1) Let $a \in \mathbb{R}$ and $T_{a}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ be defined by $\left(T_{a} \psi\right)(x):=\psi(x-a)$ for all $x \in \mathbb{R}$. Show that T_{a} is a unitary operator.
2) Let $a \in \mathbb{R}^{+}$and $S_{a}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ be defined by $\left(S_{a} \psi\right)(x):=\psi(a x)$ for all $x \in \mathbb{R}$. Show that S_{a} is a unitary operator.
3) Let \mathscr{H} be a separable Hilbert space of dimension $N \leq \infty, \mathscr{B}=\left(\psi_{n}\right)$ be an orthonormal basis of \mathscr{H}, and $\left(u_{n}\right)$ be a sequence of elements of $U(1):=\left\{e^{i \theta} \mid \theta \in[0,2 \pi)\right\}$. Show that the operator $U:=\sum_{n=1}^{N} u_{n}\left|\psi_{n}\right\rangle\left\langle\psi_{n}\right|$ is a unitary operator.
4) Let \mathscr{H} be a separable Hilbert space and $H: \mathscr{H} \rightarrow \mathscr{H}$ be a Hermitian operator with a discrete spectrum. Use the spectral representation of H to show that for all $a \in \mathbb{R}$, the operator $e^{i a H}$ is a unitary operator.
5) Let $\vec{n}=\left(n_{1}, n_{2}, n_{3}\right)$ be a real unit vector, i.e., $n_{i} \in \mathbb{R}$ and $\sum_{i=1}^{3} n_{i}^{2}=1$, and $\sigma_{\vec{n}}=\sum_{i=1}^{3} n_{i} \sigma_{i}$, where

$$
\sigma_{0}:=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad \sigma_{1}:=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}:=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

5.a) Obtain explicit expressions for the eigenvectors $\vec{\psi}_{i}$ and eigenvalues s_{i} of $\sigma_{\vec{n}}$.
5.b) Construct the projection matrices $\mathbf{P}_{i}=\vec{\psi}_{i} \vec{\psi}_{i}^{\dagger}$ for all $i \in\{1,2,3\}$.
5.c) Check by explicit calculation that the identity $\sigma_{\vec{n}}=\sum_{i=1}^{3} s_{i} \mathbf{P}_{i}$ holds.
5.d) Use the spectral representation of $\sigma_{\vec{n}}$ to compute the matrix $e^{\frac{i \theta}{2}} \sigma_{\vec{n}}$ for all $\theta \in \mathbb{R}$ and establish identity: $e^{\frac{i a}{2}} \sigma_{\vec{n}}=\cos \theta \sigma_{0}+i \sin \theta \sigma_{\vec{n}}$.

