Phys 503: Midterm Exam 1 Fall 2011

• Write your name and Student ID number in the space provided below and sign.

Name, Last Name:	
ID Number:	
Signature:	

- You have <u>80 minutes</u>.
- You may use any statement which has been proven in class, except for the cases where you are asked to reproduce the proof of that statement.
- You may ask any question about the exam within the first 10 minutes. After this time for any question you may want to ask 5 points will be deduced from your grade (You may or may not get an answer to your question(s).)
- (Optional) Grade your own work out of 100. Record your estimated grade here:

Estimated Grade:

If your expected grade and actual grade will turn out to differ by 9 points or less, you will be given the highest of the two.

To be filled by the grader:

Actual Grade:	
Adjusted Grade:	

Problem 1. Consider a classical point particle of mass m that moves on a straight line under the influence of a conservative force F = F(x) where x denotes the position of the particle.

1.a) Prove that the total energy of the system is conserved and explain how one can use this fact to integrate the equation of motion (10 points)

1.b) Let (x, p) be the standard position and momentum observables for this system and y := ax + bp and q := cx + dp where a, b, c, d are real numbers. Find the necessary and sufficient condition on these numbers such that $(x, p) \to (y, q)$ be a canonical transformation. (10 points)

Problem 2. Explain the difference between the following pair of concepts. (8 points)2.a) inner product space and Hilbert space:

2.b) dense subspace and closed subspace of an inner product space:

2.c) symmetric operator and self-adjoint operator:

2.d) isometry and unitary operator:

Problem 3. Show that if $\langle \cdot | \cdot \rangle : \mathbb{C} \to \mathbb{C}$ is an inner product on \mathbb{C} , then it must have the following form for some positive real number r: For all $w, z \in \mathbb{C}$, $\langle w | z \rangle = rw^* z$. (12 points)

Problem 4. Let \mathbb{E}^2 be the Hilbert space obtained by endowing \mathbb{C}^2 with the Euclidean inner product, ϕ be a real number, $b_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}$, $b_2 := \frac{1}{\sqrt{2}} \begin{pmatrix} i \\ 1 \end{pmatrix}$, and $\hat{U} : \mathbb{E}^2 \to \mathbb{E}^2$ be a linear operator defined on \mathbb{E}^2 that satisfies $\hat{U}b_1 = e^{i\phi}b_2$ and $\hat{U}b_2 = e^{-i\phi}b_1$.

4.a) Show that $(e^{i\phi}b_2, e^{-i\phi}b_1)$ is an orthonormal basis of \mathbb{E}^2 for all $\phi \in \mathbb{R}$. (10 points)

4.b) Show that \hat{U} is a unitary operator. (10 points)

Problem 5. Let \mathbb{E}^2 be the Hilbert space obtained by endowing \mathbb{C}^2 with the Euclidean inner product and b_1 and b_2 be the vectors defined in Problem 2 and $a := b_1 - b_2$.

5.a) Find the matrix representation of the projection operator \hat{P}_a onto the ray defined by the state vector a in the standard basis of \mathbb{E}^2 . (10 points)

5.b) Let λ be the state defined by the state vector $\psi_{\lambda} := 2b_1 + 3b_2$. Find the probability of finding 1 upon measuring \hat{P}_a in the state λ . (15 points)

- **5.c)** Calculate the expectation value of measuring $\hat{O} := |a\rangle\langle a| 2|b_1\rangle\langle b_1| |b_2\rangle\langle b_2|$ in the state
- λ . (15 points)