1) Show that adding total derivative function to the Lagrangian does not change the Lagrange equations.
2) Derive Lagrange equations of motion in case $L=L(q, \ddot{q}, t)$.
3) Consider two dimensional anisotropic harmonic oscillator. Let \mathbf{m} be the mass of the oscillating body and k_{x} and k_{y} be the spring constants in the x- and y-directions respectively.
(a) Construct a Hamiltonian for this system
(b) Find a solution using Hamilton-Jacobi method in terms of initial quantities.
4) Consider the Hamiltonian explicitly time-dependent Hamiltonian:

$$
H=H_{0}(q, p)-\varepsilon \sin \omega t
$$

where $H_{0}(q, p)$ is a time-independent Hamiltonian, and ε and ω are given constants.
(a) How are the canonical equations modified by the presence of the term $\varepsilon s i n \omega t$?
(b) Find a canonical transformation that restores the canonical form of the equations of motion and determine the new Hamiltonian.
5) Consider a classical system determined by the Lagrangian:

$$
L=a \dot{x}^{2}+b \frac{\dot{y}}{x}+c \dot{x} \dot{y}+f y^{2} \dot{x} \dot{z}+g \dot{y}^{2}-k \sqrt{x^{2}+y^{2}}
$$

where a, b, c, f, g and k are constants. Find a Hamiltonian for this system and determine the conserved quantities.
6) Consider the Lagrangian of a charged particle in an electomagnetic field, described by a scaler potential $\phi(\mathbf{r}, t)$ and a vector potential $\mathbf{A}(\mathbf{r}, t)$

$$
L=\frac{1}{2} m \dot{\mathbf{r}}^{2}-e \phi(\mathbf{r}, t)+e \dot{\mathbf{r}} \mathbf{A}(\mathbf{r}, t)
$$

(a) Show that the corresponding Euler-Lagrange equation takes the form

$$
m \ddot{\mathbf{r}}=e \mathbf{E}+e \dot{\mathbf{r}} \times \mathbf{B}
$$

in terms of the electric field $\mathbf{E}=-\nabla \phi-\frac{\partial \mathbf{A}}{\partial t}$ and the magnetic field $\mathbf{B}=\nabla \times \mathbf{A}$.
(b) Show that the result formulated in problem 1 implies that the equations of motion are invariant under the gauge transformations

$$
\begin{aligned}
& \phi(\mathbf{r}, t) \rightarrow \phi(\mathbf{r}, t)-\frac{\partial \Lambda(\mathbf{r}, t)}{\partial t} \\
& \mathbf{A}(\mathbf{r}, t) \rightarrow \mathbf{A}(\mathbf{r}, t)+\nabla \Lambda(\mathbf{r}, t)
\end{aligned}
$$

In addition check explicitly that this leaves the fields \mathbf{E} and \mathbf{B} unchanged.
(c) Derive the corresponding Hamiltonian $H(\mathbf{p}, \mathbf{r})$.
(d) Is the canonical momentum \mathbf{p} gauge invariant? How about the kinematic momentum $\pi=m \mathbf{r}$?
7) Show by the use of of Poisson brackets that for a one-dimensional harmonic oscillator there is a constant of motion u defined as

$$
u(q, p, t)=\ln (p+i m \omega q)-i \omega t, \quad \omega=\sqrt{\frac{k}{m}}
$$

