10 Introduction

In quantum mechanics, by definition, the spin of the above particles

(though, strictly speaking, for reasons to become clear when a systematic
theoretical study of the spin is undertaken, the total spin is [s(s -+ 1)]'/2).
Thus, s can assume only integer and half-integer values 4, 1, 3, 2,...;
in Fig. 3 we have depicted the case of spin 3.

The experimental arrangement of Stern and Gerlach can be used as
an apparatus for a determinative measurement of the spin component
in the direction H. In that case the source of particles would originate in
the interaction region, where particles of known spin are interacting.
If a particle of integer spin* s leaves a mark at O, then, by definition, it has
spin zero in the H direction; the first, second,..., (n — 1)/2 mark above O
correspond to spin components in the H direction equal to 1, 2,...,

(n — 1)/2, respectively, while the first, second,..., (# — 1)/2 marks below

O correspond to spin components —1, —2,..., —(rn — 1)/2, respectively.
In case of a particle of half-integer spin, there will be no middle mark;
the first, second,..., (# — 1)/2 marks above or below O correspond to spin
components %, 3,..., (n — 1)/2, or —%, —3,..., —(n — 1)/2, respectively.

Hence we see that according to the very definition of the spin projection
onto a certain axis, that projection can assume only integer values in case
of integer-spin particles, and only half-integer values in case of half-
integer-spin particles.

The above experimental arrangement can be easily transformed into
an apparatus for preparatory measurements of spin by replacing the
photoplate with a screen which has apertures at the spots where a beam
of particles from the given source had left tracks. It has to be mentioned
that no simultaneous measurements of spin in two different directions can
be carried out on microparticles—a feature which is in complete agree-
ment with certain properties (noncommutativity of spin-component
operators) of the formalism of quantum mechanics.

Here we end this short survey of some of the experimental procedures
for measuring some of the basic observables which occur in quantum
mechanics, and which will frequently appear in the pages of this book.

25 + 1 tracks on the photoplate.

CHAPTER |

Basic Ideas of Hilbert Space Theory

The central object of study in this chapter is the infinite-dimensional
I—{ilbert space. The main goal is to give a rigorous analysis of the problem
of expanding a vector in a Hilbert space in terms of an orthogonal basis
containing a countable infinity of vectors.

We first review in §1 a few key theorems on vector spaces in general,
anq in §2 we investigate the basic properties of vector spaces on

inner-product space, we introduce in §3 the concept of metric. In §4 we
give the basic concepts and theorems on separable Hilbert spaces, con-
centrating especially on properties of orthonormal bases. We conclude the
chapter by illustrating some of the physical applications of these mathe-
matical results with the initial-value problem in wave mechanics.

1. Vector Spaces

1.1. VEcTOR SPACES OVER FIELDS OF SCALARS

A mathematical space is in general a set endowed with some given
structure. Such a structure can be given, for instance, by means of certain

oDerati 1 e alam ambe o :
operations which are defined on the elements of that set. These operations

are then required to obey certain general rules, which are called the
postulates or the axioms of the mathematical space.

Definition 1.1. Any set ¥~ on which the operations of vecto
addition and multiplication by a scalar are defined is said to be a vector
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space (or linear space, or linear manifold). The operation of vector addition
is a mapping,*

(f.o)—f+e (FoeV x¥, [ftge?,
of ¥ X ¥ into ¥, while the operation of multiplication by a scalar a
from a field' & is a mapping
(a.f)—~>dof, (af)eF x¥, e,

of F x ¥ into ¥". These two vector operations are required to satisfy
the following axioms for any f, g, k€ ¥~ and any scalars @, b€ ¥:

M f+eg=g+71f (commutativity of vector addition).

2 (f+e+h=f+(2 + k) (associativity of vector addition).

(3) There is a vector 0, called the zero vector, which satisfies the
relation f + 0 = fforallfe 7"

@) alf +g) =& +az

(5) (a+ b)f = af + b

(6) (ab)f = a(bf).

(7) 1f = f, where 1 denotes the unit element in the field.

mathematical space
constructed from a set S by the same letter S, except where ambiguities
might arise. Thus, we shall denote by ¥ the vector space consisting of a

set ¥ together with the vector operations on ¥” also by ¥".
When in a vector space the multiplication by a scalar is defined for

scalars which are elements of the field #, we say that we are dealing with
a vector space over the field F . 1f the field Z is the field of real or complex
numbers the vector space is called, respectively, a real or a complex vector

space.

# We remind the reader that 2 ma
rule assigning to each element ¢ of S a single element M(§) of T35 M(§) is called the image
of ¢ under the mapping M. The set S is the domain of definition of M, while the subset
T, C T of all image points Mg, Ty = {n = M(), £ e S}, is the range of M. If T, = T,
then we say that M is a mapping of the set S onto the set T

If Sy ,..., S, are sets, then Sy X - X S, denotes the family (£, ,..., £a) of all n-tuples
of elements & € Sy ..., £n € Sn, and is called the Cartesian product of the sets Sy ,..., S, .

+ A field is a set on which field operations of summation and multiplication are defined,
i.e., operations satisfying certain axioms. We do not give these axioms because in the
sequel we are interested only in two special well-known fields: the field of real numbers R?
and the field of complex numbers C* consisting, respectively, of the set of real numbers R?
and the set of complex nu i i i
and multiplication of numbers (se¢ Birkhoff and MacLane [1953]).

ng M of a set S into a set T is any unambiguous

nni
pping M

summation
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As an example (see also Exercises 1.1, 1.2
‘ ' ‘ .1, 1.2, and 1.3) of a real vector
space consider the family (R") of one-column real matrices and define for

% b,
@ = S ’ ,8 - .

an b,

vector summation by the mapping

b
(1.1) (B)—>a+p= a1:+ '

E

a, + b,
i 1 ™1 1~ ... 'K - ~
and for any scalar g € R* define multiplication of « by @ as the mapping

(1.2) (a, ) > ax = “

aa,

It is easy to check that Axioms 1-7 in Definition 1.1 are satisfied
Apalqgously we can define the complex vector space (C™®) b}.f intro-

ducing in the.set C” of one-column matrices vector operations defined

by the mapping (1.1) and (1.2), where now « 8 € C®, and therefore

Ay yeuey Gy, by ..y by, , as well as the scalar g, are complex numbers

1.2. LINEAR INDEPENDENCE OF VECTORS

Theo}:'ell'n 1.1. Each vector space ¥~ has only one zero vector 0
and eac ! y
For any feeeynfl?nt f of a vector space has one and only one inverse (—f).

Proof. 1If there are two zero v
/ ‘ ectors 0, and O, , th
watisfy Axiom 3 in Definition 1.1, ' b they borh have to

f=f+0=f+0,

m.-'all f. Hence, by taking f = 0; we get 0, = 0, + 0,, and then b
taking f = 0, we deduce that 0, =0, +0, =0, +- 0, = 0, Nmzr,

T >2

f=1=0+0f =1f+0f =f+0f

and therefore Of = 0. We have

(= +f=Cf 1 If=(=1+1f =0f=0,
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which proves the existence of an inverse (—f) = (—1)f for f. This
inverse (—f) is unique, because if there is another f; € 7" such that

f+ fi = 0, we have

(N=N+0=(N+F+tHA =" +f1+h
—0-+f =f,. QED.

Definition 1.2. The vectors f ,..., f, are said to be lnearly inde-
pendent if the relation

Cy 55 € S‘B’

C]fl e C'nf'n =0,

hasc; = ++ = ¢, = 0 as the only solution. A subset S (finite or infinite)
of a vector space ¥ is called a set of linearly independent vectors if any
finite number of different vectors from S are linearly independent. The
dimension of a vector space ¥~ is the least upper bound (which can be
finite or positive infinite) of the set of all integers v for which there are v

aarly indanandent vactars in
Ciul i1

i anel o
llllCdlly llluClJUll\.u.,Lu. Yo o L 7.

