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A diagonalizable non-Hermitian Hamiltonian having a real spectrum may be used to
define a unitary quantum system, if one modifies the inner product of the Hilbert space
properly. We give a comprehensive and essentially self-contained review of the basic
ideas and techniques responsible for the recent developments in this subject. We provide
a critical assessment of the role of the geometry of the Hilbert space in conventional
quantum mechanics to reveal the basic physical principle motivating our study. We then
offer a survey of the necessary mathematical tools, present their utility in establishing
a lucid and precise formulation of a unitary quantum theory based on a non-Hermitian
Hamiltonian, and elaborate on a number of relevant issues of fundamental importance.
In particular, we discuss the role of the antilinear symmetries such as PT , the true
meaning and significance of the so-called charge operators C and the CPT -inner prod-
ucts, the nature of the physical observables, the equivalent description of such models
using ordinary Hermitian quantum mechanics, the pertaining duality between local-non-
Hermitian versus nonlocal-Hermitian descriptions of their dynamics, the corresponding
classical systems, the pseudo-Hermitian canonical quantization scheme, various methods
of calculating the (pseudo-) metric operators, subtleties of dealing with time-dependent
quasi-Hermitian Hamiltonians and the path-integral formulation of the theory, and the
structure of the state space and its ramifications for the quantum Brachistochrone prob-
lem. We also explore some concrete physical applications and manifestations of the
abstract concepts and tools that have been developed in the course of this investigation.
These include applications in nuclear physics, condensed matter physics, relativistic
quantum mechanics and quantum field theory, quantum cosmology, electromagnetic
wave propagation, open quantum systems, magnetohydrodynamics, quantum chaos
and biophysics.
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1. Introduction and Overview

General Relativity (GR) and Quantum Mechanics (QM) are the most important
achievements of the twentieth century theoretical physics. Their discovery has had
an enormous impact on our understanding of Nature. Ironically, these two pillars
of modern physics are incompatible both conceptually and practically. This has
made their unification into a more general physical theory in the most fundamental
problem of modern theoretical physics. The unification of Special Relativity and
QM, which is by far an easier task, has been the subject of intensive research
since late 1920’s. It has led to the formulation of various quantum field theories.
A most successful example is the Standard Model which provides a satisfactory
description of all available observational data in high energy particle physics. In
spite of the immensity of the amount of research activity on the subject and the
fact that this is conducted by the most capable theoretical physicists of our times,
the attempts at quantizing gravity have not been as successful. In fact, one can
claim with confidence that these attempts have so far failed to produce a physical
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theory offering concrete experimentally verifiable predictions. This state of affairs
has, over the years, motivated various generalizations of GR and QM. Although
none of these generalizations could be developed into a consistent physical theory
capable of replacing GR or QM, the hope that they might facilitate the discovery
of a unified theory of quantum gravity still motivates research in this direction.

The development of the special relativistic quantum theories has also involved
attempts at generalizing QM. Among these is an idea initially put forward by
Dirac in 1942 [77] and developed by Pauli [190] into what came to be known as
the indefinite-metric quantum theories [223, 183, 185]. This is a rather conservative
generalization of QM in which one considers in addition to the physical states of
the system a set of hypothetical states, called ghosts, whose function is mainly to
improve the regularity properties of the mathematical description of the physical
model. The indefinite-metric quantum theories lost their interest by mid-1970’s and
perhaps unfortunately never found a detailed coverage in standard textbooks on
relativistic quantum mechanics and quantum field theory.a

A more recent attempt at generalizing QM is due to Bender and his collaborators
[37, 38] who adopted all its axioms except the one that restricted the Hamiltonian
to be Hermitian. They replaced the latter condition with the requirement that the
Hamiltonian must have an exact PT -symmetry. Here P and T are the parity and
time-reversal operators whose action on position wave functions ψ(x) is given by
(Pψ)(x) := ψ(−x) and (T ψ)(x) := ψ(x)∗.b The exact PT -symmetry of a Hamil-
tonian operator H means that it has a complete set of PT -invariant eigenvectors
ψn, i.e. PT ψn = anψn for some complex numbers an. This condition assures the
reality of the spectrum of H . A class of thoroughly studied examples is provided
by the PT -symmetric Hamiltonians of the form

