I) Solve Problems: 3.6, 3.7, 3.10, 3.11 on page 139 tof the textbook (Auletta, Fortunato \& Parisi, Cambridge University Press, 2009).
II) Solve the following problems.

1. Let \mathbb{E}^{n} denote \mathbb{C}^{2} endowed with the Euclidean inner product and \hat{H} and \hat{O} be the linear operators acting in \mathbb{E} that are respectively represented by the following matrices in the standard basis of \mathbb{C}^{2}.

$$
\mathbf{H}=E\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \quad \mathbf{O}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]
$$

where $E \in \mathbb{R}^{+}$. Consider the quantum system described by $\left(\mathbb{E}^{2}, \hat{H}\right)$. Suppose that the system starts its evolution at time $t_{0}=0$ in the state $\lambda(0)$ given by the state vector $\psi(0)=\binom{1}{0}$.
1.a) Find the explicit expression for the eigenvectors and eigenvalues of \hat{H}.
1.b) Compute the matrix representation of the time-evolution operator $\hat{U}(t, 0)$ in the standard basis of \mathbb{C}^{2}, i.e., find the explicit expression for the entries of this matrix.
1.c) Find the expectation value of \hat{O} as the system evolves in time, i.e., give the formula for $\langle\hat{O}\rangle_{\lambda(t)}$.
1.d) Find the probability of finding 1 , if we measure \hat{O} at time $t_{1}:=2 \hbar / E$.
1.e) Suppose that we do actually find 1 after we measure \hat{O} at t_{1} and that at some time $t_{2}>t_{1}$ we measure \hat{H}. Find the smallest value of t_{2} such that the result of the second measurement is 0 with a 100% probability.
2) Derive the explicit formula for the propagator $K\left(x, t ; x^{\prime}, t^{\prime}\right)$ of a free particle moving on the real line \mathbb{R}.
3) Use your response to the preceding problem to compute the position wave function $\psi(x, t)$ if $\psi(x, 0):=e^{-a x^{2}}$, where a is a positive real number. Determine the rate of change of $|\psi(0, t)|$ as a function of time, i.e., compute its time-derivative.
4) Let $\psi(0) \in L^{2}(\mathbb{R})$ be the state vector with position wave function $\psi(x, 0):=e^{-a x^{2}}$.
4.a) Find the momentum wave function $\tilde{\psi}(p, 0):=\langle p \mid \psi(0)\rangle$.
4.b) Suppose that $\psi(0)$ describes the initial state of a free particle moving on \mathbb{R}. Find the explicit formula for the momentum wave function $\tilde{\psi}(p, t)$ for the evolving state vector $\psi(t)$.

