I) Solve Problems: 3.6, 3.7, 3.10, 3.11 on page 139 of the textbook (Auletta, Fortunato \& Parisi, Cambridge University Press, 2009).
II) Let \mathbb{E}^{n} denote \mathbb{C}^{2} endowed with the Euclidean inner product and \hat{H} and \hat{O} be the linear operators acting in \mathbb{E} that are respectively represented by the following matrices in the standard basis of \mathbb{C}^{2}.

$$
\mathbf{H}=E\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \quad \mathbf{O}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]
$$

where $E \in \mathbb{R}^{+}$. Consider the quantum system described by $\left(\mathbb{E}^{2}, \hat{H}\right)$. Suppose that the system starts its evolution at time $t_{0}=0$ in the state $\lambda(0)$ given by the state vector $\psi(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
a) Find the explicit expression for the eigenvectors and eigenvalues of \hat{H}.
b) Compute the matrix representation of the time-evolution operator $\hat{U}(t, 0)$ in the standard basis of \mathbb{C}^{2}, i.e., find the explicit expression for the entries of this matrix.
c) Find the expectation value of \hat{O} as the system evolves in time, i.e., give the formula for $\langle\hat{O}\rangle_{\lambda(t)}$.
d) Find the probability of finding 1 , if we measure \hat{O} at time $t_{1}:=2 \hbar / E$.
e) Suppose that we do actually find 1 after we measure \hat{O} at t_{1} and that at some time $t_{2}>t_{1}$ we measure \hat{H}. Find the smallest value of t_{2} such that the result of the second measurement is 0 with a 100% probability.