1.3. DIMENSION OF A VECTOR SPACE

When the maximal number of linearly independent vectors in the

vector space ¥ is finite and equal to n, then by the above definition ¥
is n dimensional; otherwise the dimension of #” is - 00, and ¥ is said to
be infinite dimensional.

Theorem 1.2. If the vector space ¥ is n dimensional (n << - 00),
then there is at least one set f; ,..., f, of linearly independent vectors, and

M ’
each vector f € " can be expanded in the form

vavii youlu

(1'3) f = alfl + + anfn )

Proof. If f = 0, (1.3) is established by taking a; = --* = a, = 0.

For f # 0, the equation
(1.4) of +eafi+ o +enfa=0

should have a solution with ¢ == 0 due to the assumption that f; ,..., f,
are linearly independent, while f, fi ,..., f, have to be linearly dependent
because ¥~ is # dimensional. From (1.4) we get

f=(=c/Of s+ =+ (—€a[)f )
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which establishes (1.3). If we also had
(13) f: blfl + et bﬂfn ’
then by subtracting (1.5) from (1.3) we get

(@, —b)fi + - +(@—0b)f,=0.

As f, ,..., f, are linearly independent we deduce that ¢; — b, = 0,...,
a, — b, = 0, thus proving that a,,..., a, are uniquely determined
when fis given. Q.E.D.

Definition 1.3. We say that the (finite or infinite) set S spans the
vector space ¥ if every vector in ¥~ can be written as a linear combination

f=ah + -+ ah,, hi,.,h€S

of a finite number of vectors belonging to S; if S is in addition a set of
linearly independent vectors, then S is called a vector basts of ¥".

Theorem 1.3. If theset{g,,..., g,} is a vector basis of the n-dimen-
sional (n < 4 o0) vector space ¥, then necessarily m = n.

Proof. As ¥ is n-dimensional, there must be # linearly independent

isa tor basis in ¥~, we can write

f] = a3+ "+ il
(1.6) :
fn = A1n81 4= +am'ngm'

I'hus, if we try to satisfy the equation

(|7) fo1+"'+xnfn=0,
we get by substituting f; ..., f,, in (1.7) with the expressions in (1.6)
(IH) (anxl + alnxn)nl -+ (dmlxl R amnxn)gm =0.

Sinee gy ,..., g, are assumed to be linearly independent, the above equation
hias a solution in x4 ,..., %, if and only if

o ses = —
¥ T F ayax, =0

(1.9) :
A%y + e + AmnXn = 0.

However, as f; ..., f,, are also linearly independent, (1.7) or equivalently
or (I.9)shou ave as the onlty solut Vi ==
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o

x, = 0. Now, m < n because ¥~ is n dimensional and g;,..., g, are
linearly independent (see Definition 1.2); therefore, (1.9) has only a

trivial solution if and only if m = n. Q.E.D.

s~
I3
3

Definition 1.4. A subset ¥} of a vector space ¥ is a vector subspace
(linear subspace) of ¥~ if it is closed under the vector operations, i.e., if
f+ ge7;and af € ¥; whenever f, g€ ¥, and for any scalar a. A vector
subspace ¥; of ¥ is said to be nontrivial if it is different from ¥~ and
from the set {0}.

From the very definition of the dimension of a vector space 4" we can
conclude that the dimension of a vector subspace 77 of #” cannot exceed
the dimension of ¥".

1.4. IsOMORPHISM OF VECTOR SPACES

Definition 1.5. Two vector spaces ¥ and ¥, over the same field
are isomorphic if there is a one-to-one mapping ¥, onto ¥, which hag the
properties that if f, and g,, f2,82 €Y, are the images qf f, and g,
fi,81€ 77, respectively, then for any scalar a, af, is the image of af;

afy < af, ,
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is a mapping of ¥ into (C*). Furthermore, this is a one-to-one mapping
of ¥~ onto (C") because to any

bl
=\|:]eC
by,
corresponds a unique f = byf; + +*+ + b,f, such that 8 = o, . Itis also

s
casy to see that
freg—omne =0+,
af > g, = aoy .

Since isomorphism of vector spaces is a transitive relation (see Exercise

1.6) we can conclude that all n-dimensional complex vector spaces are
mutually isomorphic, because each of them is isomorphic to (C*). Q.E.D.

| XERCISES

1.1. Check that the set of all m X n complex matrices constitutes an
m - n dimensional complex vector space if vector addition is defined as
being addition of matrices, and multiplication by a scalar is multiplication
of a matrix by a complex number.

1.2. Show that the set C! of all complex numbers becomes a two-

and f, + g, is the image of f; + £,
fLt+aefatg-

The importance of the isomorphism of two vector spaces ¥; and ¥,
lies in the obvious fact that two such spaces have an identical vector
structure. It is easy to see that the relation of isomorphism is transitive
(see Exercise 1.6), i.e., if ¥; and ¥, as well as ¥, and 75 are isomorphic,

then ¥#; and ¥/ are also isomorphic.

Theorem 1.4. All complex (real) n-dimensional (n < +-00) vector
spaces are isomorphic to the vector space (C™) [(R™) in case of real vector
spaces].

Proof. Consider the case of an n-dimensional vector space ¥ .
According to Theorem 1.2 there is a vector basis consisting of n Vector\s
f1ses fn » and each vector fe ¥ can be expanded in the form (1.3),
where a ,..., a, € C* are uniquely determined by f. Consequently

o= [ e

dimensional real vector space if vector addition is identical to addition of
complex numbers, and multiplication by a scalar is multiplication of a
complex number (the vector) by a real number (the scalar).

1.3. Show that the family ¥°(R?) of all complex-valued continuous
tunctions defined on the real line is an infinite-dimensional vector space
it the vector sum f + g of f(x), g{x) € FYR?Y) is the function (f + g)(x) =
/(x) | g(x), and the product af of f(x)e €R') with aeC! is the
tunction (af (x) = af (x). The zero vector is taken to be the function

f(xv) =0.

1A Do 2l £ oo foiles 3
{.4. Prove that if 2 is a family of linear subspaces L of a vector

u
wpace ¥, then their set intersection (), L is also a vector subspace of #".

1.5. Show that if S is any subset of a vector space #~, then there is
+ unique smallest vector subspace 7 containing S (called the vector

wubspace spanned by S).

1.6. Verify that the relation of isomorphism of vector spaces ist

(a) reflexive, i.e., every vector space ¥ is isomorphic to itself;
(b) symmetric, i.e., if ¥ is isomorphic to #3, then ¥}, is isomorphic

a?l

to ¥
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(c) transitive, ie., if ¥7is isomorphic to ¥, and ¥ is isomorphic
to ¥, then ¥ is isomorphic to ¥ .

1.7. Prove that the following subsets of the set ¥°(R?) (see Exercise
1.3) are vector subspaces of the vector space FURY):

(a) the set £, of all polynomials with complex coefficients;
(b) the set #, of all polynomials of at most degree n.

Show that #Z, D £, .

2. Euclidean Spaces

2.1. INNER PrODUCTS ON VECTOR SPACES

A Euclidean (or inner product or unitary) space & 1s a vector space on
which an inner product is defined. The Euclidean space is called real or
complex if the vector space on which the inner product is defined is,
respectively, real or complex.

Definition 2.1. An inner (or scalar) product - | +) on the complex
vector space ¥ is a mapping of the set ¥ X +” into the set C! of complex
numbers

2. Euclidean Spaces 19

whenever we talk about a Euclidean space, we shall mean a complex
Euclidean space.

Theorem 2.1. In a Euclidean space &, the inner product {f|g)
satisfies the relations

(a) <aflg) = a*{f|&
(b) <ftglhy=<flh+<glh
The proof is obtained by a straightforward application of Points 1-4
in Definition 2.1:
(af |gy =gl af y* =[ag | [O1* = aXg |/>* = a*{f | &,
FHeglhy =<kl f+0*=Kh|f> +<RIpI* =<k fO* 4 <k 0%
=<{fik+<glh.