Hν =
1
2
p2 − (ix)ν , (1)

where ν is a real number not less than 2, and the eigenvalue problem for Hν is
defined using an appropriate contour Γ in the complex plane C which for ν < 4
may be taken as the real line R. A correct choice for Γ assures that the spectrum
of H is discrete, real, and positive [32, 33, 79, 209, 157]. Another example with
identical spectral properties is the PT -symmetric cubic anharmonic oscillator,

H =
1
2
p2 +

1
2
µ2x2 + iεx3, (2)

whose coupling constants µ and ε are real and its eigenvalue problem is defined
along the real axis (Γ = R) [40, 158].

aIn fact, Pauli who had made fundamental contributions to the very foundations of the subject had
developed strong critical views against it. For example in his Nobel Lecture of 1946, he identifies a
“correct theory” with one that does not involve “a hypothetical world” [191]. For a comprehensive
critical assessment of indefinite-metric quantum field theories, see [185].
bWe use asterisk to denote complex-conjugation.
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This PT -symmetric modification of QM leads to an indefinite-metric quantum
theory [116, 225, 160], if one endows the Hilbert space with the indefinite inner
product,

〈· | ·〉P := 〈· | P·〉, (3)

known as the PT -inner product [37]. The symbol 〈· | ·〉 that appears in (3) stands
for the L2-inner product: 〈φ |ψ〉 :=

∫
Γ
φ(z)∗ψ(z)dz that defines the Hilbert space

L2(Γ) of square-integrable functions ψ : Γ → C, where Γ is the contour in complex
plane that specifies the PT -symmetric model [157].

The main advantage of the indefinite inner product (3) over the positive-definite
inner product 〈· | ·〉 is that the former is invariant under the time-evolution generated
by the Schrödinger equation [240, 143, 155], i.e. if φ(t) and ψ(t) are solutions of
the Schrödinger equation for the PT -symmetric Hamiltonian H , 〈φ(t) |ψ(t)〉P does
not depend on time.

In order to employ the standard formulation of indefinite metric quantum the-
ories [183] for a PT -symmetric model we proceed as follows [116].

(1) We split the space H of state-vectors into the subspaces H± := {ψ ∈
H | sgn(〈ψ |ψ〉P ) = ±}, where sgn(a) := a

|a| if a is a nonzero real number and
sgn(0) := 0. H± are orthogonal subspaces in the sense that for all ψ± ∈ H±,
〈ψ− |ψ+〉P = 0.c

(2) We impose a superselection rule that forbids interactions mixing the elements of
H− and H+ and try to devise a solution for the difficult problem of providing a
physical interpretation of the theory [183, 185]. The simplest way of dealing with
this problem is to identify the elements of H+ with physical state-vectors [230,
110] and effectively discard the rest of state-vectors as representing unphysical
or ghost states.

An alternative formulation of the theory that avoids the interpretational difficul-
ties of indefinite-metric theories is the one based on the construction of a genuine
positive-definite inner product on H. This construction was initially obtained in
[144] as a by-product of an attempt to derive a necessary and sufficient condition
for the reality of the spectrum of a general Hamiltonian operator H that possesses
a complete set of eigenvectors [143–145]. Under the assumption that the spectrum
of H is discrete, one can show that it is real if and only if there is a positive-definite
inner product 〈· | ·〉+ that makes it Hermitian, i.e. 〈· |H·〉+ = 〈H· | ·〉+ [144, 145].
The proof of this statement involves an explicit construction of 〈· | ·〉+. This inner
product depends on the choice of the Hamiltonian through its eigenvectors. Hence
it is not unique [146, 148, 93, 162].

cThe assumption of the existence of such an orthogonal decomposition is referred to as “decom-
posability” of the model in indefinite-metric theories [183]. For PT -symmetric systems considered
in the literature, this assumption is valid if there is a complete basis of common eigenvectors of
the Hamiltonian and PT .
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In [37] the authors propose a different approach to the problem of identifying an
appropriate inner product for the PT -symmetric Hamiltonians such as (1). They
introduce a generic symmetry of these Hamiltonians which they term as C-symmetry
and construct a class of positive-definite inner products, called the CPT -inner prod-
ucts, that, as we show in Subsec. 3.4, turn out to coincide with the inner products
〈· | ·〉+ [148, 157]. The approach of [37] may be related to a much older construc-
tion originally proposed in the context of the indefinite-metric quantum theories
[183, 185]. It involves the following two steps.

