {O},.) has the structure of a Lie group with the group space 
being the punctured complex plane. Other, more interesting groups are the 
so-called classical groups. These are different types of matrix groups. We will 
discuss the unitary groups U(n) in some detail. The other classical groups 
are discussed in most of the textbooks on Lie group theory. 

Lie groups enter into physical problems as the transformation groups of 
physical systems. Often, a physical system is defined on a smooth manifold 
M. Depending on the specific geometry of the problem there may exist quan-
tities that are invariant under certain transformations of the manifold. These 
quantities are called conserved quantities. In fact, the set of all manageable 
transformations is the diffeomorphism group of the manifold. Here one can 
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view the manifold as the submanifold of some Euclidean space and inter-
pret a diffeomorphism as a smooth and smoothly reversible deformation of 
the manifold in the embedding Euclidean space. 

In field theories, physical quantities are usually represented by tensor 
fields T = T(x).1 7 In general, under a diffeomorphism a point x E M is 
mapped to another point x' EM. As regards the (tensor) fields T, there 
are two possibilities. Either one keeps using the original fields evaluated at 
the new point, i.e., under the diffeomorphism T(x) ----; T(x'), or one also 
transforms the tensor fields according to the diffeomorphism T(x) ----; T'(x'). 
The latter is performed by pushing-forward or pulling-back the field T (or 
a combination of these) using the diffeomorphism and its inverse. Adopting 
this latter point of view, one may interpret the effect of a diffeomorphism 
as a reparameterization of the physical quantities. Thus the corresponding 
symmetries are related to the reparameterization invariance of the physi-
cal quantities. These symmetries are known as the internal symmetries. In 
a sense they are indispensable qualities of every sensible field theory. The 
diffeomorphism invariance of Einstein's general theory of relativity and the 
gauge symmetries of other field theories are examples of internal symmetries. 
The former point of view, in contrast, corresponds to the external symmetries 
which are related to the specifics of a physical system. They mayor may not 
be present. 

Usually, the (tensor) fields used to represent physical quantities are given 
by their local components. The use of local components is often necessary 
to perform computations. These local components, however, depend on the 
choice of a local coordinate chart and a local basis of the tangent and cotan-
gent spaces. The choice of coordinates is completely subjective. Hence, the 
physical quantities must be independent of such a choice. A local coordinate 
transformation on a manifold is identical with a coordinate transformation 
on a copy of where m is the dimension of the manifold. Coordinate trans-
formations on also form a group. The elements of this group may be used 
to parameterize the local coordinate transformations of the manifold. The 
physical quantities are however invariant under the "action" of this group. In 
fact, a coordinate transformation does not move the points of the manifold. 
It is merely a relabeling of the points of the corresponding local chart and 
thus corresponds to the identity element of the diffeomorphism group. Con-
sequently we do not associate the coordinate invariance (covariance) of the 
physical quantities with a symmetry of a physical system. 18 

Consider a free particle moving on a plane. The manifold M is The 
dynamics of the free particle must certainly be independent of the choice 
of the coordinate axes. Let us fix a Cartesian coordinate system. Then, any 

17 This includes the scalar, covariant, and contravariant vector fields. 
18 The local representation of a diffeomorphism, i.e., when it is represented in lo-

cal coordinates, resembles a local coordinate transformation. This is the basis 
of the terminology according to which diffeomorphism symmetry is also called 
symmetry under general coordinate transformations. 
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other such system is obtained from the first one through (a combination of) 
rotations, translations, and interchange of the coordinate axes. The set of all 
such transformations in form a group called the Euclidean group, E(2). 
Note that the arbitrariness of the choice of a coordinate system is different 
from sayan E(2) symmetry of a problem. 

Let us consider the longitudinal symmetry of the electrostatic properties 
of a long homogeneous charged metal bar of fixed cross-sectional geometry. 
The symmetry group is clearly R The presence of this symmetry allows us 
to reduce the three-dimensional problem to a two-dimensional one. The full 
solution is then obtained via the symmetry argument that the results must 
be independent of the longitudinal coordinate. If further we suppose that the 
metal bar is cylindrical, the symmetry group is even larger. It is the product 
group x 0(2). Since the symmetry group is two-dimensional the problem is 
further reducible to a one-dimensional one. The final result will only depend 
on the distance of the observer from the metal bar. 

