I) Study Section 10.1.2 on pages 362-363 of the textbook (Auletta, Fortunato \& Parisi, Cambridge University Press, 2009).
II) Solve the following problems.

1. Give the details of the derivation of Equation 10.21 on page 361 of the textbook (Auletta, Fortunato \& Parisi, Cambridge University Press, 2009.)
2. Consider a particle of mass m that moves on the real line and interacts with the potential

$$
v(x):=\left\{\begin{array}{ccc}
\zeta e^{-x} & \text { for } & x \in[0, a] \\
\infty & \text { for } & x \notin[0, a]
\end{array}\right.
$$

where a and ζ are real numbers and a is positive. Use perturbation theory to obtain the energy eigenvalues of the particle up to and including second order terms in ζ.
3. Use first-order perturbation theory to find eigenvalues and a set of orthonormal eigenvectors of the following matrices

$$
\mathbf{M}:=\left[\begin{array}{cccc}
1+\zeta & \zeta & 0 & -\zeta \\
\zeta & 2 & 2 \zeta & -\zeta \\
0 & 2 \zeta & 3 & -i \zeta \\
-\zeta & -\zeta & i \zeta & 4
\end{array}\right], \quad \mathbf{N}:=\left[\begin{array}{cccc}
2+\zeta & \zeta & 0 & -\zeta \\
\zeta & 2 & 2 \zeta & -\zeta \\
0 & 2 \zeta & 3 & -i \zeta \\
-\zeta & -\zeta & i \zeta & 4
\end{array}\right]
$$

4. Consider the system described in Problem 2. Suppose that at time $t=0$ it is in the state defined by the position wave function:

$$
\psi_{0}(x):=\left\{\begin{array}{cll}
\sin (\pi x / a) & \text { for } & x \in[0, a] \\
0 & \text { for } & x \notin[0, a]
\end{array}\right.
$$

Use first-order time-dependent perturbation theory to compute the probability of finding this system in its initial state at time $t>0$.

Note: You may put your homework papers in my mailbox in the photocopy room in the second floor of the Science Building.

