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Analysis over supernumbers

1.1 Supernumbers and superanalytic functions
Grassmann algebras

Let (% a=1,...N, be a set of generators for an algebra, which
anticommute:

(=00, (=0, for alla,b. (1.1.1)

The algebra is called a Grassmann algebra and will be denoted by Ay. We
shall usually, though not always, deal with the formal limit N — co. The
corresponding algebra will be denoted by A,.

The elements 1,{%{°(%,..., where the indices in each product are all
different, form an infinite basis for A,. When N is finite the sequence
terminates at {*...{" and there are only 2V distinct basis elements. Under
addition as well as multiplication by a complex number, the elements of
Ay form a linear vector space of 2V dimensions; the elements of A, form
an infinite-dimensional vector space. As algebras over the complex
numbers (which is the only field we shall consider) Ay and A, are
associative but not commutative (excluding the trivial cases N =0, 1).

Supernumbers

The elements of A, will be called supernumbers. Every supernumber can
be expressed in the form

z=12zgt 2z (1.1.2)
where zg is an ordinary complex number and
21
Zs= 3 —Capal... (", (1.1.3)
=1 1

the c’s also being complex numbers. The ¢’s are completely antisymmetric
in their indices, and summation over repeated indices is to be understood
unless otherwise stated. The number zg will be called the body and the
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2 Analysis over supernumbers

remainder zg will be called the soul of the supernumber z. If A _ is replaced
by Ay (N finite) then the soul of a supernumber is always nilpotent:

A+i=0. (1.1.4)

When N is infinite the soul need not be nilpotent.

When N is finite the condition {“z =0 for all a implies that z has the
form z=c{'...{¥ for some complex number c. When N is infinite the
condition {*z =0 for all a implies z=0.

A supernumber has an inverse if and only if its body is nonvanishing.
The inverse, which is unique, is given by the formula

27 =251 i (—zptzg)" (1.1.5)
n=0

Series of this kind may be introduced to extend any analytic function f
on the complex numbers to a supernumber-valued function on A :

|
f@=3% o) )(zp)z8. (1.1.6)

n=0

Here f™(z) denotes the nth derivative of f at the point z in the complex
plane, and the definition is valid for all zg that are not singular points of
/. Because of (1.1.4) the “Taylor series’ (1.1.6) terminates when N is finite.
By substituting (1.1.3) into (1.1.6) one can obtain an expansion of f(z) in
terms of the basis elements of A,. When N is infinite expressions (1.1.5)
and (1.1.6), as well as their expansions in terms of basis elements, are
formal infinite series. The coefficient of each term is unique and finite.

One may consider matrices whose elements are supernumbers. The
body of a matrix is then defined as the ordinary matrix obtained by
replacing each element with its body. The soul of a matrix is the remainder.
A square matrix has an inverse, and is said to be nonsingular, if and only
if its body is nonsingular. The inverse is unique and is given by a formula
analogous to (1.1.5).

c-numbers and a-numbers

Any supernumber may be split into its even and odd parts:

z=u+v, (1.1.7)

u=zB+"=l(2—n—)—!—ca,_,_a2"C SO A (1.1.8)
d 1

v= gaamer (%, (1.1.9)

—n=omca.,,.az,.”
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purely odd or purely even. Odd supernumbers anticommute among
themselves and will be called a-numbers. Even supernumbers commute
with everything and will be called c-numbers. A-numbers possess no body
and hence are not invertible. The set of all c-numbers is a commutative
subalgebra of A, which will be denoted by C.. The set of all a-numbers
will be denoted by C,; it is not a subalgebra. The product of two c-numbers,
or of two a-numbers, is a c-number. The product of an a-number and a
c-number is an a-number. The square of every a-number vanishes.

If A, is replaced by Ay, C. and C, become 2" ~!-dimensional vector
spaces. In the formal limit N — co they may continue to be regarded as
vector spaces, but we shall not give them a norm or even a topology.

Superanalytic functions of supernumbers

Just as ordinary analysis can be constructed as the theory of analytic
mappings of the complex plane into itself, so can an analytic theory of
functions of c-numbers and a-numbers be built up by studying mappings
from C.or C,to A,.

