1) Let \mathbb{E}^2 denote \mathbb{C}^2 endowed with the Euclidian inner product and $\psi := \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$ be a nonzero element of \mathbb{E}^2 .

1.a) Compute the matrix representation \mathbf{P}_{λ} of the projection operator $P_{\lambda} = \frac{|\psi\rangle\langle\psi|}{\langle\psi|\psi\rangle}$ onto the state λ defined by ψ .

1.b) Find $(x, y, z) \in \mathbb{R}^3$ such that

$$\mathbf{P}_{\lambda} = \left(\begin{array}{cc} z & x - iy \\ x + iy & 1 - z \end{array}\right),$$

i.e., express x, y, z as function of w_1 and w_2 .

1.c) Show that (x, y, z) determines a point on the two-dimensional sphere S^2 defined by

$$x^{2} + y^{2} + (z - \frac{1}{2})^{2} = \frac{1}{4}$$

1.d) Determine the projection operators corresponding to the north and south poles of S^2 .

1.e) Show that there is a one-to-one correspondence between the points of S^2 and the rays λ in \mathbb{E}^2 (i.e., points of the projective Hilbert space $\mathscr{P}(\mathbb{E}^2)$.)

2) Consider a quantum system that is represented using the Hilbert space obtained by endowing \mathbb{C}^3 with the Euclidean inner product as the Hilbert space and a Hamiltonian operator. Let \hat{A} be the observable represented in the standard basis of \mathbb{C}^2 by the matrix

$$\mathbf{A} = \left(\begin{array}{rrr} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right)$$

2.a) Determine the eigenstates of \hat{A} and the corresponding projection operators.

2.b) Compute the probability of measuring each of the eigenvalues of \hat{A} in the state λ determined by the state vector $\psi_{\lambda} = \begin{pmatrix} 1 \\ i \\ -1 \end{pmatrix}$.

2.c) Compute the expectation value of measuring \hat{A} in the state λ_{ψ} first using $\langle \hat{A} \rangle_{\lambda} = \frac{\langle \psi_{\lambda} | \hat{A} \psi_{\lambda} \rangle}{\langle \psi_{\lambda} | \psi_{\lambda} \rangle}$ and then using $\langle \hat{A} \rangle_{\lambda} = \sum_{n=1}^{3} a_n \operatorname{Prob}_{a_n}(\lambda)$, where a_1, a_2, a_3 are the eigenvalues of \hat{A} and $\operatorname{Prob}_{a_n}(\lambda)$ stands for the probability of finding a_n as a result of measuring \hat{A} in the state λ .

2.d) Compute the expectation value of measuring \hat{A}^2 in the state λ .

2.e) For all $s \in \mathbb{R}$ compute the matrix representation of $e^{s\hat{A}}$ in the standard basis of \mathbb{C}^3 .