We have seen how symmetries are related to groups. Specially, we exam-
ined the finite and infinite (Lie) groups of transformations. In general, the 
space which undergoes a transformation is an arbitrary smooth manifold. A 
transformation of a manifold by a group element is called the action of the 
group element on the manifold. As any transformation, the action of a group 
element is defined through a function acting on the manifold. More generally 
we have the following definition. 

Definition 27: Let (G,.) and M be a Lie group and a smooth manifold, 
respectively. A smooth function f : G x M M is said to be a left action 
of G on M, if 

1) for all p E M, f(e,p) = p, where e is the identity element of G; 
2) for all gl, g2 E G and p E M, 

Usually, one abuses the notation and writes "g. p" or even "g p" for 
f (g, p). In this notation, the requirements of Def. 27 become e p = p and 
gl (g2P) = (glg2 )p. The function f is called a right action if instead of the 
second requirement, we have 

Similarly, one denotes a right action by 

f(g,p) == p. 9 or f(g,p) == p g. 

Every Lie group G has a natural left action on itself. This is simply given 
by group multiplication from the left: 
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Similarly, one can define the right action of G on itself. For each group element 
9 E G, the left and the right actions of G on itself define two canonical smooth 
functions Lg : G ---7 G and Rg : G ---7 G, respectively. They are given by 

Lg(h) := g. h 
Rg(h) := h. g. 

(A.19) 
(A.20) 

These functions and their push-forward and pullback maps have many appli-
cations in the theories of Lie groups and fiber bundles. 

Definition 28: An action f is called transitive if for every two points 
PI and P2 of M, there is some 9 E G such that P2 = f (g, PI)' f is called a 
free action, if for every P E M and 9 E G - {e}, f(g,p) #- p. 

For example, let us consider the left action of 50(2), rotations about the 
z-axis, on the unit (round) sphere 52 inside This is neither transitive 
nor free. To show this, first we need two points on 52 that are not linked 
via a rotation about the z-axis. This is easily done by choosing two points 
with different values of z-coordinate in This means that the action is 
not transitive. Next, consider the poles. They are left unchanged by all such 
rotations. Thus, the action is not free either. 

An important example of a Lie group is the full rotation group in An 
arbitrary rotation in is specified by three numbers; these are known as the 
Euler angles [147]. An equivalent specification of an arbitrary element of this 
group is obtained by choosing a unit vector centered at the origin and a point 
of the unit sphere centered at the tip of this unit vector. One can show that 
this group is isomorphic to 50(3). Geometrically, it is the manifold obtained 
by identifying the opposite points of the three sphere 53 (with respect to 
the center). In fact, the whole sphere 53 is another interesting example of a 
Lie group, namely the group 5U(2). 5U(2) is defined as the subgroup of the 
unitary group U(2) that consists of the matrices of unit determinant. 

We can study the action of 50(3) on by identifying the points of by 
column vectors and multiplying them by elements of 50(3), i.e., orthogonal 
3 x 3 matrices with unit determinant. We can also restrict this action onto 
the submanifold 52 of Since every rotation preserves the magnitude of a 
vector, the action of 50(3) maps 52 to itself. In fact, we can easily see that 
this action is transitive but not free. An example of an action of a Lie group 
G that is both transitive and free is the left (right) action of G on itself. 

Probably the most important concept in the theory of Lie groups is the 
concept of the Lie algebra of a Lie group. To present a definition of the Lie 
algebra of a Lie group we need to recall some basic facts about vector fields 
on a general manifold. 