Consider first C,. Let A, for the moment be replaced by Ay and let f bea
mapping from C, into Ay. Since, when N is finite, C, and Ay are finite-
dimensional vector spaces over the complex numbers, one has a body of
conventional theory on which to draw in order to define, for example, the
condition that f be a differentiable mapping at a point v of C,. Mere
differentiability, however, does not involve the algebraic structure of C, and
Ay. What is more interesting is to pass immediately to the formal limit
N— 00 and to demand that f be superanalytic at that point. By this is
meant the following: let v be given an arbitrary infinitesimal a-number
displacement dv. Then its image f(v) in A, must suffer a displacement
which, for all dv. takes the form

d f(u)=dv[% f(v)]=[ f(v)ad-v]dv, (1.1.10)

-

d d
where the coefficients ™ f()and f (v)a are independent of dv and depend

(at most) only on v. These coefficients are called, respectively, the left and
right derivatives of f with respect to v.
It can be shown (see exercise 1.1) that the general solution of eq. (1.1.10) is

fw)=a+ by, (1.1.11)

where a and b are arbitrary constant elements of A,. That is, a
superanalytic function of an a-number variable is simply a linear function!
It is therefore superanalytic everywhere in C, (no singularities). If the
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coefficient b is separated into its even and odd parts,
b=b.,+b,, (1.1.12)

thCl‘l one may write
f(v)_—b +b (U)—b b 1.1.13
dv e 02 l f e o ( il )

and one sees that the left and right derivatives of f are, in fact, constants,
independent of v, a fact that may be expressed in the form

dd d_ d dad

Sn -5 Vg =55 S0 =0 (1.1.14)

1) =

If the range of f is contained in C, then a is even, b is odd, and di f(v)=
v
—f (v)di. If, on the other hand, the range of f is contained in C, then a is
v

. - d d
odd, b is even and a fy=f (v)d—v.

Superanalytic mappings f from C, to A, are defined similarly:

d d
df(u)—du[af(u)]—[f(u)a]du. (1.1.15)
But here the similarity ends. Because d u is a c-number it follows that
d d
d—uf(“)=f(“)a’ (1.1.16)

so there is no need to distinguish between right and left derivatives.
Moreover, the class of superanalytic functions of a c-number variable is
infinitely richer than the class represented by eq. (1.1.11). For example, for
every ordinary analytic function f on the complex numbers there is a
superanalytic function over C, analogous to (1.1.6):

fw= f ;IITf “Hug)ug, (1.1.17)

n=0""
where uy and ug are respectively the body and soul of u. The general
solution of eq. (1.1.15) has the form

6= 3 L fo a0 (L118)
n=0""

where the f,, , (u) are functions like (1.1.17). If the range of f is contained
in C, then the f, , , with n odd, vanish. If the range is contained in C,
then the f,,. .., with n even, vanish.
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Integration of superanalytic functions of supernumbers

The theory of integration too may be generalized from the ordinary
complex plane C to the spaces C,. and C,. Consider first C.. The singularities
(poles, branch points, etc.) of the functions (1.1.17) and (1.1.18) are located
at specific values of ug, independent of ug. Therefore, in speaking of the
location of these singularities relative to a given curve in C,, one may
always imagine the curve to be projected onto the uy plane and use such
conventional terms as ‘left’, ‘right’, ‘above’, ‘below’, ‘inside’, ‘on’, etc. Any
line integral of the form (2f(u)du depends only on the endpoints and
on the homotopic relation of the curve to the various singularities of f,
and not on the specific curve. If f is superanalytic on and inside a closed
curve in C, then the curve may be continuously deformed to a point
without crossing any singularity and

:ff(u)du =0. (1.1.19)

More generally, if f is superanalytic on the curve and superanalytic inside
except at a finite number of poles, then

§ f (1) du = 2zi x (sum of residues at the poles). (1.1.20)

Note that if f has the general form (1.1.18) the residues may be arbitrary
supernumbers.

Line integrals of superanalytic functions over C, do not behave
analogously. Integrals ¢ f(v)dv over closed curves in C, do not vanish
unless f(v)is itself the derivative of a superanalytic function, i.e., a constant
(see eqgs. (1.1.13) and (1.1.14)). In particular the integral $vdv depends in
a continuous fashion on the contour. We shall presently wish to attach
an alternative meaning to the symbol {vdv, for which there is no such
ambiguity. But before doing so we need to take a look at functions of a
real variable.

1.2 Real supernumbers. Differentiable functions of real c-numbers,
and their integrals

Complex conjugation

In order to define real supernumbers we have to make some rules about
complex conjugation (denoted here by an asterisk*). The laws of complex
conjugation of sums and products of supernumbers will be taken in the
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form
(z+ ) =z*+z2'*, (zz')* =z'*z*, forall z,z' in A,. (1.2.1)

The complex conjugate of the body of a supernumber will be taken to be
its ordinary complex conjugate, and the generators of A, will be assumed
to be ‘real’:

{*™*={%, foralla. (1.2.2)
Evidently
@ =000 (12.3)

and from this, together with the anticommutation law (1.1.1), one may
infer that the basis element {*'...{*" is real when in(n — 1) is even and
imaginary when 3n(n — 1) is odd. (As for ordinary numbers, a supernumber
z is said to be real if z* = z and imaginary if z¥ = — z.) A general element of
A isreal if and only if both its body and soul are real. The soul will be real if
and only if the coefficients c,, ,, in the expansion (1.1.3) are real when
in(n — 1) is even and imaginary when in(n — 1) is odd.