As an example of a finite-dimensional Euclidean space, we can take
the vector space (C®) defined in the preceding section, in which we
introduce as the inner product of the vectors « and B with the kth
components a; and by , '

{a | B> = a*by + ag*by + - + ap*by, .

[t is easy to check that the above mapping of C* x C" into C! satisfies

fe) =< le,  (FLaer x¥, (floel,

which satisfies the following requirements:

(1) <flfy >0, forall f+0,
(2) Sl =<Lglf*

() (flag) =alflgy, aeCl
@) flg+hm=<fle+LfIm.

Note that by inserting f = g = h = 0 in Point 4 we get 00> =0.

Following a notation first introduced by Dirac [1930] and widely
adopted by physicists, we denote the inner product of fand g by {f| &>
Mathematicians often prefer the notation (f, g) and replace Point 3 in
Definition 2.1 by

(af, g) = a(f, 8)-

The above definition can be easily specialized to real vector spaces,
in which case the inner product {f|g) is a real number, and Point 2 of
Definition 2.1 becomes (f|g> = <{g|f>. As in quantum physics we

deal almeost exelusively V('ﬁfh anp] ex FEuclidean spaces, we hmit ourselves

the four requirements of Definition 2.1. We shall denote the above
Iuclidean space with the symbol /*(n).

An example of an infinite-dimensional Euclidean space is provided by
the vector space [€%(RY)] of all continuous complex-valued functions
/ (x) on the real line which satisfy

(2.1) [ ree as < o,

—

in which the inner product (see Exercise 2.1) is
- [ aipn on
(2.2) Tlgp =] 77x)gx)ax.

Theorem 2.2. Any two elements f, g of a Euclidean space & satisfy
the Schwarz—Cauchy inequality

KA TP < <f1H<g e

Proof. For any given f, g € & and any complex number a we have,
trom property 1 in Definition 2.1 and the comment following it,

from now on to the complex case. Consequently, if not otherwise stated,

f taglf | ag>)=0.
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In particular, if we take in the above inequality

KWl _
a=Airigr AT

we easily show that the inequality

g = X<glg> + 2 Kf1 ol +<f1f> =0

is true for all real values of \. A necessary and sufficient condition thz'xt
£(\) = 0 is that the discriminant of the quadratic polynomial g(2) is
not positive

KE1eR —<f1f<gley <0,

from which the Schwarz-Cauchy inequality follows immediately. Q.E.D.

2.2. Tue Concepr oF NORM

The family of all Euclidean spaces is obviously contained in the family
of vector spaces. There is another family of vector spaces with special
properties which is of great importance in mathematics: the family of
normed spaces.
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Theorem 2.3. In a Euclidean space & with the inner product

{f| g the real-valued function

2.3) IfIl = VI

18 2 norm.

~—~

Proof. The only one of the four properties of 2 norm which is not
satisfied by (2.3) in an evident way is the triangle inequality. We easily get

If+eglP=< +elft+te=<f+H+F1e>+<glf>+<gi
(2.4) = <flf> +2Re(f1 8> + gl &

From the Schwarz—Cauchy inequality we have

I Re(f [0l < KF 1ol < flilg s
which when inserted in (2.4) yields

'T'he above relation leads immediately to the triangle inequality. Q.E.D.

2.3. ORTHOGONAL VECTORS AND ORTHONORMAL BasEs

Definition 2.2, A mapping
f—lifl,  fe7,

of a complex vector space ¥~ into the set of real numbers is called a norm
if it satisfies the following conditions:

(1 >0
(2) 110}l =0,
(3) lafll = lallfll forall aeCi

@) |If +gll <ifl+lgll  (the triangle inequality)

We denote the above norm by || - ||.

For a real vector space, we require in Point 3 that a € R

The last requirement in Definition 2.2 is known as the triangle inequal-
ity because it represents in a two- or three-dimensional real vector
space a relation satisfied by the sides of a triangle formed by three vectors
fgandf g | .

A real (complex) vector space on which a particular norm 1s given 1s
called a real (complex) normed vector space. A Euclidean space 1s a
i ;- thi een from the followin

Iflle R,

for f#0,

theorem.

Some elementary geometrical concepts valid for real two- or three-
dimensional Euclidean spaces can be generalized in a straightforward
manner to any Euclidean space.

Definition 2.3, In a Euclidean space & two vectors f and g are
called orthogonal, symbolically f | g, if {f|g)> = 0. T'wo subsets R
and S of & are said to be orthogonal (symbolically, R | S) if each vector
in R is orthogonal to each vector in S. A set of vectors in which any two
veetors are orthogonal is called an orthogonal system of vectors. A vector f
is said to be normalized if || f|| = 1. An orthogonal system of vectors is
called an orthonormal system if each vector in the system is normalized.

Theorem 2.4. If S is a finite or countably infinite set of vectors in
a Buclidean space & and (S) is the vector subspace of & spanned by S,
then there is an orthonormal system 7 of vectors which spans (S), i.e.,
for which (T) = (S); T is a finite set when S is a finite set.

Proof. As the set S is at most countable we can write it in the form
S ={f1,far}

Iy assigning each vector in S to a natural number. In general some of

the vectors in S might be linearly dependent. We can build from S
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another set S, of linearly independent vectors rs;:fmn.ing the same
subspace (S), i.e., such that (So) = (5), by the Iollowiig procedure
(which should be applied consecutively onn = 1, 2,.:.): if fn is the zero
vector or is linearly dependent on f; y..; fu—1, then discard it; otherwise

include it in S, . Thus we get a set S, of linearly independent vectors
(So) = (S5)-

We can obtain from S, an orthonormal set T such that. (T) = (Sy)
by the so-called Schmidt (or Gram-—Schmidt) orthonormalization procedure.
Since g; # 0, we can introduce the vector

So = {gl s 82 5"'},

21

e = 21—,
! gl

which is normalized. Proceeding by induction, assume that we hav.e
obtained the orthonormal system of vectors ey ,..., €, - Then e, 1s
given by
& eny|8n)na1— """ — {ey | gn) & )
e = gy — Cens 180> eas — 7 — <l g al

The above vector is certainly well defined, since the denominator of the
above expression is different from zero; ; ;
would have

&n — {eny|8n>€na— """ — <ellgn> € = 0,

i.e., g, would depend on e, ,...; €y - However, by solving the equations
fore, ,..., €, 1 , it is €asy to se€e that we have

&1 = 18
Ln1 = fn-1161 +ep .08+ ot Can16n-1s

\d therefore if g, depended on €; ,...; €p 1> then i‘t would also eren_d
OD g yeery 81 » CONtrary to the fact that S, consists only of linearly
independent vectors. .

The vectors of T are obviously normalized. In order to prove that T
is an orthonormal system, assume that we have proved that {e; | e;) = 84

< £

fori,j = 1,...,» — 1. Then we have for m < %

1 _—n—l ) Sm =0’
enlen = e Ty T (m 18w — L e le o)

ich proves
is orthonormal.
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As we have for any n that ¢ ,..., ¢, can be expressed in terms of
&1 -+ 8n» and vice versa, we can conclude that (T) = (S,;). Q.E.D.

2.4. IsoMORPHISM OF EUCLIDEAN SPACES

We introduce now a concept of isomorphism of Euclidean spaces,
which makes two isomorphic Euclidean spaces identical from the
point of view of their vector structure as well as from the point of view of
the structure induced by the inner product.

Definition 2.4. Two Euclidean spaces &, and &, with inner products
(1>, and (- | +D,, respectively, are isomorphic (or unitarily equivalent)
if there is a mapping of &, onto &,

fHi—fas fredy, fa€ &y

such that if for any f; , g, € &, the vector f, € &, is the image of f; and the
vector g, € &, is the image of g, , then

* hita—rf+te,
afl — af2 N ac Cl,

{filgor =<f2 1822 -

A mapping having the above properties is called a unitary transformation
of & onto &, .