In our discussion of vector fields on smooth manifolds, we introduced a 
practical local expression for arbitrary vector fields. We labeled this formula 
as (A.I0). In this expression, we denoted every vector field by a differen-
tial operator. In fact, it turns out that there is a one-to-one correspondence 
between the set of all (contravariant) vector fields and the set of all the dif-
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ferential operators of the form given by (A.lO). Under this correspondence 
every vector field is viewed as a differential operator acting on the space of 
all scalar fields. An interesting property of operators is that they can be com-
posed. Let us choose two vector fields V = Vi(x) and W = wj(x) 
and consider their commutator: 

[V, W] := VoW - W 0 V 

.o( '0) '0(.0) V' oxi WJ oxj - WJ oxj V' oxj (A.21) 

( ViOWk _ WjOVk ) 
ox' oxJ oxk 

, .I v 
Uk 

We can readily check that the components Uk of [V, W] transform like the 
components of a (contravariant) vector field, i.e., according to (A.8). Let us 
denote the set of all vector fields of a smooth manifold M by X (M). The 
operation defined by (A.21) is a binary operation, 

[., .] : X(M) x X(M) ----7 X(M), 

that promotes X(M) into a non-associative algebra. 19 This operation is called 
the Lie bracket of two vector fields. 

Definition 29: Let G be a Lie group and X(G) be the algebra of vector 
fields on G. A vector field X E X(G) is said to be a left-invariant vector 
field, if for every g, h E G, it satisfies 

L g* (X(h)) = X(g. h), 

where X (h) and X (g • h) are the values of the vector field at the argument 
points and Lg* is the push-forward map induced by the left action of G 
on itself (A.19). It can be shown that the Lie bracket of two left-invariant 
vector fields is also left-invariant. Thus, the set of all left-invariant vector 
fields form a sub algebra of X (G). The algebra operation is obviously the Lie 
bracket. This algebra is called the Lie algebra of G. It is denoted by g or 
LG. 

A "geometrical" interpretation of the Lie algebra g is offered by the fol-
lowing simple result. 

Proposition 3: As vector spaces g and TeG are isomorphic. 

Although this result may seem rather mysterious, it is shown quite straight-
forwardly. The key point is to recognize that every left-invariant vector field 
X can be constructed from its value at the identity, X(e) E TeG. This is done 
via the left action map Lg of (A.19). We have, for any g E G, 

19 A non-associative algebra satisfies all the requirements of an associative algebra 
except the condition of associativity, i.e., condition 4 of Def. 19. 
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X(g) = L g* (X(e)). (A.22) 

Using this equation, we can push-forward a basis of TeG to define a basis 
for Q. This is sufficient to prove the isomorphy of these two vector spaces. 
Since dim(TeG) = dim(G), Q is finite dimensional if and only if G is. Another 
important implication of (A.22) is that every basis of TeG induces a set of 
global basis vector fields in TG. In the language of vector bundles this means 
that the tangent bundle of every Lie group is a trivial bundle,20 i.e., it is a 
product manifold, 

TG = G x jRm 

where m = dim( G). 
Furthermore, since the Lie algebra Q is isomorphic to TeG, we can write 

down the defining (commutation) relations in terms of the tangent vectors 
at the identity. This in turn indicates that if we compute the Lie bracket of 
the elements of the Lie algebra via (A.17), the coefficients of the right-hand 
side of (A.21) will be constant. For example, let us choose a basis {Ji} of Q. 
Then, we have 

(A.23) 

The basis elements Ji of the Lie algebra are also called the generators of 
the Lie group. The coefficients are called the structure constants. They 
determine the Lie algebra. This means that a complete set of commutation 
relations such as (A.23) specifies the Lie algebra without any reference to 
the structure of the Lie group. In fact, there is a way to find a Lie group 
associated to a given Lie algebra. The association is however not unique, i.e., 
we can find several Lie groups for a given Lie algebra. 

In order to define a Lie algebra independently of a Lie group, we shall 
first try to determine the important properties of the Lie algebra of a Lie 
group. These are simply the antisymmetry of the Lie bracket: 

[V,W] = -[W,V], 

and the so-called Jacobi identity: 

[[U, V], W] + [[W, u], V] + [[V, w], U] = 0, 

where U, V, Ware arbitrary Lie algebra elements. We can easily verify these 
identities for the Lie algebra of a Lie group using (A.21). For an abstract Lie 
algebra however, they serve as the defining postulates or axioms. 