We shall denote by R, the subset of all real elements of C, and by R,
the subset of all real elements of C,. The set R, is a subalgebra of C..
The product of two real c-numbers is a real c-number. The product of a
real c-number and a real a-number is a real a-number. The product of
two real a-numbers is an imaginary c-number.

The symbol ‘x’ will generally be used to denote a real variable, whether
over R, or over R,. When it is necessary to emphasize which of the two
domain spaces is relevant we shall sometimes revert to using the symbols
‘W’ and ‘v’, with the understanding that their values are restricted to be real.

Functions, distributions and integrals over R,

A function from R to A , need not be the restriction to R, of a superanalytic
function over C, in order to be differentiable in the sense of eq. (1.1.15) with
du now restricted to R,. Let f be any C*® function of an ordinary real
variable. It may be generalized to a differentiable function over R, in
complete analogy with eq. (1.1.17):

|
f)= 3 — [ Pxp)x3. (1.24)
n=0":

If A, is replaced by Ay the series (1.2.4) terminates at n=[N/2], and f
need be only CI"/?1*!, Note that in the limit N — oo there is no convergence
problem, for (1.2.4) is a formal series.
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Instead of starting with a C® function one may equally well start with
an arbitrary distribution. Since the notion of the derivative of a distribution
is well defined, eq. (1.2.4) may then be regarded as defining a distribution
over R,. The presence of a soul in the independent variable evidently has
little practical effect on the variety of functions with which one may work
in applications of the theory. In this respect R, is a harmless generalization
of its own subspace R, the real line.

Consider now a contour that is restricted to lie wholly within R,. The
value of the integral, over this contour, of a function f defined over R,
will depend only on the endpoints of the contour, provided merely that
f is differentiable in the sense of eq. (1.1.15) with du restricted to R.. That
is, f does not have to be analytic. A schematic proof of this fact may be
constructed along the lines of the suggested proof for exercise 1.2, in the
case in which f, when restricted to R, is C®. More generally, suppose that
f is a distribution possessing only a discrete set of singular points
(describable, for example, in terms of delta functions and their derivatives).
Let F(x) be the corresponding generalization to R, of the indefinite integral
j f(x)d x. Then taking, for simplicity, the case of a contour between two
points a and b in R, for which xg is a smooth single-valued function of
X, ONe may write

b -9 bg
j fedx= 3 - J SO xe)ep) [1 + xg(xg) 1 dxg

="§o f‘"’(xn)[ x3(xp) + @ :1)!51—3x§+‘(x3)]dx3

= Jb ST+ xg(xp)Jd xp
21
+ ¥ [ — £ Napad]

© by 1 d
+ % f . [— ;ﬂ"- V(xa) 7 x3(xs)

(n) n
(n " 1)'f (x BI s+ 1(xB):|de
= F(b) — F(a), (1.2.5)
provided neither ag nor by lies on a singular point of any of the f™. The

derivation may easily be generalized to include contours for which the
soul is a multi-valued function of the body.
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Fourier transforms over R,

The contour independence of the above result implies that in working
with integrals over R, one may for many purposes proceed as if one were
working over R. A striking illustration of this is provided by the theory
of Fourier transforms, which remains totally unchanged in form under
the generalization from R to R,. The essence of this theory is summed up
in the formula

5(x)=(2n)"-[ c“”‘dpd=ef lim (2n)"J e~ dp,  (1.2.6)
R, e=>+0 R.

where the limit is understood to be taken after all integrations involving
3(x) have been performed. The symbol ‘[ ' means ‘integrate over any
contour in R, the bodies of whose endpoints tend to — oo and + o
respectively’. How the soul behaves along the contour is completely
irrelevant. Because the integrand is an entire function that vanishes at the
endpoints independently of their souls, the contour may be displaced until
it coincides with R, without affecting the value of the integral. All the
usual theory thereupon applies. It applies, in fact, even if x itself possesses
a soul (!), for (1.2.6) then implies

20

1
Sx)= 3 ;'—5""(xn)x§, 1.2.7)

n=07:
and if f is any function of the form (1.2.4) where none of the f™ are
singular at xg = 0, then its product with d(x) is a function of the form to
which eq. (1.2.5) applies, which means that [ f(x)5(x) dx depends only on
the endpoints of the contour C. If the bodies of the endpoints are —
and + oo respectively, then the integrand vanishes at these endpoints, and
the contour may be displaced until it coincides with R. This implies

J S(x)o(x)dx = £(0), (1.2.8)

even if the contour does not pass through the point x =0! From now on
we shall often omit the subscript R, on the symbol ‘[ ’, in analogy with
the frequent custom of omitting the + oo on ‘f®_".

