1) Let $\mathcal{I}:=[-1,1], \mathcal{C}^{0}(\mathcal{I}, \mathbb{C})$ be the vector space of continuous functions $f: \mathcal{I} \rightarrow \mathbb{R}$ having $\mathcal{I}$ as their domain, $o \in \mathcal{C}^{0}(\mathcal{I}, \mathbb{C})$ be the zero function, i.e., $o(x):=0$ for all $x \in \mathcal{I}$, and $\delta_{0}: \mathcal{C}^{0}(\mathcal{I}, \mathbb{C}) \rightarrow \mathbb{C}$ be the everywhere-defined function defined by $\delta_{0}(f):=f(0)$ for all $f \in \mathcal{C}^{0}(\mathcal{I}, \mathbb{C})$. Suppose that we give $\mathcal{C}^{0}(\mathcal{I}, \mathbb{C})$ the inner product $\langle\cdot \mid \cdot\rangle$ defined by $\langle f \mid g\rangle:=$ $\int_{-1}^{1} \overline{f(x)} g(x) d x$, for all $f, g \in \mathcal{C}^{0}(\mathcal{I}, \mathbb{C})$.
a. Show that $\delta_{0}$ belongs to the algebraic dual of $\mathcal{C}^{0}(\mathcal{I}, \mathbb{C})$, i.e., it is an everywhere-defined linear operator mapping $\mathcal{C}^{0}(\mathcal{I}, \mathbb{C})$ to $\mathbb{C}$.
b. For each $n \in \mathbb{Z}^{+}$, let $f_{n} \in \mathcal{C}^{0}(\mathcal{I}, \mathbb{C})$ be the function defined by $f_{n}(x):=e^{-n|x|}$. Show that the sequence $\left\{f_{n}\right\}$ converges to $o$.
c. Show that the sequence $\left\{\delta_{0}\left(f_{n}\right)\right\}$ does not converge to $\delta_{0}(o)$.
d. Use parts b and c to show that $\delta_{0}$ is not a bounded operator.
e. Use parts a and $d$ to show that the topological dual of $\mathcal{C}^{0}(\mathcal{I}, \mathbb{C})$ is not equal to its algebraic dual.
2) Let $\sigma_{0}:=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \quad \sigma_{1}:=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right), \quad \sigma_{2}:=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \quad \sigma_{3}:=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
a. Show that every $2 \times 2$ complex matrix can be expressed as a linear combination of these matrices with complex coefficients.
b. Show that every $2 \times 2$ Hermitian matrix can be expressed as a linear combination of these matrices with real coefficients.
c. Compute the spectral representation of $\sigma_{1}, \sigma_{2}$, and $\sigma_{3}$ by giving explicit form of the corresponding complete orthogonal set of projection operators.
d. Denote the projection operators you find for $\sigma_{i}$ by $P_{-}^{(i)}, P_{+}^{(i)}$, respectively, where the sign corresponds to the eigenvalues $\pm 1$ of $\sigma_{i}$. Compute $P_{+}^{(i)} P_{-}^{(j)}, P_{+}^{(i)} P_{+}^{(j)} P_{+}^{(i)}$ for all $i, j=1,2,3$.
e. Compute $P_{+}^{(i)} P_{+}^{(j)} P_{+}^{(i)}$, and $P_{-}^{(i)} P_{-}^{(j)} P_{-}^{(i)}$ for all $i, j=1,2,3$ with $i \neq j$.
3) Let $(V,\langle\cdot \mid \cdot\rangle)$ be a complex inner-product space, $P: V \rightarrow V$ is a projection operator, and $P^{\perp}:=I-P$, where $I: V \rightarrow V$ is the identity operator.
a. Show that $P^{\perp}$ is also a projection operator.
b. Show that $\phi \in \operatorname{Ran}(P)$ if and only if $P \phi=\phi$.
c. Show that $P$ is an orthogonal projection operator if and only if so is $P^{\perp}$.
d. Show that if $P$ is an orthogonal projection operator and $\psi \in V$, then $\|P \psi\| \leq\|\psi\|$.
e. Show that every orthogonal projection operator acting in $V$ is bounded.
f. Show that every orthogonal projection operator is symmetric.
4) Let $\hat{x}, \hat{k}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ be defined by $(\hat{x} \psi)(x):=x \psi(x)$ and $(\hat{k} \psi)(x):=-i \psi^{\prime}(x)$ where a prime denotes differentiation with respect to $x$.
a. Show that both $\hat{x}$ and $\hat{k}$ are symmetric operators.
b. Show that $\hat{k}$ does not have an eigenvalue (or an eigenvector.)
5) Let $\mathcal{P}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ be defined by $(\mathcal{P} \psi)(x):=\psi(-x)$ for all $x \in \mathbb{R}$. Show that $\mathcal{P}$ is a self-adjoint operator.
6) Let $\mathscr{H}$ be a separable Hilbert space of dimension larger than one, $\psi$ be a nonzero element of $\mathscr{H}$, and $P_{\psi}:=|\psi\rangle\langle\psi|$.
a. Show that $P_{\psi}$ is bounded operator.
b. Show that $P_{\psi}$ is a symmetric operator.
c. Is $P_{\psi}$ self-adjoint? Why?
d. Find eigenvalues of $P_{\psi}$.
7) Let $a \in \mathbb{R}$ and $T_{a}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ be defined by $\left(T_{a} \psi\right)(x):=\psi(x-a)$ for all $x \in \mathbb{R}$.
a. Determine the domain of $T_{a}$ and show that it is a bounded operator.
b. Determine the adjoint of $T_{a}$ and its domain.
8) Let $a \in \mathbb{R}^{+}$and $S_{a}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ be defined by $\left(S_{a} \psi\right)(x):=\psi(a x)$ for all $x \in \mathbb{R}$.
a. Determine the domain of $S_{a}$ and show that it is a bounded operator.
b. Determine the adjoint of $S_{a}$ and its domain.
