1) Let
$$\sigma_0 := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $\sigma_1 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_2 := \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_3 := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

- 1.a) Show that every 2×2 complex matrix can be expressed as a linear combination of these matrices with complex coefficients.
- 1.b) Show that every 2×2 Hermitian matrix can be expressed as a linear combination of these matrices with real coefficients.
- 1.c) Compute the spectral representation of σ_1 , σ_2 , and σ_3 by giving explicit form of the corresponding complete orthonormal set of projection operators.
- 1.d) Denote the projection operators you find for σ_i by $P_-^{(i)}$, $P_+^{(i)}$, respectively, where the sign corresponds to the eigenvalues ± 1 of σ_i . Compute $P_+^{(i)}P_-^{(j)}$, $P_+^{(i)}P_+^{(j)}P_+^{(i)}$ for all i, j = 1, 2, 3.
- 1.e) Compute $P_{+}^{(i)}P_{+}^{(j)}P_{+}^{(i)}$, and $P_{-}^{(i)}P_{-}^{(j)}P_{-}^{(i)}$ for all i, j = 1, 2, 3 with $i \neq j$.
- 2) Let $\hat{x}, \hat{k}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ be defined by $(\hat{x}\psi)(x) := x\psi(x)$ and $(\hat{p}\psi)(x) := -i\psi'(x)$ where a prime denotes differentiation with respect to x.
 - 2.a) Show that both \hat{x} and \hat{p} are symmetric operators.
 - 2.b) Show that \hat{p} does not have and eigenvalue (or an eigenfunction.)
- 3) Let $\mathcal{P}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ be defined by $(\mathcal{P}\psi)(x) := \psi(-x)$ for all $x \in \mathbb{R}$. Show that \mathcal{P} is a self-adjoint operator.
- 4) Let \mathscr{H} be a separable Hilbert space of dimension larger than one, ψ be a nonzero element of \mathscr{H} , and $P := |\psi\rangle \langle \psi|$.
 - 4.a) Show that P is bounded operator.
 - 4.b) Show that P is a symmetric operator.
 - 4.c) Is P self-adjoint? Why?
 - 4.d) Find eigenvalues of P.

5) Let $a \in \mathbb{R}$ and $T_a : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ be defined by $(T_a \psi)(x) := \psi(x - a)$ for all $x \in \mathbb{R}$.

- 5.a) Determine the domain of T_a and show that it is a bounded operator.
- 5.b) Determine the adjoint of T_a and its domain.
- 6) Let $a \in \mathbb{R}^+$ and $S_a : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ be defined by $(S_a \psi)(x) := \psi(ax)$ for all $x \in \mathbb{R}$.
 - 6.a) Determine the domain of S_a and show that it is a bounded operator.
 - 6.b) Determine the adjoint of S_a and its domain.