(1) Suppose that H = H+⊕H− where H± are the orthogonal subspaces we defined
above, and that both H± admit a basis consisting of the eigenvectors of H .

(2) Let Π : H → H be the projection operator onto H+, so that for all ψ ∈ H,
ψ+ := Πψ ∈ H+ and ψ− := ψ − ψ+ ∈ H−. Clearly Π2 = Π and Πψ− = 0.

(3) Endow H with the positive-definite inner product: (φ, ψ) := 〈φ+ |ψ+〉P −
〈φ− |ψ−〉P .

(4) Let C : H → H be defined by Cψ := ψ+−ψ−. Then, in view of the orthogonality
of H±,

(φ, ψ) = 〈φ | Cψ〉P = 〈Cφ |ψ〉P . (4)

It is not difficult to see that C = 2Π − I, where I stands for the identity operator
acting in H, i.e. the operator that leaves all the elements of H unchanged. Obvi-
ously for all ψ ∈ H±, Cψ = ±ψ. Hence, C is a grading operator associated with the
direct sum decomposition H = H+⊕H− of H. Furthermore, in view of the assump-
tion (1) above, the eigenvectors of H have a definite grading. This is equivalent to
the condition that C commutes with the Hamiltonian operator, [C, H ] = 0 [8]. It
turns out that the CPT -inner product introduced in [37] coincides with the inner
product (4).

In [37, 38], the authors use the CPT -inner product to formulate a unitary quan-
tum theory based on the PT -symmetric Hamiltonians (1). They identify the observ-
ables O of the theory with the CPT -symmetric operators,d in particular

CPT OCPT = O. (5)

This definition is motivated by the demand that the structure of the theory must not
involve mathematical operations such as Hermitian conjugation and be determined
only using physical conditions. The definition (5) does fulfil this demand,e but it

dTo ensure that the spectrum of such a CPT -symmetric operator O is real, one demands that O
has an exact CPT -symmetry, i.e. its eigenstates are left invariant under the action of CPT . This
does not however ensure the completeness of the eigenvectors of O.
eThe authors of [37] emphasize this point by stating that: “In effect, we replace the mathematical
condition of Hermiticity, whose physical content is somewhat remote and obscure, by the physical
condition of space-time and charge-conjugation symmetry.” One must note however, that in this
theory, the usual coordinate operator x no longer represents a physical observable. As a result P
does not affect a reflection in the physical space, and there is no reason why one should still refer
to PT -symmetry as the physical “space-time reflection symmetry” as done in [37, 38].
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suffers from a serious dynamical inconsistency in the sense that in the Heisenberg
picture an operator O(t) := eitHO(0)e−itH that commutes with CPT at t = 0
may not commute with this operator at t > 0. Therefore, in general, under time-
evolution an observable can become unobservable [152, 153]! This inconsistency
rules out (5) as an acceptable definition of a physical observable. As noticed in
[39, 42], it can be avoided, if one replaces the symmetry condition (5) with:

CPT OCPT = OT , (6)

where all operators are identified with their matrix representation in the coordinate-
basis and OT stands for the transpose of O. In particular, 〈x|OT |x′〉 := 〈x′|O|x〉.

The presence of the mathematical operation of transposition in (6) shows that
apparently the theory could not be defined just using “the physical condition of
space-time and charge-conjugation symmetry” as was initially envisaged [37, 38].
Note also that (6) puts an implicit and difficult-to-justify restriction on the Hamil-
tonian H . Being an observable commuting with CPT , H must satisfy HT = H ,
i.e. it is necessarily symmetric!f Therefore (6) cannot be used to determine the
observables of a theory that has a nonsymmetric Hamiltonian. The restriction to
symmetric Hamiltonians may be easily lifted, if one is willing to adopt the con-
ventional definition of the observables, namely identifying them with the operators
that are Hermitian with respect to the CPT -inner product [152, 154].