Definition 30: Let (9, +,., [., .]) be a non-associative algebra with the 
algebra multiplication denoted by 

[.,.] : Q x Q -----'t Q. 

20 A manifold whose tangent bundle is trivial is called a pamllelizable manifold, so 
every Lie group is parallelizable. 
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Then, Q is called an abstract Lie algebra if the algebra operation is anti-
symmetric and it satisfies the Jacobi identity. 

A familiar example of an abstract Lie algebra is the algebra of operators 
in one-dimensional quantum mechanics. The basic elements are the coordi-
nate operator X, the momentum operator p, and the identity operator 1. The 
algebra operation is the commutator of the operators. This operation satisfies 
all the requirements of Def. 30. The corresponding Lie algebra is called the 
Weyl-Heisenberg algebra. It is defined by the following commutation rela-
tions: 

[x,p] = if 
[x, x] 

[x, i] 
[1), p] = [I, i] 
[p, i] = o. 

o 

Another simple example is the Lie algebra of all (N x N)-matrices with the 
algebra operation being the commutator of two matrices. This Lie algebra is 
denoted usually by Q£(N, JR) or Q£(N, q depending on whether the entries 
of the matrices are real or complex. 21 

Lie algebras of Lie groups are used extensively in almost all aspects of Lie 
group theory. A particularly important tool that makes the applications of the 
Lie algebra possible is the so-called exponential map. This is a smooth map 
from the Lie algebra to the Lie group. In fact, if the Lie group is compact and 
connected then the exponential map is onto. That is, every group element can 
be obtained as the exponential of some element of the Lie algebra (a tangent 
vector at the identity). This is extremely important because in practice it is 
much easier to study a Lie algebra than a Lie group. 

Let us consider a smooth manifold M and suppose that V = Vi (x) is 
a vector field on M. At each point x E M, we can obtain the value of V as 
the tangent vector to some curve in M. Let us choose Xo E M and denote 
V (xo) by Vo. Then, we can find a curve C that starts at Xo and is tangent to 
the vector field V at all its points, 

V(C(t)) = 'Vt E [0, T]. 

The curve C is called an integral curve of the vector field V. Every integral 
curve is uniquely defined up to the starting point Xo. This is a consequence 
of the existence and uniqueness theorem for ordinary differential equations. 
For, an integral curve is the solution of the following first-order differential 
equation: 

d· . 
dtX'(t) = V'(x(t)) (A.24) 

Xi(O) = xt, 
21 Note that the set of such matrices also form an associative algebra under matrix 

multiplication. 
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where x(t) = (xl (t), ... ,xm(t)) are the coordinates of the points G(t) of G, 
and x& are the components of the initial point Xo. The integral curve G is 
obtained by integrating (A.24). 

We can use the results of the previous paragraph to define a smooth 
function on M that maps an arbitrary point Xo to the end point of the 
corresponding integral curve. If we set T = 1, i.e., t E [0,1]' this function maps 
Xo = G(O) to G(l), where G is the solution of (A.24). There are manifolds 
with pathological problems that render this construction inapplicable. Lie 
groups and, as a matter of fact, all the manifolds we will encounter in this 
book do not have such problems and the above construction is valid. We 
denote the "end point" function by 

eXPM: X(M) x M ---+ M. 

It is defined by 
(A.25) 

In words, the function exp M yields the end point of the integral curve defined 
by the vector field V E X(M) and the initial condition Xo EM. 

Let us return to our discussion of Lie groups and their Lie algebras. Every 
element of the Lie algebra of a Lie group is a left-invariant vector field X. We 
can obtain a function from the Lie algebra into the Lie group by restricting 
(A.25) to the left-invariant vector fields on G and choosing Xo to be the 
identity element of the Lie group, e E G. The resulting function is called the 
exponential map, exp : 9 -+ G: 

exp(X) := expc(X, e). 