Theorem 2.5. All complex Euclidean n-dimensional spaces are

somorphic to [%(n), and consequently (see Exercise 2.8) mutually
isomorphic.

Proof. 1f & is an n-dimensional Euclidean space, there is according
to ‘Theorem 1.2 a set of n vectors fi ,..., f, spanning &. According to
T'heorem 2.4, we can find an orthonormal system of n vectors ¢ ,..., €,
which also spans &. It is easy to check (see Exercise 2.7) that the mapping

a4

(JS) fH : » 4 = <€1 If>a""an = <en |f>a

provides an isomorphiém between & and /*(n). Q.E.D.
Obviously, a similar theorem can be proved for real Euclidean spaces.

Theorem 2.6. A unitary transformation

(o) h— 7 hEes, f. €65,
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of the Euclidean space &; onto the Euclidean space &, has a unique

inverse mapping which is a unitary transformation of &, onto &;.

Proof. We note that since
Ifi—glh =lfe —&lk>

the images f, and g, of f; and g, respectively, are distinct whenever
f, # g - Since the unitary map of &, is onto &,, we conclude that the

inverse of the mapping (2.6) exists. -
We leave to the reader the details of the remainder of the proof.

EXERCISES
2.1. Show that for a finite interval I

(1o = [ Fr0)8) s

is an inner product on the vector space (7).

5. Show that the vector space €%,(R") introduced in Section 2 is
a subspace of the vector space €°(R?).
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3. Metric Spaces

3.1. CONVERGENCE IN METRIC SPACES

In an n-dimensional Euclidean space & we can always find, due to
Theorems 1.2 and 2.4, a basis of # vectors e, ,..., ¢, which constitute an

*?
orthonormal system. We can then expand any vector f of £ in that basis

3.1) f= i ey, -

k=1

We easily see that a;,, = (¢, | f).

In an infinite-dimen

AX1l @il 2132213300 ™Raizid

ional Euclidean gna

ional Euclidean space not every

) vector ¢
expanded in general in terms of a finite number of vectors. We can hope,
however, to replace (3.1) with the formula

© .

f= 7 arly »

ol
=

but then we meet with the problem of giving a precise meaning to the
convergence of the above series. This problem is solved in its most
general form in topology, but for our purposes it will be sufficient to

2.3, Prove that (2.2) is an inner product in €, (R).
2.4, Show that
Kf 12 =<f1fXelg
If+egl =1 l+lgl
if and only if either f is a multiple of g, 1.e.,if f —ag, a€ Chorg =0,
and if in addition @ > 0 in case of the second relation.

2.5. Show that if T is an orthonormal system of vectors, then all the
vectors in T are necessarily linearly independent.

2.6. Prove that a subspace of a Euclidean space is also a Euclidean

space.

2.7. Show that the mapping (2.5) is a mapping of .6”" onto if(n), and
that it satisfies the requirements of isomorphism given in Definition 2.4.

2.8. Show that the relation of isomorphism of inner-product spaces
i ion. i.e., it is (see Exercise 1.6) reflexive, symmetric,

and transitive.

solve it within the context of metric spaces.

Definition 3.1. If S is a given set, a function d(§,7) on S X S
is a metric (or distance function) if it fulfills the following requirements
for any ¢,7, (€ S:

(1) dm) >0
(2) d 6 =0,
(3) d(& ) = d(n, &),

(4) d(§ 8 < d(ém) +d, §)
A set S on which a metric is defined is called a metric space.

A metric space does not have to be a linear space. For instance, a
bounded open domain in the plane becomes a metric space if the metric
15 taken to be the distance between each pair of points belonging to that
domain; such a domain obviously is not closed under the operations of
adding vectors in the plane, but it provides a metric space.

(Generalizing from the case of one-, two-, or three-dimensional real
Fuclidean spaces, we introduce the following notions.

if &#m,

(triangle inequality).

ition 3.2. An infinite sequence . in a metric space 4
i said to converge to the point & € .# if for any € > O there is a positive
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number N(¢) such that d(¢, {,) < eforalln > N(e). An infinite sequence
&, & .. is called a Cauchy sequence (or a fundamenial sequence) if for any
¢ > O there is a positive number M(e) such that d(&,, , £,) < € for all
m,n > M(e).

Theorem 3.1. If a sequence ¢, & ,... in a metric space M con-
verges to some ¢ € .4, then its limit ¢ is unique, and the sequence 1s
a Cauchy sequence.

Proof. If &, &, ,... converges to £ € M and to v € 4, then by defini-
tion, for any € > O there are N,(¢) and Ny(e) such that d(¢, £,) < € for
n > Ny(e) and d(y, &) < e for n > Nye). Consequently, for
n > max(N(€), Na(e)) we get by applying the triangle inequality of
Definition 3.1, Point 4,

d(€,m) < d(§, €,) +d(é,,m) <2e

As € > O can be chosen arbitrarily small, we get d
according to Definition 3.1, can be true only if £ = 7.
Similarly we get

d(Ep, &n) < d(€p, &) + (6, 6n) < e

if m,n > N,(¢/2); i.e., the sequence &, £, ,...isalsoa Cauchy sequenclzg.
Q.E.D.

32. CoOMPLETE METRIC SPACES

In case of sequences of real numbers, every Cauchy sequence 1s

R - PR < 4 . 1 . L da A

convergent, i.e., the set R' of all real numbers 1s complete. We state
this generally in Definition 3.3.

Definition 3.3. A metric space # is complete if every Cauchy
sequence converges to an element of /.

Not every metric space is complete, as exemplified by the set Z of all
rational numbers with the metric d(m,/n, , myny) = | myn; — myng |,
which is incomplete. However, we know that the set % is everywhere
dense in the set R!; we state this generally as follows:

Definition 3.4. AsubsetS of a metric space /# is (everywhere) dense

in 4 if for any given ¢ > 0 and any £ € ./ there is an element 7 belong-

ing to S for which d(§, n) < e. ‘
We can reexpress the above definition after introducing a

.... d from the case of sets 1n one, tw

few topo-
O Nrec

real dimensions,

r 5
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Definition 3.5. If ¢ is an element of a metric space .#, then the set
of all points 7 satisfying the inequality d(¢, ) < € for some ¢ < 0 is
called the € neighborhood of ¢. If S is a subset of #, a point { € .4 is
called an accumulation (or cluster or limit) point of S if every e neigh-
borhood of { contains a point of S. The set .S consisting of all the cluster
points of S is called the closure of S. Obviously always S C S;if § = §
then S is called a closed set.

We see that the subset S of a metric space ./ is everywhere dense in %
if and only if .# is its closure, i.e., if and only if S = 4.

The procedure of completing the set Z# of rational numbers by embed-
ding it in the set of all real numbers can be generalized.

Definition 3.6. A metric space .# is said to be densely embedded
in the metric space . if there is an isometric mapping of .# into .#,
and if the image set 4’ of # in .4 is everywhere dense in /4.

A one-to-one mapping ¢ <> £ of a metric space ./ into another metric
space .4 is called zsometric if it preserves distances, i.e., if di(¢, 1) =
dy(€, 7j) for ¢, m e M and §E, 7j € 4 whenever ¢ — £ and 5 © 4.

3.3. COMPLETION OF A METRIC SPACE

very incomplete metric space .# can be embedded
in a complete metric space .#, called the completion of A .

The proof of this theorem can be given by generalizing Cantor’s
construction, by which one builds the set of real numbers from the
rational numbers.

Denote by .Z, the family of all Cauchy sequences in . If £ =
(&, &y and £ = {£/7, &,7,...} are two such sequences, we say that
they are equivalent if and only if

3.2) lim d(¢,, £,") = 0.