(·, O·) = (O·, ·). (7)

Indeed this definition is forced upon us by a well-known mathematical theorem
that we present in a detailed proof of the Appendix. It states that if a linear
operator O has real expectation values computed using a given inner product, then
O is necessarily Hermitian with respect to this inner product. This shows that the
requirement of the Hermiticity of observables, and in particular, the Hamiltonian
has a simple “physical” justification.g

An important motivation for considering this so-called PT -symmetric Quantum
Mechanics is provided by an interesting idea that is rooted in special relativistic
local quantum field theories (QFT). Among the most celebrated results of QFT is
the CPT -theorem. It states that every field theory satisfying the axioms of QFT is
CPT -invariant [98], where C is the charge-conjugation operator. Clearly replacing
the axiom that the Hamiltonian is Hermitian with the statement of the CPT -
theorem might lead to a generalization of QFT. The implementation of this idea
in a nonrelativistic setting corresponds to the requirement that the Hamiltonian
possesses an exact PT -symmetry. This in turn allows for the construction of a
C-operator that similarly to the charge-conjugation operator C of QFT squares
to identify and generate a symmetry of the system. The idea that this estab-
lishes a nonrelativistic analog of the CPT -theorem is quite tempting. Yet there

f In mathematical literature, the term “symmetric operator” is usually used for a different purpose,
as discussed in footnote s below. To avoid possible confusion we will not adopt this terminology.
gWhat is however not dictated by this requirement is the choice of the inner product.
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are clear indications that this is not really the case. For example, unlike the charge-
conjugation operator of QFT, C depends on the choice of the Hamiltonian. It turns
out that in fact this operator does not play the role of the relativistic charge-
conjugation operator, it is merely a useful grading operator for the Hilbert space.h

In this sense, the adopted terminology is rather unfortunate.
One of the aims of the present article is to show that PT -symmetric QM is

an example of a more general class of theories, called pseudo-Hermitian Quantum
Mechanics, in which PT -symmetry does not play a basic role and one does not
need to introduce a C-operator to make the theory well-defined. The analogs of PT
and C operators can nevertheless be defined in general [148], but they do not play
a fundamental role. All that is needed is to determine the class of non-Hermitian
Hamiltonians that are capable of generating a unitary evolution and a procedure
that associates to each member of this class a positive-definite inner product that
renders it Hermitian. It turns out that there are always an infinite class of positive-
definite inner products satisfying this condition. Each of these defines a separate
physical Hilbert space with a complete set of observables. In this way one obtains
a set of quantum systems that have the same Hamiltonian but different Hilbert
spaces. Therefore, they are dynamically equivalent but kinematically distinct.

In order to elucidate the conceptual foundations of pseudo-Hermitian QM we
will next examine some of the basic properties of the mathematical notions of
the “transpose” and “Hermitian-conjugate” of a linear operator. For clarity of the
presentation we will only consider the operators that act in the space of square-
integrable functions L2(R). The discussion may be generalized to square-integrable
functions defined on a complex contour [157].

In the literature on PT -symmetric QM, notably [37, 38, 42], the transpose OT

and Hermitian-conjugate O† of a linear operator O are respectively defined with
respect to the coordinate-basis, {|x〉}, according to

〈x1|OT |x2〉 := 〈x2|O|x1〉, (8)

〈x1|O†|x2〉 := 〈x2|O|x1〉∗, (9)

where x1, x2 are arbitrary real numbers. Therefore the terms “symmetric” and “Her-
mitian” respectively refer to the conditions 〈x1|O|x2〉 = 〈x2|O|x1〉 and 〈x1|O|x2〉∗ =
〈x2|O|x1〉. These definitions reflect the inclination to treat operators as matrices.
This is certainly permissible provided that one specifies the particular basis one
uses for this purpose. In this sense the following equivalent definitions are more
preferable.

OT :=
∫
dx1

∫
dx2〈x2|O|x1〉|x1〉〈x2|,

O† :=
∫
dx1

∫
dx2〈x2|O|x1〉∗|x1〉〈x2|.

(10)

hOne can more appropriately compare C with the chirality operator (γ5) for the Dirac spinors.
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A nice feature of (9) that is not shared with (8) is that it is invariant under the
basis transformations that map {|x〉} onto any orthonormal basis. For example one
can easily show that if (9) holds, so do

〈p1|O†|p2〉 = 〈p2|O|p1〉∗ and O† =
∫
dp1

∫
dp2〈p2|O|p1〉∗|p1〉〈p2|. (11)

This invariance under orthonormal basis transformations stems from the fact that
O† admits a basis-independent definition: It is the linear operator satisfying