An examination of matrix groups justifies the name "exponential map". For 
example, the Lie algebra of U(l) is the purely imaginary numbers, u(l) = iR 
Then for any icp E ilR, we have 

exp( icp) = eicp 

The same is true for all other matrix groups. An element of the Lie algebra of 
every matrix group is itself a matrix of the same dimension. The exponential 
map for these groups reduces to 

x 1 k exp(X) = e := L...J k!X . 
k=O 

We shall next review an important class of matrix groups, called the 
unitary groups, U(N). 

Definition 31: Let GL(N, q denote the set of all invertible (N x N) 
complex matrices. GL(N, q form a Lie group under the operation of matrix 
multiplication. It is called the (complex) general linear group. The Lie algebra 
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Q£(N, C) of GL(N, C) consists of all (N x N) complex matrices. The unitary 
group U(N) is a compact Lie subgroup of GL(N, C) defined by 

U(N) := {U E GL(N,C) : U- 1 = ut }, 

where "t" stands for Hermitian conjugation. The unitary matrices of unit 
determinant form a Lie subgroup of U(N) called the special unitary group: 

SU(N) := {U E U(N) : det(U) = 1 } . 

The Lie algebras of U(N) and SU(N) are denoted usually by u(N) and 
su(N), respectively. They are Lie subalgebras of Q£(N, C) given by 

u(N) .- {X E Q£(N,C) xt = -X} 
su(N) := {X E Q£(N,C) : xt = -X, tr(X) = O}, 

where "tr" stands for "trace". Therefore, elements of u(N) are anti-Hermitian 
matrices. 

Both U(N) and SU(N) are compact connected Lie groups and their ex-
ponential maps are onto. Hence, every unitary and special unitary matrix is 
obtained as the exponential of some element of the Lie algebra. Specifically, 
we have 

U(N) = {exp(X) 

SU(N) = {exp(X) 

X E Q£(N,C), xt = -X} (A.26) 

X E Q£(N,C), xt = -X, tr(X) = O}. 

In physics, we are accustomed to work with Hermitian matrices rather than 
the anti-Hermitian matrices. This is the reason for the extra factor of "i = 
.J=I" in physicists' definition of the exponential map. Equations (A.26) are 
often written in the following form: 

U(N) = {exp(iX) 

SU(N) = {exp(iX) 

X E Q£(N, C), xt = X } 

X E Q£(N, C), xt = X, tr(X) = O}. 

U (N) and SU (N) can also be viewed as transformation groups acting on 
eN. The situation is similar to the action of 0(2) on ]R2. The group elements 
are (represented by) the N x N complex matrices that multiply the complex 
column vectors on the left. Let U be a unitary matrix and z E eN. Then, we 
have 

II Uz 112= ztutuz = ztz =11 Z 112 . 
Hence, the unitary transformations preserve the (Euclidean) norm on eN. 

Clearly, U(N) is a subgroup of U(N + 1). This can be shown by repre-
senting elements of U (N) by (N + 1) x (N + 1) matrices of the form 

(A.27) 
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where "*" are complex numbers forming an N x N unitary matrix in the 
upper left block of (A.27). This is a trivial example of an (N + I)-dimensional 
complex "representation" of U(N). 

Definition 32: Let G be a group and V be a complex (real) vector space. 
The space of all invertible linear transformations of V is denoted by GL(V). 
A function 

p : G --t GL(V), 

is called a complex (real) representation of G, if for every v E V it 
satisfies: 

I)p(e)(v) = v; 
2) P(gl • g2)(V) = p(gI) (p(g2)(V)) = [p(gI) 0 P(g2)] (v), 

where "e" is the identity element of G and "0" is the composition of linear 
transformations (multiplication of matrices). 

In practice, we usually choose V to be either eN or JR.N (for the finite-
dimensional representations). In this case, a representation maps the group 
elements to non-singular matrices. In particular, this allows us to study an 
abstract group in terms of a subgroup of GL(N, q or GL(N, JR.). A repre-
sentation is said to be a faithful representation if it is a one-to-one function. 

