1 (5 points) Use the identity $\boldsymbol{\Lambda}^{T} \boldsymbol{\eta} \boldsymbol{\Lambda}=\boldsymbol{\eta}$ to prove that the Lorentz matrices $\boldsymbol{\Lambda}$ form a subgroup of $G L(4, \mathbb{R})$, i.e., show that the inverse of any Lorentz matrix and the product of any two Lorentz matrices are Lorentz matrices.

2 Let $\mathcal{P}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ be the parity operator defined by $\mathcal{P} \psi(x)=\psi(-x)$ and

$$
\langle\langle\phi, \psi\rangle\rangle=\left\langle\phi \mid e^{-\kappa \mathcal{P}} \psi\right\rangle,
$$

where $\langle\cdot \mid \cdot\rangle$ is the standard L^{2}-inner product, and $\kappa \in \mathbb{R}$.
2a (3 points) Show that $e^{-\kappa \mathcal{P}}=\cosh (\kappa) I-\sinh (\kappa) \mathcal{P}$.
$\mathbf{2 b}$ (3 points) Show that $\langle\langle\cdot, \cdot\rangle\rangle$ is a positive-definite inner product on $L^{2}(\mathbb{R})$.
2c (4 points) Let $\tilde{\mathscr{H}}$ be the Hilbert space obtained by endowing $L^{2}(\mathbb{R})$ with $\langle\langle\cdot, \cdot\rangle\rangle$. Show that the standard position and momentum operator that are defined by $X \psi(x):=x \psi(x)$ and $P \psi(x):=-\hbar \partial_{x} \psi(x)$ do not act as Hermitian operators in $\tilde{\mathscr{H}}$, but that P^{2} does.
2d (6 points) Let $\tilde{X}:=X e^{-\kappa \mathcal{P}}$ and $\tilde{P}:=P e^{-\kappa \mathcal{P}}$. Show that the following relations hold.

$$
\langle\langle\phi, \tilde{X} \psi\rangle\rangle=\langle\langle\tilde{X} \phi, \psi\rangle\rangle, \quad\langle\langle\phi, \tilde{P} \psi\rangle\rangle=\langle\langle\tilde{P} \phi, \psi\rangle\rangle, \quad[\tilde{X}, \tilde{P}]=i \hbar 1
$$

where 1 is the identity operator acting in $\tilde{\mathscr{H}}$.
2e (5 points) Use \tilde{X} and \tilde{P} to represent the position and momentum operators for a free particle determine by the Hilbert space $\tilde{\mathscr{H}}$ and the Hamiltonian $H=P^{2} /(2 m)$. Show that the localized state vector $\tilde{\delta}_{y}$ of this particle, that is localized at y, is given by

$$
\tilde{\delta}_{y}(x)=\cosh \left(\frac{\kappa}{2}\right) \delta(x-y)+\sinh \left(\frac{\kappa}{2}\right) \delta(x+y)
$$

$2 \mathbf{f}$ (4 points) Show that the following identities hold.

$$
\left\langle\left\langle\tilde{\delta}_{x}, \tilde{\delta}_{y}\right\rangle\right\rangle=\delta(x-y), \quad \quad \int_{-\infty}^{\infty} d x\left\langle\left\langle\tilde{\delta}_{x}, \psi\right\rangle\right\rangle \tilde{\delta}_{x}=\psi .
$$

$\mathbf{2 g}$ (5 points) Give the expression for the position wave function $\tilde{f}(x, t)$ of an evolving state vector $\psi(t) \in \tilde{\mathscr{H}}$, i.e., $\left\langle\left\langle\tilde{\delta}_{x}, \psi(t)\right\rangle\right\rangle$, and the probability density $\tilde{\rho}(x, t)$ for the localization of the particle in this state in terms of $\psi(x, t):=\left\langle\delta_{x} \mid \psi(t)\right\rangle$.
Reference: J. Phys. A 3910171 (2006), Section 5.
3 (5 points) Show that the D'Alembertian operator, i.e., $\square:=\eta^{\mu \nu} \partial_{\mu} \partial_{\nu}$, is invariant under Poincaré transformations.

4-6 (30 points) Solve Problems 1.1, 1.2, and 1.3 on page 14 of Srednicki.
7 (30 points) Read pages 58-62 of Weinberg's "The Quantum Theory of Fields," Volume 1 (Cambridge University Press, 1995), and give the details of the derivation of the Poincaré algebra relations, i.e., Eqs. 2.4.18-2.4.24 on page 61 of this reference.