〈φ |O†ψ〉 = 〈Oφ |ψ〉, (12)

i.e. the adjoint operator for O.i

The notions of “transpose” and “symmetric operator” introduced above and
employed in [37–39, 42] do not share this invariance property of “Hermitian-
conjugate” and “Hermitian operator”. For example, it is easy to see that
〈x1|(ip)|x2〉 = −〈x2|(ip)|x1〉 while 〈p1|(ip)|p2〉 = 〈p2|(ip)|p1〉. Therefore, ip is repre-
sented by a symmetric matrix in the p-basis while it is represented by an antisym-
metric matrix in the x-basis. This shows that there is no basis-independent notion
of the transpose of an operator or a symmetric operator.j

Obviously once we specify a basis, there is no danger of using definition (8). But
we must keep in mind that any theory in which one uses the notion of transposition
in the sense of (8) involves the implicit assumption that the coordinate-basis is a
preferred basis. The use of the notion of Hermitian-conjugation as defined by (9)
does not rely on such an assumption. As we will explain in the following section,
the choice of an orthonormal basis is equivalent to the choice of an inner product.
This is why one can define O† using its basis-independent defining relation (12)
which only involves the inner product 〈· | ·〉. In summary, while the use of the terms
“transpose” and “symmetric operator” involves making a particular choice for a
preferred basis, the use of the term “Hermitian-conjugate” and “Hermitian opera-
tor” involves making a particular choice for an inner product.

In conventional QM the inner product is fixed from the outset. Hence the notions
of Hermitian-conjugation and Hermitian operator are well-defined. The opposite is
true about the notions of transposition and symmetric operator. This does not cause
any difficulty, because they never enter into quantum mechanical calculations, and
in principle one does not need to introduce them at all. We will see that the same is
the case in pseudo-Hermitian QM. In particular, in the discussion of PT -symmetric
systems, there is no need to identify physical observables using (6).

iA rigorous definition of the adjoint operator is given in Subsec. 2.2.
jOne can define a notion of the transpose of a linear operator O acting in a complex inner product
space V in terms of an arbitrary antilinear involution τ : V → V according to OT = τO†τ [6]. A
function τ : V → V is called an antilinear operator if τ(aψ + bφ) = a∗τψ + b∗τφ for all complex
numbers a, b and all elements ψ, φ of V . It is called an involution if τ2 = I, where I : V → V
is the identity operator. The choice of a basis to define OT is equivalent to the choice of an
antilinear involution τ . The notion of the transpose used in [37, 38, 42] corresponds to choosing
the time-reversal operator T as τ .
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The main reason for making a universal and preassigned choice for the inner
product in QM is the curious fact that up to unitary-equivalence there is a unique
inner product.k This means that using different inner products lead to physically
identical theories, or more correctly to different representations of a single physical
theory. In conventional QM, one eliminates the chance of employing these alterna-
tive representations by adopting the usual (L2-) inner product as the only viable
choice. The situation resembles a gauge theory in which one fixes a gauge from
the outset and then forgets about the gauge symmetry. This will have no effect on
the physical quantities computed using such a theory, but it is clearly not recom-
mended. It is quite possible that an alternative choice of gauge would facilitate a
particular calculation.

We wish to argue that because no one has ever made an independent mea-
surement of the inner product of the Hilbert space, it must be kept as a degree
of freedom of the formulation of the theory. This is the basic principle underlying
pseudo-Hermitian QM.

We will see that any inner product may be defined in terms of a certain lin-
ear operator η+. It is this so-called metric operator that determines the kine-
matics of pseudo-Hermitian quantum systems. The Hamiltonian operator H that
defines the dynamics is linked to the metric operator via the pseudo-Hermiticity
relation,

H† = η+Hη
−1
+ . (13)

We will explore some of the consequences of this equation whose significance has
not been fully noticed or appreciated in its earlier investigations, notably in the
context of the indefinite-metric quantum theories [190].

We wish to point out that there is a very large number of publications on the
subject of this article. Many of these focus on the mathematical issues related
to the investigation of the spectrum of various non-Hermitian operators or for-
malisms developed to study such problems. Here we will not deal with these issues.
The interested reader may consult the review article [80]. Another related line
of research is the mathematical theory of linear spaces with an indefinite metric
and its applications [53, 18]. This is also beyond the aim and the scope of the
present article. There are a series of review articles by Bender and his collabo-
rators [38, 42, 28–30] that also address the physical aspects of the subject. The
approach pursued in these articles is based on the use of the CPT -inner products
and the definition of observables given by (6). This restricts the domain of validity
of their results to symmetric Hamiltonians. The discussion of the classical limit of
PT -symmetric systems offered in these articles is also not satisfactory, because it
does not involve a quantization scheme that would relate classical and quantum
observables.