It is easy to see that we have thus introduced an equivalence relation
in ., (see Exercise 3.1) if we recall (see Exercises 1.6 and 2.8) the general
dcfinition of an equivalence relation. ‘

Definition 3.7 A.rplaﬁnn‘ £ ~ 7y holdin

Definition 3.7, Avelation { ~ 7 h g b

e
clements of a set S is called an equivalence relation if

(1) reflexive: ¢ ~ ¢forall £eS;
(2) symmetric: ¢ ~ 7 implies that » ~ §;

(3) transitive: € ~ mand p ~ { implies that £ ~ (.



28 1. Basic Ideas of Hilbert Space Theory

A subset X of S having the property that all the elements of X are
equivalent and that if 5 ~ ¢ and ¢ € X then n € X is called an equivalence
class (with respect to the equivalence relation ~).

We denote the family of all equivalence classes in M  [with respect to
the equivalence relation given by (3.2)] by the symbol A, and agree to
denote the equivalence class containing the Cauchy sequence £ also by £.
Consequently if &, & €., then & = £ if and only if the Cauchy
sequences ¢', £" € M , are equivalent, i.e., satisfy (3.2).

We introduce the real function dy(§, 7) on #, X .#, by defining
for € = {¢,, & ,..}and 4 = {9y, 7z »-o.}

(3.3) dy(, 7) = lim d(é, , 7n)-

In order to see that the above limit exists for any £, 7 € .#, we employ
the relation (see Exercise 3.2)
(34) | (s ) — dE
to show that d(¢, , m1), d(&;, m2),-.. is @ Cauchy sequence of numbers,

and therefore has a limit; namely as ¢, , & ,... and y, 75 ,... are Cauchy
sequences, we can make d(¢,, , £,) < eifm,n > Ni(€), and d(yy M) <€
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Consider now the elements 7, = {ny , 7% ,--.} and & = (&P, &€0,...}

of #,. We obviously have

d (€W, 7,) = d(E®, 7,) < 1/k.

If we let in the above relation m — o, then we find that d (€%, 4,) —
d (€™, 5,) since lim d (&%, £8) = 0 as m — oo (see Exercises 3.5 and 3.6)
and consequently

(€, 7jz) < 1/k.
We can now deduce that 5 = {3, , 73 »...; is a Cauchy sequence in .#
by writing

(3'5) d("]m s M) = ds(ﬁm s ﬁn)
< dyfGim , E™) + dy(E™, Em) 4 d(E™, )
<y a4
Since &1, £ ... is a Cauchy sequence in.#, we can make d (£, &™),

and consequently the entire right-hand side of (3.5) arbitrarily small for
all sufficiently large 7 and n. Thus, 7 € 4 .

if m, n > Ny(e), which, used in conjunction with (3.4), proves the state=
ment.

We can show that d,(€, 7) also defines a real function on # X A by
establishing that dy(&,7) = d(&,4") if & = § and ¢ = 4" for
g &, #, i eM. We first obtain that d(§', 7') = dy(&,7) from the
inequality (see Exercise 3.3)

| d(gn/a 7]71/) - d(gn”, nn/)l < d(gn/, gn”)

because d(¢,’, £€,") — 0 as n— oo due to the fact that the Cauchy
sequences £ and & belong to the same equivalence class. Similarly we

can show that dy(&", 7) = dy(€", 7"), and thus prove that d(&, %) =
a7 ~

It is easy to check that the function dy(¢, 7j) defines a metric on 4
(see Exercise 3.4). We show now that the ensuing metric space, which
we denote also by .#, is complete.

Assume that &0, &2 . is a Cauchy sequence in .#, where P
the equivalence class containing the Cauchy sequence (&P, &,...} of
elements of .#. Choose for each integer k an element 7, = &9 € M
such that d(£%), v,) = d(&¥), £P) -~ 1]k for all m greater than some N;

We can establish that the equivalence class 7 €.# containing the ——

Cauchy sequence 4 = {n; , 15 »...} is the limit of £, £®),... if we write

(36) d(di, £9) < (i), 7w) + die > €)-

The right-hand side of (3.6) can be made arbitrarily small for sufficiently
large k because dy(7j;, , &%) < 1/k and lim,_,., d(7, 7,) = O (see Exercise
3.6). ‘

In order to finish the proof of the theorem, we have to embed ./ into
the complete metric space .#. To that purpose we map £ € 4 into the
cquivalence class € containing the sequence {¢, §,...}. This mapping is
obviously one-to-one and isometric, as d(¢, ) = dy(&, 7). Furthermore,
the image ' of M in A is everywhere dense in .#; namely if 7 € .4
contains {7, , 7g »...} € 4, then for arbitrary ¢ > 0 we can choose an
7, in ' containing {; , 7y ,...} and such that d(7, 7;) < .

[CXERCISES

3.1. Show that the relation £ ~ 7 between any two Cauchy sequences
i {&, & ,-} and 4 = {ny, 1y ,...} of a metric space .#, defined to
mean that lim, . d(£, , n,) = 0, satisfies the three requirements given

this is certainly possible because ¢¥, £9,... is a Cauchy sequence in. .

in Definition 3.7 for an equivalence relation.,
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3.2. Prove that any four elements &, , &, 71 , 7e of a metric space M
satisfy the relation

| d(fl » €2) — d(ny 72)| < d(¢,, M) + d(¢,, 2)-

3.3, Prove that if ¢, %, { are elements of a metric space #, then

| d(¢,m) — d(§, DI < dn, D)-
3.4. Show that the function d (£, 7) defined on .# X .4 by (3.3)

satisfies the four requirements for a metric (those requirements are
formulated in Definition 3.1).

3.5. If in a metric space 7 the sequence &, £y ,... CONVer £
prove that for any 5 € 4, lim, o d(£,, 1) = d(&, m).

3.6. If £ is the equivalence class of . (introduced in Theorem 3.2)
containing the Cauchy sequence {&;, &, s} EM 4, then for any € > 0
there is an N(e) such that d(§, &) < e for all &k > N{e), where & =
{¢&, & ,---}- Prove this statement!

3.7. Show that if S; is an everywhere dense subset of a metric

space A, and S, is an everywhere dense subset of S; , then S, is every-
where dense in .
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Euclidean space €%,(RY) introduced in §2 is not complete. To see this,
note that the sequence f, , f; ,... of continuous functions

1

4.2 for m=<a

X)) =
Ful) exp[—n*(| x | — a)?] for
is a Cauchy sequence in €% (RY) (see Exercise 4.2) but it does not con-
verge to an element of €, (RY). In fact, it is easy to establish that with
increasing 7, the functions in the above sequence approximate arbitrarily
closely in norm the discontinuous step function

(1 for |x| <a
X® =10 for x| > a,

which, however, does not belong to €,,(R?).

Definition 4.1. We say that the Euclidean space & can be densely
embedded in the Hilbert space J if there is a one-to-one mapping of &
into J, such that the image &’ of & is everywhere dense in J, and the
mapping represents an isomorphism between the Euclidean spaces &
and &”.

Theorem 4.1. Any incomplete Euclidean space & can be densely
embedded in a Hilbert space.

4, Hilbert Space

4.1. COMPLETION OF A EUCLIDEAN SPACE

It is easy to establish (see Exercise 4.1) that in normed space A~

(4.1) d(f.g) = IIf —¢l

is a metric. Therefore, we can define in 4" convergence, completeness,
etc. in the metric (4.1), which is then called convergence, completeness, etc.
in the norm. A complete normed space bears the name of Banach space.

The above concepts can also be applied to Euclidean spaces, because
according to Theorem 2.3 we can introduce in such spaces a norm, and
therefore also a metric. A Euclidean space which is complete in the
norm* is called a Hilbert space.

Not every Euclidean space is a Hilbert space. For instance, the

* The concept of completeness can be defined and consi
besides the norm topology.

