- 1) Let $\mathcal{I} := [-1,1], \mathcal{C}^0(\mathcal{I}, \mathbb{C})$ be the vector space of continuous functions $f : \mathcal{I} \to \mathbb{R}$ having \mathcal{I} as their domain, $o \in \mathcal{C}^0(\mathcal{I}, \mathbb{C})$ be the zero function, i.e., o(x) := 0 for all $x \in \mathcal{I}$, and $\delta_0 : \mathcal{C}^0(\mathcal{I}, \mathbb{C}) \to \mathbb{C}$ be the everywhere-defined function defined by $\delta_0(f) := f(0)$ for all $f \in \mathcal{C}^0(\mathcal{I}, \mathbb{C})$. Suppose that we give $\mathcal{C}^0(\mathcal{I}, \mathbb{C})$ the inner product $\langle \cdot | \cdot \rangle$ defined by $\langle f | g \rangle := \int_{-1}^1 \overline{f(x)} g(x) dx$, for all $f, g \in \mathcal{C}^0(\mathcal{I}, \mathbb{C})$.
 - a. Show that δ_0 belongs to the algebraic dual of $\mathcal{C}^0(\mathcal{I}, \mathbb{C})$, i.e., it is an everywhere-defined linear operator mapping $\mathcal{C}^0(\mathcal{I}, \mathbb{C})$ to \mathbb{C} .
 - **b.** For each $n \in \mathbb{Z}^+$, let $f_n \in \mathcal{C}^0(\mathcal{I}, \mathbb{C})$ be the function defined by $f_n(x) := e^{-n|x|}$. Show that the sequence $\{f_n\}$ converges to o.
 - **c.** Show that the sequence $\{\delta_0(f_n)\}$ does not converge to $\delta_0(o)$.
 - **d.** Use parts b and c to show that δ_0 is not a bounded operator.
 - e. Use parts a and d to show that the topological dual of $\mathcal{C}^0(\mathcal{I}, \mathbb{C})$ is not equal to its algebraic dual.

2) Let
$$\sigma_0 := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $\sigma_1 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_2 := \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_3 := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

- **a.** Show that every 2×2 complex matrix can be expressed as a linear combination of these matrices with complex coefficients.
- **b.** Show that every 2×2 Hermitian matrix can be expressed as a linear combination of these matrices with real coefficients.
- c. Compute the spectral representation of σ_1 , σ_2 , and σ_3 by giving explicit form of the corresponding complete orthogonal set of projection operators.
- **d.** Denote the projection operators you find for σ_i by $P_-^{(i)}$, $P_+^{(i)}$, respectively, where the sign corresponds to the eigenvalues ± 1 of σ_i . Compute $P_+^{(i)}P_-^{(j)}$, $P_+^{(i)}P_+^{(j)}P_+^{(i)}$ for all i, j = 1, 2, 3.
- **e.** Compute $P_+^{(i)}P_+^{(j)}P_+^{(i)}$, and $P_-^{(i)}P_-^{(j)}P_-^{(i)}$ for all i, j = 1, 2, 3 with $i \neq j$.
- 3) Let $(V, \langle \cdot | \cdot \rangle)$ be a complex inner-product space, $P : V \to V$ is a projection operator, and $P^{\perp} := I P$, where $I : V \to V$ is the identity operator.
 - **a.** Show that P^{\perp} is also a projection operator.
 - **b.** Show that $\phi \in \operatorname{Ran}(P)$ if and only if $P\phi = \phi$.
 - c. Show that P is an orthogonal projection operator if and only if so is P^{\perp} .
 - **d.** Show that if P is an orthogonal projection operator and $\psi \in V$, then $|| P \psi || \le || \psi ||$.

- e. Show that every orthogonal projection operator acting in V is bounded.
- f. Show that every orthogonal projection operator is symmetric.
- 4) Let $\hat{x}, \hat{k}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ be defined by $(\hat{x}\psi)(x) := x\psi(x)$ and $(\hat{k}\psi)(x) := -i\psi'(x)$ where a prime denotes differentiation with respect to x.
 - **a.** Show that both \hat{x} and \hat{k} are symmetric operators.
 - **b.** Show that \hat{k} does not have an eigenvalue (or an eigenvector.)
- 5) Let $\mathcal{P}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ be defined by $(\mathcal{P}\psi)(x) := \psi(-x)$ for all $x \in \mathbb{R}$. Show that \mathcal{P} is a self-adjoint operator.
- 6) Let ℋ be a separable Hilbert space of dimension larger than one, ψ be a nonzero element of ℋ, and P_ψ := |ψ⟩⟨ψ|.
 - **a.** Show that P_{ψ} is bounded operator.
 - **b.** Show that P_{ψ} is a symmetric operator.
 - **c.** Is P_{ψ} self-adjoint? Why?
 - **d.** Find eigenvalues of P_{ψ} .
- 7) Let $a \in \mathbb{R}$ and $T_a : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ be defined by $(T_a \psi)(x) := \psi(x a)$ for all $x \in \mathbb{R}$.
 - **a.** Determine the domain of T_a and show that it is a bounded operator.
 - **b.** Determine the adjoint of T_a and its domain.
- 8) Let $a \in \mathbb{R}^+$ and $S_a : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ be defined by $(S_a \psi)(x) := \psi(ax)$ for all $x \in \mathbb{R}$.
 - **a.** Determine the domain of S_a and show that it is a bounded operator.
 - **b.** Determine the adjoint of S_a and its domain.