Next let us consider a representation (p, V) of G. It is possible that all the 
elements of the p( G) are represented by block diagonal matrices of the same 
form, with each block corresponding to a proper vector subspace of V. If this 
happens, then the representation is said to be a reducible representation. The 
precise definition is as follows: 

Definition 33: Let (p, V) be a representation of a group G. Then a 
vector subspace V' of V is said to be an invariant subspace if for every 
9 E G and every Vi E V', p(g) [Vi] E V', alternatively p( G) [V'] V'. The 
representation (p, V) is said to be an irreducible representation of G if the 
only invariant subspaces of V are the trivial vector subspace {O} and V itself. 
A representation which is not irreducible is called a reducible representation. 
It can be decomposed into irreducible representations. 

In physics, we are often interested in the so-called unitary irreducible rep-
resentations of Lie groups. A finite-dimensional unitary representation takes 
the group elements to unitary matrices. It turns out that if the group is non-
compact there are no finite-dimensional unitary representations. However, in 
many cases the groups of interest are compact and we can represent them as 
subgroups of some unitary group. In fact, a result of group theory, namely 
the Peter-Weyl theorem, says that every compact connected Lie group is 
isomorphic to a subgroup of some unitary group. 

Earlier in this section we emphasized the importance of the notion of the 
Lie algebra of a Lie group and mentioned that it is much easier to study the 
Lie algebras. This extends also to the subject of the representations of the 
Lie groups, in particular, the irreducible unitary representations. 
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Given an arbitrary representation (p, V) of a Lie group e, one can use the 
identification of the Lie algebra Q of e with the tangent space at the identity 
Tee, to obtain a representation of the Lie algebra. 

Definition 34: Let Q be an arbitrary abstract Lie algebra, V a vector 
space, and QC(V) be the vector space of all the linear transformations of V. 
Then a linear function, 

A: Q ----t QC(V), 

is said to be a representation of the Lie algebra Q if for every X, Y E Q, 

A([X, Y]) = A(X) 0 A(Y) - A(Y) 0 A(X), (A.28) 

where "[ , ]" and "0" denote the Lie algebra operation of Q and the com-
position of linear functions of V, respectively. In particular, if (p, V) is a 
representation of a Lie group e and Q is the Lie algebra of e, then the 
push-forward map: 

defines a representation of Q. Here "I" stands for the identity operator on V. 
Once a representation (A, V) of a Lie algebra Q is chosen, the elements of 

Q and in particular its basis elements Ji , may be identified with some linear 
operators acting on V. These however may be composed. In fact the space 
QC(V) together with the operation of multiplication by numbers, addition of 
linear transformations, and their composition forms an associative algebra. 
This algebra which is also related with the Lie algebra structure of QC(V), 
with the Lie bracket defined by the right-hand side of (A.28), is an example 
of an enveloping algebra. 

Definition 35: Let (Q, [ , ]) be an abstract Lie algebra with a basis 
{Jd, (A,., +, 0) be an associative algebra generated by {Jj} and Q be the 
vector subspace of A spanned by {Jj}. Then (A,., +, 0) is said to be the 
enveloping algebra of (Q, [ , ]) and denoted by £(Q), if there exists a 
vector space isomorphism 

f:Q---)Q, 

and for all X, Y E Q the following condition is satisfied: 

f([X, Y]) := f(X) 0 f(Y) - f(Y) 0 f(X). 

More simply, one says that the enveloping algebra £(Q) of a Lie algebra Q is 
an associative algebra generated by a basis of Q. 

Definition 36: An element of the enveloping algebra of a Lie algebra is 
called a Casimir operator, if it commutes with all the generators .:Ti, 

If Q is the Lie algebra of a Lie group e which acts as a transformation 
group of a physical system, then the Casimir operators represent the invari-
ant quantities. In quantum mechanics a symmetry is generated by a linear 



A.3 Lie Groups 405 

operator which commutes with the Hamiltonian. Hence, if G is the symme-
try group, then the Hamiltonian must be a (representation of a) Casimir 
operator. 

We end this appendix by emphasizing that the theory of group represen-
tations has played a substantial role in the development of quantum physics. 
In fact, many of the pioneering works in this subject were conducted by 
physicists such as Eugene Wigner. 