Proof. Denote by & the complete metric space built from the set &,
of Cauchy sequences in & according to the procedure used in proving
Theorem 3.2. Define in &, the operations

(4.3) Fre=u 1

_
g — 15 %255

+ g1.fe 8 b
Af
> 2

for any two sequences f = {f,, fo -}, § = {g1, & -} from &, . It is
easy to check that the above operations are operations of vector addition
and multiplication by scalar. Furthermore, if ' =f", where f' =
Uiy fove} and f7 = {f)", f"s )y L€, if [ and f” belong to the same
cquivalence class in € and therefore

1’1_‘5& Hf'n, _fn” || = lni_{r(}j d(f'n,af’n”) = 0’

then | af,’ — af,” || = | a|llfa, — fu" Il = 0; thus, we also have that

f+g=f+¢ and af = af". Consequently, (4.3) defines vector

operations on &, which thus becomes a vector space.
We now introduce the complex function on &, X &, defined by

(44) <f|£>u - ’!i.n) <f'n |gn>
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The limit in (4.4) exists because .. is a Cauch
1 1/ 2 2/

sequence of numbers, as can be seen from the following inequality

namelY: an | — ds(f’ 0) = Hf‘ls and “gn ” g ”g”s for n — oo, where

1flls = V<1
while || f,, — f, || and || g, — &Il can be made arbitrarily small for

sufficiently large m and .
Furthermore, if f' = f" €&, , then 18 = <f"18)s, as canbe
concluded from the inequality

Hence, (f| ), is a uniquely defined function on & x &. This function
determines an inner product on & (see Exercise 4.4). It is obvious that
the mapping f < f = {f, f,..} of & into & has an image &’ which is a
linear subspace of &; according to the construction, &’ is everywhere

in & ing provides an isomorphism between &

and &’. Q.E.D.

A similar theorem can be proved for normed spaces (see Exercise 4.5).

4.2. SEPARABLE HILBERT SPACES

Tiw miinendizemn s~ H
in gquantum mechanics we deal at

special class of Hilbert spaces which are called s parable.

resent almost exclusively with a

Definition 4.2. The Euclidean space & is called separable if there

is a countable everywhere dense subset of vectors of &.
Tn tha aauly dave nf recoarch on Hilhert snaces. senarability was taken

1n tne carly Gays Of résearcn On I2LIDCIL SPates, sty Dil

to be an integral part of the concept of a Hilbert space.

In quantum mechanics we are concerned primarily with separable
complex Hilbert spaces. We shall agree that in the future whenever we
refer to a space as a Hilbert space we mean a complex Hilbert space,
except if otherwise stated.

Theorem 4.2. Every subspace of a separable Euclidean space is a
separable Euclidean space.

: > o ‘uclidcan space & is also a
Euclidean space is casy to check (sec Exercise 2.6). In order to establish
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the separability of &, construct a countable subset S = {g;, 2,5,
821 s 813 5.} of & in the following way.

Let R = {f;,f;,..-} be a countable everywhere dense subset of &;
there has to be such a set because of the separability of &. Let g,,,, denote
a vector of & satisfying || g,., — f. |l << 1/m, in case there is at least one
such vector, or the zero vector in case there is no vector of & in the 1/m
neighborhood of f,, .

The set S is everywhere dense in &; because for any given % € &; and
m > 0 we can find an f, € R such that ||k — f, || < l/m. Thus, by the
above rule of constructing S we certainly have g,,,, 7 0 and therefore

This proves that S is everywhere dense in ;. Q.E.D.

4.3. 2 Spaces As ExaMPLES OF SEPARABLE HILBERT SPACES

As an important example of an infinite-dimensional separable Hilbert
space we give the space [%(c0), which is basic in matrix mechanics.

Theorem 4.3. The set I%(c0) of all one-column complex matrices «
with a countable number of elements

for which

a
o= |d,
ool

4.5) Yilag |2 <+

k=1

becomes a separable Hilbert space, denoted by /%(c0), if the vector opera-
tions are defined by

{a; + by\
(4.6) at+p= (“2 + 52),
aal\
4.7) ac = laa, |, aeCl,

and the inner product by

(4.8) alB> =Y ay*b,.

kel
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Proof. The operation (4.7) maps C! x I%o0) into [*(c0) because
T2 laa, |2 =|alPYP, | a|? < +oo if (4.5) is satisfied.

In order to see that (4.6) maps [%(c0) X I} o) into [*(00), apply the
triangle inequality on the v-dimensional space I*(v), v << + o0, in order

to obtain

The above inequality shows that when v — oo, the left-hand side
converges if «, § € [%(0).

Similarly, we prove that (4.8) converges absolutely by applying the
Schwarz-Cauchy inequality on the v-dimensional space *(v), v << 40,
in order to obtain

v v v 172 ¥
Zlak*bu:Zlakkut<[2|ak|2] Zuw]
k=1 k=1 F=1 =1

172

We leave as an exercise for the reader (see Exercise 4.6) to check that
we deal indeed with a Euclidean space.

To prove that this Euclidean space is complete, assume that o'V, a®,...
is a Cauchy sequence, where
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the above inequality is true for any m = 1, 2, As o), o, is a
Caubuy sequence, there is for any gi'v ene > 0an .L7\VT0(€) such that for any

m, n > Ny(€) and any positive integer v

v
Z l a}cm) —_ al(cn) 2 < || ef™ — almd |12 < 52/4'
k=1

On the other hand, as b, = lim,, ., ai™, we can find for fixed v an
N,(¢) such that | b, — a{™ | < €/2%tV/2 for any m > N,(e) and all
k = 1,2,.,v. Thus, we get from (4.9) that for all » > Ny(¢) and all
positive integers v

. m 2| S €
k=1 k=1
<sfsy Ly,
2\ 2T

As the right-hand side of the above inequality is independent of v and

the inequality itself is true for any n > Ny(e), we can let v — o0 in
{A ln\ fn AD“I"TD

a{™ GAo)t tve
o) = a(z"’ .
. o 1/2
(4.11) [2 | b, — alm g2] <e forall 7> Nye).
k=1

As we obviously have that forany k& = 1, 2,...

laim — a | < || — o)

we deduce that for fixed & the sequence a$", a{?,... is a Cauchy sequence
of complex numbers; hence, this sequence has a limit b, . We shall prove
that the one-column infinite matrix

by
/32 b_z

is an element of I%(0), and that oV, a'®,... converges in the norm to §.
By applying again the triangle inequality on the v-dimensional space
I*(v), v < + o, we obtain

(4.9)

1/2 v : 1/2
,,(m) |a Y lam — gn 2| -
g Ic | . F B
k~1

el k~1

By returning again to /*(v), v << + o0, to obtain

v 1/2 v 1/2 v 1/2
|2 eee] <[5 18— a3 1]

k=1

now that o', « 2’,... converges to

Finally, in order to prove the separability of [%(c0), consider the set D
of all the one-column matrices o from /(4 00) with kth components
(o) = a; , where a;, has rational numbers as its real and imaginary part,
i.e., Rea,,Im a, € Z, k = 1, 2,..., and in addition

to prove that D is everywhere dcnsc in 12(00) take any one-column
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matrix y € l2(+ 00) with kth component (y), = ¢; . As y € I’(0), there

is for any given € >> 0 an integer n such that

©

Y ol B < Ef2.

k=n+1

Furthermore, as the set Z of rational numbers is dense in the set R* of
real numbers, we can choose an « € D which satisfies (4.12) and is such
that | ¢, — a;, | << €/4/2n for all k = 1,..., n. Thus, we have

uy—ﬂw{z|%—%w+ 2|%ﬂ <e

k=n+1

which proves that [2(c0) is separable. Q.E.D.

4.4. ORTHONORMAL Basgs 1IN HILBERT SPACE

In an infinite-dimensional Euclidean space it is important to distin-

guish between the vector space (.S) spanned by a set S, and the closed
vector space [S] spanned by S.

Definition 4.3. The vector space (or linear manifold) (S) spanned by
lidean e & is the smallest* subspace of & con-
taining S. The closed vector subspace [S] spanned by S is the smallest
closed vector subspace of & containing S.