1.3 Functions and integrals over R,

Basic definitions

To develop an integration theory for functions on R,, one must proceed
rather differently, indeed in a manner that appears, at first sight, bizarre.
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By so doing one can obtain a theory that displays remarkable analogies
to integration theory over R,. The first thing that one must do is give up
the idea that a definite integral is associated with a family of paths all
having the same, or related, endpoints. We have seen, in any case, that
such integrals are path independent only in the trivial case in which the
integrand is a constant.

We shall confine our attention to functions differentiable in the sense
of eq. (1.10) with dv now restricted to R, and v replaced by x. All such
functions have the form (cf. eq. (1.1.11))

f(x)=a+ bx, (13.1)

where g and b are constant supernumbers.’ Because (1.3.1) is a linear form
in x, in order to give a meaning to the symbol ‘[ f(x)dx’, one has only
to decide what meaning to give to the symbols ‘{dx’ and ‘[ xdx’. The
integrals of all other functions will then be determined by the rules

j[f(x) +g(x)]dx = jf(x) dx + jg(x)dx, for all f and g on R}
(1.3.2)
ja f(x)dx = ajf (x)dx, forallain A, and all f on R,. (1.3.3)

In choosing the basic integrals we shall be guided by analogy with the
equation

j[%f(x)]dx =0, (1.34)

which holds for differentiable functions (or distributions) f(x) on R,
satisfying f(x) 0. If we require eq. (1.3.4) to hold also on R, then

.
XB T 0

we must necessarily have

j dx o, (13.5)

f xdx¥ z, (1.3.6)

where Z is some constant supernumber.
In order to accept the definitions (1.3.5) and (1.3.6) the reader must give

'If f takes its values in R, then a is a real a-number and b a real c-number. If f takes its
values in R, then a is a real c-number and b is an imaginary a-number.

$Here, and in what follows, by the phrase ‘all f on R,’ is meant ‘all f of the form (1.3.1)
with x in R,”.
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up conventional prejudices. Measure-theoretical notions play no role here.
Integration over R, becomes a purely formal procedure, the utility of
which rests ultimately on the naturalness with which it can be used to
encode certain algebraic information. One may note already that
egs. (1.3.2), (1.3.3), (1.3.5) and (1.3.6) together imply the law of shifting the
integration variable and the law of integration by parts:

jf (x +a)dx = jf (x)dx, (1.3.7)

d d
Jf (x) 7 9(x)dx = Jf (x) 7 9(x) dx, (1.3.8)

for all f and g on R, and all a in R,. The proofs of egs. (1.3.7) and (1.3.8)
are easy exercises. If f takes its values in R, then (1.3.8) may be rewritten
in the more familiar form

d
Jf(X)[d—xg(x)]dx == J[%f(x)]g(x)dx.

Equation (1.3.6) will be supplemented by the convention

Ix dx=— dex. (1.39)

That is, the symbol ‘dx’ will be treated formally as if dx were an g-number.
It is not, however, to be imagined as being, like x, a real a-number; nor
is the formal bodilessness of dx to be regarded as implying that the
constant Z in eq. (1.3.6) has vanishing body. The only condition that the
anticommutativity of dx imposes is that Z be a c-number.

Fourier transforms over R,

We shall fix Z by drawing on another analogy (in addition to eq. (1.3.4))
with integration theory over R.. First note that if Z has nonvanishing
body then an analog for the delta function exists for integrals over R,,
namely

o(x)=2Z"1x. (1.3.10)
As may be readily verified this function satisfies

f f(x)3(x)dx = f(0), for all f onR,, (13.11)

the order of factors in the integrand being important. It is a remarkable
fact that if Z is chosen appropriately this delta function may be expressed
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as a ‘Fourier integral’, in complete analogy with (1.2.6):
3(x)=(@2n)~* Je"”‘ dp. (13.12)

Here p is an a-number and the integrand is to be regarded as a function
on R, x R,." Since the series for the exponential terminates, the integral
is readily evaluated:

2m)~1! fe“”‘dp = (2n)"I(1 +ipx)dp= —(2n) lix Ipdp

=(2ni) "' Zx. (1.3.13)
Equating expressions (1.3.10) and (1.3.13) one infers
Z?* =2qi. (1.3.19)
The phase of Z will be fixed by the convention
Z =@ni)t=n)len (1.3.15)
It will be noted that, contrary to the situation on R_, the delta function
on R, is an odd function of its argument: 8(— x) = — 8(x). A related fact

is that the order of p and x in the exponent of (1.3.12) is important, and
a choice of order has to be made. It is perfectly possible to develop the
theory with the opposite ordering, but then the sign in front of i in many
of the previous equations must be changed.

