I) Solve Problems: 4.8, 4.9, 4.10, 4.18, 4.20, 4.21 on Pages 171-172 of the textbook (Auletta, Fortunato & Parisi, Cambridge University Press, 2009).

- **II)** Solve the following problems.
 - 1. Consider a free particle of mass m that moves on the real line \mathbb{R} . Suppose that at time t = 0 the particle is in state described by the position wave function $\psi(x, 0) := e^{-\frac{x^2}{2\sigma^2} + i\frac{x}{\alpha}}$ where σ and α are positive real quantities with the dimension of length.

a) Use the formula for the free-particle propagator $K(x, t; x_0, t_0)$ to compute the position wave function $\psi(x, t)$ of the particle at time t > 0.

b) Find the probability ρ and current density \vec{J} of the localization of this particle in space for $t \ge 0$.

- c) Find the uncertainty in the position Δx of this particle for $t \ge 0$.
- d) Find the uncertainty in the momentum Δp of this particle for $t \geq 0$.
- e) Calculate $\Delta x \Delta p$ for $t \ge 0$.
- 2. Calculate the uncertainty in the position and momentum of a simple harmonic oscillator of mass m and angular frequency ω that is in a coherent state, i.e., in an eigenstate of the annihilation operator \hat{a} .