In the finite-dimensional case (S) = [S] because all finite-dimensional
Euclidean spaces are closed (see Exercise 4.8). That this is not so in the
infinite-dimensional case can be deduced from the following theorem,
whose simple proof we leave to the reader (see Exercise 4.9).

Theorem 4.4. The subspace (S) of the Euclidean space & spanned
by the set S is identical with the set of all finite linear combinations
afy + -+ + a,f, of vectors from S, i.e., in customary set-theoretical
notation,

(S ={af1 + - +afu: frssSu€S, @ ,,a,€CL, n=12..}
The closed linear subspace [S] spanned by S is identical to the closure (_S_)
of (S).

Definition 4.4. An orthonormal system .S of vectors in a Euclidean
space & is called an orthonormal basis (or a complete orthonormal system)
in the Euclidean space & if the closed linear space [S] spanned by S is
identical to the entire Euclidean space, i.e., [S] —= &.
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It must be realized that an orthonormal basis 7T in an infinite-dimen-
sional Euclidean space & is not a vector basis for the vector space &, i.e.,
(T) is in general different from &. For instance, this is so with the basis
ey, € ,... of [%(00), where e,, is the vector whose nth matrix component is

(em)n = 8rrm .

Theorem 4.5. A Euclidean space & is separable if and only if
there is a countable orthonormal basis in &.

Proof. (a) To prove that in a separable Euclidean space & there is a
countable orthonormal basis, note that due to the separability of &
there is a countable set S = {f, , f; ,...} which is everywhere dense in &.
According to Theorem 2.4, there is a countable orthonormal system

L Al {. ~ a [T Ane o wxrn hax
I = (€1, €y,. f bubh Lhat (S = (T). Due to Thculcul 4.4 w<e h Ve theﬁ

[7] = (T) = (S) = [S] = .

(b) Conversely, to show that if there is a countable orthonormal basis
= {e, , e, ,...}, then & is separable, consider the set

={re + - +r.e. Rery,.,Rer,, Imr ,.,Imr,eR, n=12,.}

which is countable, as can be established by using the technique for

solving Exercise 4.7. The set R is also everywhere dense in &; namely,

if fe& and € > O is given, then as [e, 6;,...] — &, there is a vector
g = ae; + -+ + a,e, such that
||f_alel Tt T Qg H < €/2‘

Furthermore, we can choose complex numbers 7, ,..., 7, with rational

real and imaginary parts so that

n

[rk~ak|<e/2\/;z_, k=1,.,n
Thus, we have that for 2 = r,e; + - + 7,6, €R

There are a few very important criteria by means of which we can
cstablish whether an orthonormal system S is a basis in a Euclidean space.

Thoarem 4.6. Each of the following statemente is a sufficient and

A LACRFACi1a AoV Aiatvil UL LD AULOWILE Stallilaleid S a St &L

necessary condition that the countable orthonormal system T = {e,, e,,...}
is a basis in the separable Hilbert space* 5"

® 'I'he theorem applies to the finite-dimensional as well as the infinite-dimensional case,
though it is stated and proved here for infinite-dimensional /. In the finite-dimensional

* That is, if ¥  is a subspacc of & and S (© ¥, then necessarily (S) C ¥

case, o0 should be replaced by the dimension of ¥,
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Proof. (a) The only vector f satisfying the relations
4.13) Culf> =0, k=12,..

is the zero vector, i.e., (4.13) implies f = 0.
(b) For any vector f € #,

(4.14) fim

N340

f— Z<ek|f>ek

or symbolically written
= Z lex 1D e
k=1

where (e, | f) is sometimes called the Fourier coefficient of f.
(c) Any two vectors f, g € H# satisfy Parseval’s relation:

(4.15) Sley= Y {flee| &
k=1

(d) Forany fe &#
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Proof. Write
by =f—fn,
where f, is given by (4.17). We have
Sulhay =0
because <¢; | > = Ofori =1,2,..,n

ol h> = (el f— 3 o1 6)

j=1

— 1> — Y e f3es | e — O,

as {e; | e, = 8;;. Thus

and consequently, since <A, | h,> > 0,

(4.16) IF1P = kZ [ex 1 FH1%
=1

We start by proving that the criteria (a) and (b) are equivalent to
the requirement that 7 = {e, , e, ,...} is an orthonormal basis, as that
requirement was formulated in Definition 4.4. To do that we shall
prove that (a) implies (b), (b) implies “7T is a basis” (as formulated in
Definition 4.4) and “T is a basis” implies (a).

In order to show that (a) implies (b) we need the following lemma.

Lemma 4.1. For any given vector f of a Euclidean space (53 (not
necessarily separable) and any countable orthonormal system {e; , €5 ,...}

1ecessartly separaple) anc aly countiab Nnorrr .
) o ety

in &, the sequence f; ,f2 ” of vectors

= S el e

k=1

(4.17) In

is a Cauchy sequence, and the Fourier coefficients (e, | f ) satisfy Bessel’s
inequality

(4-19) I lFwr <1
By using (4.17) and {e, | ¢;> = §;; we derive

fall = CFnlfe> = 3 oo 1F5%Cer| e3Ces 1>

=1
=Y Ke| O3
i=1

'which shows in conjunction with (4.19) that Bessel’s inequality (4.18)
i1s true. From (4.18) we can deduce that

(4.20) Y el O <IFIR < +oo,
i=1

i.c., the above series with nonnegative terms is bounded and therefore
it converges. Since we know that for m > n

n
(4.18) il == Y Cen LI £ IR

N
N

fart
|
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we easily see from (4.20) and (4.21) that f, , f, ,... is a Cauchy sequence.

We return now to proving Theorem 4.6. If 7 = {e;,¢,,...} is a
countable orthonormal system in the Hilbert space 5, then according
to Lemma 4.1 for any given f € # the sequence f, , f, ,..., where

M=

— le, | ) e,
AN 7/

K 1J 5

1

f,
Jn

&
(|

is a Cauchy sequence. Since # is complete, this sequence has a limit
ge . .

We can now show that if the statement (a) about T in Theorem 4.6
is true, then (b) is also true, due to the fact that (a) implies f = g;
namely, for any & = 1, 2,... we have

(f —gley =lm<f —ful e

n

={fley — nljf; Z (e | fr*e; | > = 0.

i=1

Thus, if (a) is true, we must have f — g = 0. ‘ ‘
It is obvious that statement (b) implies that T = {e, , ezh,...} is a basis,
because according to Theorem 4.4 any fe # is the limit of elements
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where
fn=i<ek|f>ek, g’nzz<ek|g>ek'
x—1 k=1

From the relation

{fnltn = Z Ceg [ fo*Ces | eples | 8> = Y {fled<e; | g
i,§=1 =1
we immediately obtain Parseval’s relation (4.15).
If we assume (c) to be true, then (a) is also true, because if some vector f

is orthogonal on {e, ,e,,..}, i.e., {fle> =0, k=1, 2,..., then by

inserting f = g in (4.15) we get
SIH =2 SflexXalf>=0,
k=1

which implies that f = 0.

Finally, (d) follows from (c) by taking again in (4.15) that f = g.
Vice versa, if (d) is true then (a) has to be true, because if (f|e,> = 0
for k = 1,2,..., then we get from (4.16) that || f|* = 0, which implies
that f = 0. Q.E.D.

fi+fs > from the linear space (7)) spanned by T, where f.e(Tyisof
the form (4.17).

We show now that the fact that T = {e, , e, ,...} is an orthonormal
basis implies that (a) is true. Assume that some f € J is 9rthogonal on
the system {e; , €, ,...}. Since f€[e;, €;,..] = H#, there is a sequence
81, 8s - €(e1, 6 ,...), Le., for some integer s,

En = Z Ay »
k=1
which converges to f. Consequently, as {f | ;) = 0,
Fify =lm<f | goy =lim ) alf | e =0,
e T k=1

and therefore f = 0. o - -
We shall demonstrate that statement (c) is equivalent to (a) or (b)
by showing that (b) implies (c), and (c) implies (a), and thus finish the
proof of Theorem 4.6.
If (b) is true, then we have (see Exercise 4.10)

It is easy to see that, due to the fact that every Euclidean space can be
embedded in a Hilbert space (Theorem 4.1), the criteria (b) (c), and (d)
are also necessary and sufficient criteria for 7 to be an orthonormal basis
in a Euclidean space in general; while (a) is necessary but not sufficient

(see Exercise 4.13).

