I) Consider a particle of mass m that moves on the real line and interacts with the potential:

$$
v(x):=\left\{\begin{array}{cc}
\lambda \sin ^{2}(x / a) & \text { for } \\
0 & 0<x<\pi a / 4 \\
0 & \text { otherwise }
\end{array}\right.
$$

where a and λ are real and positive parameters.
I.1) Use WKB approximation to obtain a position wave function $\psi(x)$ satisfying the timeindependent Schrödinger equation with energy $E=\lambda$. You must give the explicit form of $\psi(x)$ for all $x \in \mathbb{R}$ up to a normalization constant.
I.2) Find an explicit condition on λ and a under which your solution to part I. 1 is a reliable approximate solution of the time-independent Schrödinger equation.
II) Consider a particle of mass m that moves on the real line and interacts with the potential:

$$
v(x):=\left\{\begin{array}{ccc}
-\lambda & \text { for } & -a<x<0 \\
\lambda & \text { for } & 0 \leq x<a \\
0 & \text { for } & |x| \geq a
\end{array}\right.
$$

where a and λ are real and positive parameters. Suppose that at time $t=0$ the particle is in the state defined by the position wave function: $\psi(x):=e^{-(\alpha+i \beta)|x-b|}$, where α, β and b are real numbers and $\alpha>0$.
II.1) Calculate the probability of finding this particle in the region defined by $|x| \leq a$.
II.2) Calculate the current density of this particle for $x \neq b$.
II.3) Obtain an explicit expression for the entries of the transfer matrix of this potential.
II.4) Find an explicit expression for a function $F: \mathbb{C} \rightarrow \mathbb{C}$ whose real and negative zeros give the energy of the bound states of the system.
II.5) Find a condition on λ and a under which the system has a single bound state and determine its energy.

