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we have, finally,
I = (2mi)™* ™2 (det Ag) ~}(det Bg)tJ !
= @ri)™*"2(det 4)" ¥ [det(B + C4~10)]}
= (2mi)™*™2(sdet M) 1. (1.7.64)

The rule for determining the phase of the body of (sdetM)‘* is the
following: A factor —i for each A having negative body. A factor i for
each u having positive body and a factor —i for each u having negative
body, the yu’s being determined by (1.7.57) with O, restricted to be an
orthogonal matrix of positive determinant.

It should be noted that the exact analogy with the classical Gaussian
integral, displayed by eq. (1.7.64), depends on the choice (1.3.15) for the
c-number Z and the choice (1.3.19) for the a-number contribution to the
volume element, choices that have already been seen to maintain an
exact analogy in Fourier transform theory. Note also that eq. (1.7.64)
holds even when n is odd, for in that case both I and det(B+ CA~'C)
vanish.

Exercises

1.1 Prove that (1.1.11) is the general solution of eq. (1.1.10). Hint: Expand v
in the form (1.1.9) and f(v) in the form (1.1.2), (1.1.3). Regard the coefficients
of the latter expansion as functions of the c’s in eq. (1.1.9). Vary the ¢’s
infinitesimally, obtaining the general form for dv. Find the conditions on
the coefficients in the expansion of f(v) that are necessary for df to factorize
as in eq. (1.1.10). Show that these conditions lead to (1.1.11).

1.2 Outline a proof that if f is superanalytic on a smooth simply connected
2-dimensional surface-with-boundary in C, then ¢ f(u)du =0 where the
integral is over the boundary. Hint: Approximate the surface by a simplicial
decomposition into small triangles. Show that the integral over the
boundary of each triangle vanishes to second order in small quantities. Pass
to the limit in which the dimensions of the triangles tend to zero. (Leave
rigor to the specialists.)

1.3 Starting with the result of the preceding exercise develop the elementary
parts of the theory of superanalytic functions on C, in complete parallel
with the theory of ordinary analytic functions of a complex variable. In
particular, develop the theory of Taylor and Laurent series and show that
(1.1.18), where f,, ,.(4) are functions of the form (1.1.17), is the general
solution of eq. (1.1.15).
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1.4 Show that §>f (v)dv, where f(v) has the general form (1.1.11), is not
mdependent of the contour and does not generally vanish.

1.5 Show that the fundamental theorem of algebra does not hold in C,.
Give examples of finite-order polynomials in u, with coefficients in C,,
that do not have any zeros. Give examples of finite-order polynomials
that have infinitely many different zeros even when their coefficients are
m C, i.e, are ordinary complex numbers. (Contributed by F.L. Newman.)

1.6 If a complex c-number u has nonvanishing body, one may define its
absolute value by |u| d=°f(u"‘u)%, the square root with positive body
being understood. Prove that this square root is unique. Prove that every
complex c-number with nonvanishing body can be expressed in the form
m = |ule’® where ¢ is a real c-number.

1.7 Derive eq. (1.7.2) where f is an arbitrary differentiable function of the
x*, with values in A .

18 Let V be a (k,])-dimensional supervector space and let {L;} be a set
of (k,]) x (k,]) matrices (i.., having the block structure of the matrix K of
€q. (1.4.40)) which act on V. Denote by Ker {L } the set of sub-supervector
spaces of V that remain invariant under the actions of {L;}. The set {L;}
s said to be irreducible if every element of Ker{L;} has the form aV for
some pure supernumber o.

Let {L;} be an irreducible set of (k,) x (k,l) matrices and let {M,} be
an irreducible set of (m,n) x (m, n) matrices that can be put into one-to-one
correspondence with the set {L;}. Suppose there exists a (k,I) x (m,n)
matrix A such that L;A = AM; for all i. Prove the analog of Schur’s lemma
for supervector spaces. That is, prove that either A=0Qorelsek=m,l=n
and A is a nonsingular matrix times a pure supernumber. Prove, as a
corollary, that all nonsingular (k, ) x (k, ]) matrices B satisfying L;B = BL;
for all i, necessarily have the form B = 11, where 4 is a c-number with
monvanishing body.

1.9 The (m,n) x (m,n) matrix K of eq. (1.4.40) maps c-type supervectors
mto c-type supervectors and a-type supervectors into a-type supervectors.
It may therefore be called a c-type matrix. One may also consider a-type
matrices, which map c-type supervectors into a-type supervectors and vice
wersa. If, on the right-hand side of eq. (1.4.40), the submatrices 4 and B
had a-type elements and the submatrices C and D had c-type elements
then K would be an a-type matrix.

One may generalize the supertrace and supertranspose so that thgy
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apply to a-type matrices. This is done by defining
strK= (= 1) WK str L= (= 1ye+vig,,

. def e s . . ;def o
,K ; — (__ 1)](!+1)+K(l+])jKl’ :’L j— (_ 1)!(]+1)+L(X+1).’Li,

def PO PR . . def .e PPN
~ +j+ij+M@i+ ~j +N(@i+
M7= (= )M M INTT = (= ETNETINE

1

Show that these definitions yield
K=K, =L, M™=M, N =N, strK'=strK, strL=strL,
and, for all admissible combinations of index positions,
(PQy'= (- 1)"2QP,
str(PQ) = (— 1)"%str(QP).
1.10 If m = n one may generalize the superdeterminant so that it too applies
to a-type matrices. One must then, however, distinguish between left and
right superdeterminants, defined respectively by
dlnsdet, M =str(6M M ™),
dlnsdetg M = str(M ~ 16 M) = (— 1) §In sdet, M.
Show that these superdeterminants satisfy
sdetg M = (sdet, M)\~ D"
sdet, (LM) = (sdet, L)(sdet, M)~ V",
sdetg (LM) = (sdetg L)~ V¥(sdety M).

If the matrix (1.4.40) is a-type show that its left and right superdeterminants
are given by

ae(y S)=[sn(3 <))

= [det(C — AD"'B)](detD) ! = (detC)[det(D — BC™14)] !

=(detC)(detD) *[det(1,,— C 'AD 'B)]

= (detC)(detD) ' [det(1,,— D 'BC 'A4)]" L
These last equations can, in fact, be regarded as defining the left and right
superdeterminants in the yet more general case in which 4, B, C, D have
the dimensions m x n, n x m, m x m, n x n respectively, with m # n, A and
B having a-type elements and C and D having c-type elements.