4.5. IsoMORPHISM OF SEPARABLE HILBERT SPACES

We can now demonstrate for infinite-dimensional Hilbert spaces a
theorem analogous to the Theorem 2.5 for finite-dimensional Hilbert
spaces.

Theorem 4.7. All complex infinite-dimensional separable Hilbert
spaces are isomorphic to /%(00), and consequently mutually isomorphic.

Ty

orthonormal countable basis {¢, , e, ,...} in #, which is infinite when 5#

is infinite dimensional. According to Theorem 4.6 we can write for any
[cH#

.
Il
(Ngk

(4.22) 1> - lim g,

>
1
-
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where by (4.16)

ilck = |If|F < +oo.
o= ¢

by
(bg\’ € I3(00),
\y/

»

Therefore

G

\
) € I2(o0).

Vice versa, if

thenf, , f; ,...
fo= Z bye;,
k=1

is a Cauchy sequence, because for any m > n

m

||fm _f'n H2 = z |bk lZ

k=n+1
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then {e,’, e,',...} is an orthonormal basis in &’, where e,’ denotes the

image of ¢, .

Proof. Let & be infinite dimensional, and denote by {:|->; and
(+ | -Do the inner products in & and &” respectively. Then

e’ | ¢/>y = {e;] €551 = 8y,

i.e., {¢,, &/,...} is an orthonormal system in &”. Since each f' €&” has
a unique inverse image f € &, we have

i <e'nl If/>2 e’nl
k=1

[ foren||=0
1

which by Theorem 4. 6(b) proves that {e,’, e,’,...} is a basis.
The case when & is finite dimensional can be treated in a similar
manner. Q.E.D.

ExXERCISES

4.1. Show that in a normed space .#" the real function d(f, g) =
|f —gllon A X A is a metric, i.e., it satisfies all the requirements of
Definition 3.1.

and Y, ;| b, |2 converges. Thus, due to the completeness of #
fisfe,-.. converges to a vector f € J# and we have

Ck=<ek|f>=}gg<ek| Zbiei>:bk'
i=1

Therefore, the inverse mapping of the mapping f— o; of J# into
I2(c0) exists, and has [%(c0) as its domain of definition. Hence the
mapping f — o, is a one-to-one mapping of J# onto [*(c0). It can be
easily checked (see Exercise 4.11) that this mapping supplies an isomor-
phism between # and i%(c0). Q.E.D.

As we shall see later, the above theorem provides the basis of the
equivalence of Heisenberg’s matrix formulation and Schroedinger’s wave
formulation of quantum mechanics.

Theorem 4.8, If the mapping
f—f, fed, [f'e&

is a unitary transformation of the separable Euclidean space into the

4.2, Prove that for any ¢ > O there is an N(¢) such that

= ul = ([ 1) — fuodean) " <o
for m, n > N(e), where f, is given by (4.2).

4.3. Check that the operations (4.3) satisfy the axioms in Defini-
tion 1.1.

4.4, Check that (4.4) satisfies the requirements of Definition 2.1.

4.5. Show that if 4" is a normed space and .# is the completion of A~
in the norm, then:
(a) A is alinear space with respect to the operations

f‘+‘§ ={f1+ &, + &}
af = {afy , afs ...}

JJJJJJJ

(b) the limit || {1, = hmnw | fo | exists for every Cauchy sequence
'fy+ fare..) and defines a norm in A

(c) A is a Banach space and the image 4" of A" in A defined by
the mapping f <> {f, f,...} is a linear subspace of A" which is everywhere

Euclidean space &7, and if {e,e,,...} is an orthonormal basis in &,

dense in 47,
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(4.7), and (4.8) satisfy the axioms for vector
s and i

inner product respectively.

S 41

4.7. Show that the subset D of I%(0) is countable, where D consists
of all vectors o« which have the properties: (1) a finite number of com-

ponents 4y ,..., @, (for some integer n = 1,2,...) of o are complex
r ional numbers;

PREpIN N : ]
numbers with real and imaginary parts which

(2) the rest of the components vanish.

are ra

4.8. Show that every finite-dimensional Euclidean space is a separable
Hilbert space.

4.9. Prove Theorem 4.4.

4.10. Show that if in a Euclidean space fy, f; ,... converges in the
norm fand g, , g, ,--- to g then (f | &> = limy o {fy | gn>-

4.11. Show that the mapping f<«> o, of # onto [*( o) satisfies the
requirements for an isomorphism, given in Definition 2.4.

4.12. Prove that if one orthonormal system {e; , €, ,...} in a Euclidean
space & satisfies either (4.14), or (4.15), or (4.16), for every vector f (or,
in cas¢ of (4.15), for any two vectors f and g) from &, then {¢,, ¢, yore}
is a basis in &.

4.13. Verify that the criterion of Theorem 4.6(a) is not sufficient to
insure that an orthonormal system {e,, e, ,...} in a Euclidean space ¢
satisfying that criterion is a basis by showing the following:

Let {h, , h, ,...} be an orthonormal basis in a Hilbert space &, and let &
be the vector subspace spanned by (X2, (1/k)k), hy , hs ..., ie,
& = (Zei (1/k) by, by ,...); then € is a Euclidean space. Prove that:

(a) f{e; = hy, €, = hy ..., €, = hyyy ..} is DOt an orthonormal basis
ind.

(b) Iffe & is orthogonal to {e, , &, ,...} C &, then f = 0.

5. Wave-Mechanical Treatment of
a Single Particle Moving in One Dimension

5.1. 'TuE ForMALISM AND ITs PARTIAL PHYSICAL INTERPRETATION

As an illustration of a physical application of the preceding results, we
shall consider the case of a particle restricted to move in only one space
dimension within a potential well. We denote the space-coordinate
variable by x and the time variable by £. Assume that on our system there
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F(x) = —(d/dx) V(x). In classical mechanics, if we denote the momentum
of the particle by p, we have the following expression for the total energy
E of a particle of mass m: -

(5.1) E = p*2m + V().

Classically the state of the particle is described by its trajectory x(#)
where at any moment #, x(¢) € RL. i ) ST

As we mentioned in the Introduction, one of the postulates of quantum
mechanics is that the state of a system is described by a function ¥(#)
where ¥(t) is a vector in a Hilbert space. In the wave mechanics Versiori
of quantum mechanics, the state of a one-particle system is postulated
to be described at time ¢ by a “wave function” (x, t) which is required
to satisfy the condition o o

(5.2) f | d(x, D2 da — 1.
-0

. As a function of ¢, ¢i(«, t) is assumed to be once continuously differen-

tiable in ¢; in addition we require for the present that (x, t) have a

piccewise continuous second derivative in x. Thus, we can consider

(%, t) to b.e at any fixed time # an element of the Euclidean space %,(RY)

grable, i.e.,

[7 e as < oo

-0

and once continuously differentiable. In %, (R') the inner product is

bl 4 ~
tiken to be

-+
Floy = [ Fr) g s,
and consequently we recognize (5.2) to be the normalization condition
—+4-00
I1POF = | 19 0rdx =1,

\‘\lh(\-rc l1"_(})6\‘5(12)([}&1) denotes the vector represented by the function
fdx) = ¥z, £).

As a dypamical law we have in classical mechanics an equation of
motion derivable from Newton’s second law, which in the present case is

(53 v i . d’x(t)

acts a force field F(x) which can be derived from a potential V(x), 1.c.,

y
~TF — 5 — Mmx X ==
dx ’ a2




