I) Solve Problems: 3.6, 3.7, 3.10, 3.11 on page 139 tof the textbook (Auletta, Fortunato & Parisi, Cambridge University Press, 2009).

II) Solve the following problems.

1. Let \mathbb{E}^n denote \mathbb{C}^2 endowed with the Euclidean inner product and \hat{H} and \hat{O} be the linear operators acting in \mathbb{E} that are respectively represented by the following matrices in the standard basis of \mathbb{C}^2 .

$$\mathbf{H} = E \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad \mathbf{O} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix},$$

where $E \in \mathbb{R}^+$. Consider the quantum system described by (\mathbb{E}^2, \hat{H}) . Suppose that the system starts its evolution at time $t_0 = 0$ in the state $\lambda(0)$ given by the state vector $\psi(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

1.a) Find the explicit expression for the eigenvectors and eigenvalues of \hat{H} .

1.b) Compute the matrix representation of the time-evolution operator $\hat{U}(t,0)$ in the standard basis of \mathbb{C}^2 , i.e., find the explicit expression for the entries of this matrix.

1.c) Find the expectation value of \hat{O} as the system evolves in time, i.e., give the formula for $\langle \hat{O} \rangle_{\lambda(t)}$.

1.d) Find the probability of finding 1, if we measure \hat{O} at time $t_1 := 2\hbar/E$.

1.e) Suppose that we do actually find 1 after we measure \hat{O} at t_1 and that at some time $t_2 > t_1$ we measure \hat{H} . Find the smallest value of t_2 such that the result of the second measurement is 0 with a 100% probability.

- 2) Derive the explicit formula for the propagator K(x, t; x', t') of a free particle moving on the real line \mathbb{R} .
- 3) Use your response to the preceding problem to compute the position wave function $\psi(x,t)$ if $\psi(x,0) := e^{-ax^2}$, where a is a positive real number. Determine the rate of change of $|\psi(0,t)|$ as a function of time, i.e., compute its time-derivative.
- 4) Let $\psi(0) \in L^2(\mathbb{R})$ be the state vector with position wave function $\psi(x,0) := e^{-ax^2}$.

4.a) Find the momentum wave function $\tilde{\psi}(p,0) := \langle p | \psi(0) \rangle$.

4.b) Suppose that $\psi(0)$ describes the initial state of a free particle moving on \mathbb{R} . Find the explicit formula for the momentum wave function $\tilde{\psi}(p,t)$ for the evolving state vector $\psi(t)$.