I) Solve Problems: 4.8, 4.9, 4.10, 4.18, 4.20, 4.21 on Pages 171-172 of the textbook (Auletta, Fortunato \& Parisi, Cambridge University Press, 2009).
II) Solve the following problems.

1. Consider a free particle of mass m that moves on the real line \mathbb{R}. Suppose that at time $t=0$ the particle is in state described by the position wave function $\psi(x, 0):=e^{-\frac{x^{2}}{2 \sigma^{2}}+i \frac{x}{\alpha}}$ where σ and α are positive real quantities with the dimension of length.
a) Use the formula for the free-particle propagator $K\left(x, t ; x_{0}, t_{0}\right)$ to compute the position wave function $\psi(x, t)$ of the particle at time $t>0$.
b) Find the probability ρ and current density \vec{J} of the localization of this particle in space for $t \geq 0$.
c) Find the uncertainty in the position Δx of this particle for $t \geq 0$.
d) Find the uncertainty in the momentum Δp of this particle for $t \geq 0$.
e) Calculate $\Delta x \Delta p$ for $t \geq 0$.
2. Calculate the uncertainty in the position and momentum of a simple harmonic oscillator of mass m and angular frequency ω that is in a coherent state, i.e., in an eigenstate of the annihilation operator \hat{a}.
