1) Let \mathbb{E}^{2} denote \mathbb{C}^{2} endowed with the Euclidian inner product and $\psi:=\binom{w_{1}}{w_{2}}$ be a nonzero element of \mathbb{E}^{2}.
1.a) Compute the matrix representation \mathbf{P}_{λ} of the projection operator $P_{\lambda}=\frac{|\psi\rangle\langle\psi|}{\langle\psi \mid \psi\rangle}$ onto the state λ defined by ψ.
1.b) Find $(x, y, z) \in \mathbb{R}^{3}$ such that

$$
\mathbf{P}_{\lambda}=\left(\begin{array}{cc}
z & x-i y \\
x+i y & 1-z
\end{array}\right)
$$

i.e., express x, y, z as function of w_{1} and w_{2}.
1.c) Show that (x, y, z) determines a point on the two-dimensional sphere S^{2} defined by

$$
x^{2}+y^{2}+\left(z-\frac{1}{2}\right)^{2}=\frac{1}{4} .
$$

1.d) Determine the projection operators corresponding to the north and south poles of S^{2}.
1.e) Show that there is a one-to-one correspondence between the points of S^{2} and the rays λ in \mathbb{E}^{2} (i.e., points of the projective Hilbert space $\mathscr{P}\left(\mathbb{E}^{2}\right)$.)
2) Consider a quantum system that is represented using the Hilbert space obtained by endowing \mathbb{C}^{3} with the Euclidean inner product as the Hilbert space and a Hamiltonian operator. Let \hat{A} be the observable represented in the standard basis of \mathbb{C}^{2} by the matrix

$$
\mathbf{A}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

2.a) Determine the eigenstates of \hat{A} and the corresponding projection operators.
2.b) Compute the probability of measuring each of the eigenvalues of \hat{A} in the state λ determined by the state vector $\psi_{\lambda}=\left(\begin{array}{c}1 \\ i \\ -1\end{array}\right)$.
2.c) Compute the expectation value of measuring \hat{A} in the state λ_{ψ} first using $\langle\hat{A}\rangle_{\lambda}=$ $\frac{\left\langle\psi_{\lambda} \mid \hat{A} \psi_{\lambda}\right\rangle}{\left\langle\psi_{\lambda} \mid \psi_{\lambda}\right\rangle}$ and then using $\langle\hat{A}\rangle_{\lambda}=\sum_{n=1}^{3} a_{n} \operatorname{Prob}_{a_{n}}(\lambda)$, where a_{1}, a_{2}, a_{3} are the eigenvalues of \hat{A} and $\operatorname{Prob}_{a_{n}}(\lambda)$ stands for the probability of finding a_{n} as a result of measuring \hat{A} in the state λ.
2.d) Compute the expectation value of measuring \hat{A}^{2} in the state λ.
2.e) For all $s \in \mathbb{R}$ compute the matrix representation of $e^{s \hat{A}}$ in the standard basis of \mathbb{C}^{3}.