kThis will be explained in detail in Subsec. 2.3.
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It is our opinion that to gain a basic understanding of the subject demands a
careful study of the underlying mathematical structures without getting trapped
in the physically irrelevant mathematical details and technicalities. The need for
a comprehensive and readable treatment of basic mathematical notions and their
physical consequences has not been met by any of the previously published reviews.
In the first part of the present article (Secs. 2 and 3), we intend to address this
need. Here we only discuss the mathematical tools and results that are necessary
for addressing the conceptual issues of direct relevance to the physical aspects of
the subject. In Sec. 3, we use the mathematical machinery developed in Sec. 2 to
present a complete formulation of pseudo-Hermitian QM and its connection with
PT - and C-symmetries. The second part of the article (Secs. 4–9) aims to survey
various recent developments. In Sec. 4 we survey different methods of computing
metric operators. In Secs. 5–8 we explore systems defined on complex contours, the
classical limit of pseudo-Hermitian quantum systems, the subtleties involving time-
dependent Hamiltonians and the path-integral formulation of the theory, and the
quantum Brachistochrone problem, respectively. In Sec. 9 we discuss some of the
physical applications of pseudo-Hermitian Hamiltonians, and in Sec. 10 we present
our concluding remarks.

2. Mathematical Tools and Conceptual Foundations

In this section, we survey the necessary mathematical tools and elaborate on a
number of conceptual issues that are helpful in clarifying various existing miscon-
ceptions on the subject. We also offer a thorough discussion of the motivation for
considering a more general formulation of QM.

One of the axioms of QM is that pure physical states of a quantum system are
rays in a Hilbert space H. Each ray may be determined in a unique manner by a
nonzero element ψ of H which we call a state-vector. The physical quantities asso-
ciated with a pure state are computed using a corresponding state-vector and the
inner product of the Hilbert space. We begin our discussion by a precise descrip-
tion of Hilbert spaces, inner products, bases, Hermitian and unitary operators,
biorthonormal systems, and their relevance to our investigation.

We will use the following notations and conventions: R,R+,C,Z,Z+,N denote
the sets of real numbers, positive real numbers, complex numbers, integers, posi-
tive integers and non-negative integers (natural numbers), respectively. The symbol
“:=” means that the left-hand side is defined to be the right-hand side, “=:” means
that the converse is true, and “∈” and “⊆” respectively stand for “is an element of”
and “is a subset of”. Throughout this article we will only consider time-independent
Hamiltonian operators unless otherwise explicitly stated.

2.1. Hilbert spaces and Riesz bases

Consider a complex vector space V and a function 〈· | ·〉 : V × V → C that assigns
to any pair ψ, φ of elements of V a complex number 〈ψ |φ〉. Suppose that 〈· | ·〉 has
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the following properties:

(i) It is positive-definite, i.e. for all nonzero elements ψ of V , 〈ψ |ψ〉 is a positive
real number, and it vanishes if and only if ψ = 0, where we use 0 also for the
zero vector.

(ii) It is Hermitian, i.e. for any pair ψ, φ of elements of V , 〈ψ |φ〉∗ = 〈φ |ψ〉.
(iii) It is linear in its second slot, i.e. for all ψ, φ, χ ∈ V and all a, b ∈ C, 〈ψ | aφ+

bχ〉 = a〈ψ |φ〉 + b〈ψ |χ〉.

Then 〈· | ·〉 is called an inner productl on V , and the pair (V , 〈· | ·〉) is called an inner
product space.

An inner product 〈· | ·〉 on V assigns to each element ψ of V a non-negative real
number, ‖ψ‖ :=

√
〈ψ |ψ〉, that is called the norm of ψ. We can use the norm to

define a notion of distance between elements of V , according to ‖ψ−φ‖, and develop
analysis and geometry on the inner product space (V , 〈· | ·〉).

A Hilbert space H is an inner product space which fulfills an additional technical
condition, namely that its norm defines a complete metric space, i.e. for any infinite
sequence {ψk} of elements ψk of H, the condition that limj,k→∞ ‖ψj − ψk‖ = 0
implies that {ψk} converges to an element ψ of H; limk→∞ ‖ψ − ψk‖ = 0. In other
words, a Hilbert space is a complete inner product space.