With the delta function expressible in the form (1.3.12) a theory of
Fourier transforms may be developed. The Fourier transform of a function
J on R, will be defined by

f (p)d=“(2n)‘*'[f (x)ei*P dx, (1.3.16)

the order of factors being, as usual, important. If f has the form (1.3.1) then
its Fourier transform is readily computed to be

F(p)=itb+itap, (13.17)

from which one immediately sees that the original function is regained by
taking the Fourier transform twice.! Another proof of this is as follows:

f(x)=02n)? f Tk dp
=(Qn)~! fjf(x’)e“"’dx’e“’" dp

*Since px is imaginary the integrand takes its values in R,.
#Note that no intervening operation of reflection in the origin (x - — x) is required as in
the case of ordinary Fourier transforms on R, .
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=—-(@2n* ij(x’k_i”(x"*) dpdx’

= Jf (x)o(x" — x)dx’ = f(x). (1.3.18)

Integrals over R}

The steps of the above proof illustrate how multiple integrals are built
up by composition of single integrals. The general theory of integrals over

def iy
RX(= R, x ... x R,, n factors) is based on such composition. The ‘volume
element’ in R? is defined to be

dnx = =02 gyt qxn (1.3.19)

where (x!,...,x") denotes an arbitrary point of R%. The n-dimensional
delta function is then given by

5(x)=(2ni)_"/2i"("_l)/2x1 “‘xn, (1.320)

where ‘x’ is an abbreviation for (x’,...,x"). The proof is straightforward:

Jf(x)é(x) drx = (2mi) M3 (— 1)nr V2 J‘f(x)x1 Loxtdxt.. . dx"
= (2mi) "2 £(0) Jxl Lox"dx. . dxt

= (2ni) ""2£(0) fx’ dx!... Jx"dx" = f(0).

Here f(x)is any differentiable function on R}, namely any function having
the general form

1
fx=Y r—'a,lm,,x“'...x“‘, (1.3.21)

=0 .

where the indices «; range from 1 to n and the a’s are arbitrary
supernumbers completely antisymmetric in these indices.
The delta function may also be expressed as a Fourier integral:

6(x) — (21.[) -n J.eipmxa dnp

=Qm) "~ D2 Je“’"". ..eP"dp, ...dp,
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=) "inr 12 J.ei"""l dp, .. .eipnx” dp,
=" D25(xh) L §(x"). (1.3.22)
An alternative derivation is the following:
Qn)" eiPax® qny) — @ )—nin(n— 1)/2 i (=1y xa1 | d
p=(2n '=O—r! Dy --- XD, dp;...dp,

e 1y2 1
= (2mi) """ "’ZFIx“ ...x*p, ...p, dp,...dp,

= (2mi) ~mimn T /2 x 1 ..x"fpn.. .p,dp,...dp,
= (2mi) M2 2 1
The n-dimensional Fourier transform is defined by
fp)=02m)~"2 Jf (x)e’*P=d"x. (1.3.23)

When f(x) is expressed in the general form (1.3.21) its Fourier transform
takes the form

" . .
Jo) = ¥ <@ "p, ... pa, (1.3.24)
r=0""
where
NPV CS | ot ¢ o
@t =" (— ”/2(—-—~(n_)r)! ag, . p,. &b (1325)

¢ being the antisymmetric permutation symbol with » indices. Using the
fact that

o(— x) = (—1)"d(x), (1.3.26)

where ‘— x* is an abbreviation for *(— x!,..., — x"), one may show that
f = f by a proof patterned on (1.3.18).

It should be obvious to the reader that integrals over R, can be combined
with integrals over R, to produce multiple integrals over R x R}. Such
integrals play an important role in supermanifold theory and we shall
devote considerable attention to them. One of the important problems is
to determine the rules for changing variables in such integrals. Both linear
and nonlinear transformations of variables will be studied. But before
undertaking this task we shall find it convenient to introduce the concept
of a supervector space.