A subset S of a Hilbert space H is said to be dense, if every element of H may
be obtained as the limit of a sequence of elements of S. A Hilbert space is said to
be separable, if it has a countable dense subset. It turns out that H is separable
if and only if it has a countable basis. The latter is a sequence {χn} of linearly
independent elements of H such that the set of its finite linear combinations,

L({χn}) =

{
K∑
n=1

cnχn

∣∣∣∣∣K ∈ Z
+, cn ∈ C

}
, (14)

is a dense subset of H. For an infinite-dimensional Hilbert space H, {χn} is an
infinite sequence and the assertion that L({χn}) is a dense subset means that every
element ψ of H is the limit of a convergent series of the form

∑∞
n=1 cnχn whose

coefficient cn are assumed to be uniquely determined by ψ.m

It is not difficult to show that any finite-dimensional inner product space is both
complete and separable. In this sense infinite-dimensional separable Hilbert spaces
are natural generalizations of the finite-dimensional inner product spaces. In the
following we will use the label N to denote the dimension of the Hilbert space in
question. N = ∞ will refer to an infinite-dimensional separable Hilbert space.

An important difference between finite- and infinite-dimensional Hilbert spaces
is that the definition of a basis in a finite-dimensional Hilbert space does not involve
the inner product while the opposite is true about the infinite-dimension Hilbert

lWe use the terms “inner product” and “positive-definite inner product” synonymously.
mThis notion of basis is sometimes called a Schauder basis [236]. It is not to be confused with the
algebraic or Hamel basis, which for infinite-dimensional Hilbert spaces, is always uncountable [99].
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spaces. The requirement that (14) be a dense subset makes explicit use of the norm.
Therefore whether a given sequence of linearly independent vectors form a basis of
an infinite-dimensional Hilbert space H depends in a crucial manner on the inner
product of H.

Given a basis {χn} of a separable Hilbert space H, one can apply the Gram–
Schmidt process [198, 66] to construct an orthonormal basis, i.e. a basis {ξn}
satisfying

〈ξm | ξn〉 = δmn for all m,n ∈ {1, 2, 3, . . . , N}, (15)

where δmn denotes the Kronecker delta symbol: δmn := 0 if m 	= n and δnn := 1
for all n. For an orthonormal basis {ξn}, the coefficients cn of the basis expansion,

ψ =
N∑
n=1

cnξn, (16)

of the elements ψ of H are given by

cn = 〈ξn |ψ〉. (17)

Furthermore, in view of (15)–(17),

〈φ |ψ〉 =
N∑
n=1

〈φ | ξn〉〈ξn |ψ〉 for all φ, ψ ∈ H. (18)

In particular,

‖ψ‖2 =
N∑
n=1

|〈ξn |ψ〉|2 for all ψ ∈ H. (19)

Equation (18) implies that the operator I defined by Iψ :=
∑N
n=1〈ξn |ψ〉ξn equals

the identity operator I acting in H; I = I.n This is called the completeness relation
which in Dirac’s bracket notation takes the familiar form:

∑N
n=1 |ξn〉〈ξn| = I.

Next, we wish to examine if given a basis {ζn} of a separable Hilbert space H,
there is an inner product (· | ·) on H with respect to which {ζn} is orthonormal.
Because {ζn} is a basis, for all ψ, φ ∈ H there are unique complex numbers cn, dn
such that ψ =

∑N
n=1 cnζn and φ =

∑N
n=1 dnζn. We will attempt to determine (ψ |φ)

in terms of cn and dn.
First, consider the finite-dimensional case, N < ∞. Then, in view of Eq. (18),

the condition that {ζn} is orthonormal with respect to (· | ·) defines the latter
according to

(ψ |φ) :=
N∑
n=1

c∗ndn. (20)

nLet ψ1, ψ2 ∈ H be such that for all φ ∈ H, 〈φ |ψ1〉 = 〈φ |ψ2〉. Then 〈φ |ψ1 − ψ2〉 = 0 for all
φ ∈ H. Setting φ = ψ1 − ψ2, one then finds ‖ψ1 − ψ2‖2 = 0 which implies ψ1 = ψ2. In view of
this argument, 〈φ | Iψ〉 = 〈φ |ψ〉 for all ψ, φ ∈ H implies I ψ = ψ for all ψ ∈ H. Hence I = I.
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We can easily check that (· | ·) possesses the defining properties (i)–(iii) of an inner
product and satisfies (ζm | ζn) = δmn. It is also clear from Eq. (18) that any other
inner product with this property must satisfy (20). This shows that (· | ·) is the
unique inner product that renders {ζn} orthonormal.

The case N = ∞ may be similarly treated, but in general there is no guarantee
that the right-hand side of (20) is a convergent series. In fact, it is not difficult to
construct examples for which it is divergent. Therefore, an inner product that makes
an arbitrary basis {ζn} orthonormal may not exist. The necessary and sufficient
condition for the existence of such an inner product (· | ·) is that ψ =

∑∞
n=1 cnζn

implies
∑∞
n=1|cn|2 < ∞ for all ψ ∈ H.o Furthermore, we shall demand that the

inner product space H′ obtained by endowing the underlying vector space of H with
the inner product (· | ·) is a Hilbert space. As we will discuss in Subsec. 2.3, any
two infinite-dimensional separable Hilbert spaces, in particular H and H′, have the
same topological properties, i.e. the set of open subsets of H coincides with that of
H′. This restricts (· | ·) to be topologically equivalent to 〈· | ·〉, i.e. there are positive
real numbers c1 and c2 satisfying c1〈ψ |ψ〉 ≤ (ψ |ψ) ≤ c2〈ψ |ψ〉 for all ψ ∈ H. It
turns out that the inner product (20) that renders the basis {ζn} orthonormal and is
topologically equivalent to 〈· | ·〉 exists and is unique if and only if it is obtained from
an orthonormal basis {ξn} through the action of an everywhere-defined bounded
invertible linear operator A : H → H, i.e. ζn = Aξn. A basis {ζn} having this
property is called a Riesz basis [94, 236]. In summary, we can construct a new
separable Hilbert space H′ in which {ζn} is orthonormal if and only if it is a Riesz
basis. We will give a derivation of a more explicit form of the inner product of H′

in Subsec. 2.4.

2.2. Bounded, invertible, and Hermitian operators

Consider two Hilbert spaces H1 and H2 with inner products 〈· | ·〉1 and 〈· | ·〉2 ,
respectively, and a linear operator A that maps H1 to H2. The domain D(A) of A
is the subset of H1 such that the action of A on any element of D(A) yields a unique
element of H2. The range R(A) of A is the subset of H2 consisting of elements of the
form Aψ1 where ψ1 belongs to D(A). If D(A) = H1, one says that A has full domain,
or that it is everywhere-defined. If R(A) = H2, one says that A has full range, i.e.
it is an onto function. As an example, consider the momentum operator p acting
in H1 = H2 = L2(R), (pψ)(x) := −i� d

dxψ(x). Then D(p) consists of the square-
integrable functions that have a square-integrable derivative, and R(p), is the set
of square-integrable functions ψ2 such that ψ1(x) =

∫ x
−∞ ψ2(u)du is also square-

integrable. In particular, p is not everywhere-defined, but its domain is a dense

oIf (· | ·) exists, (20) must hold because {ζn} is orthonormal with respect to (· | ·). Hence the
left-hand side of (20) is well-defined and its right-hand must be convergent. In particular, for
φ = ψ we find that (ψ |ψ) =

P∞
n=1 |cn|2 must be finite. This establishes the necessity of the

above condition. Its sufficiency follows from the inequality: For all K ∈ Z+, |
PK

n=1 c
∗
ndn|2 ≤P∞

n=1 |cn|2
P∞

m=1 |dm|2 <∞.
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subset of L2(R). Such an operator is said to be densely-defined. All the operators
we encounter in this article and more generally in QM are densely-defined.

A linear operator A : H1 → H2 is said to be bounded if there is a positive
real number M such that for all ψ ∈ D(A), ‖Aψ‖2 ≤ M‖ψ‖1, where ‖ · ‖1 and
‖ · ‖2 are respectively the norms defined by the inner products 〈· | ·〉1 and 〈· | ·〉2.
The smallest M satisfying this inequality is called the norm of A and denoted by
‖A‖. A characteristic feature of a bounded operator is that all its eigenvalues a
are bounded by its norm, |a| ≤ ‖A‖. Furthermore, a linear operator is bounded
if and only if it is continuous [195].p Linear operators relating finite-dimensional
Hilbert spaces are necessarily bounded. Therefore, the concept of boundedness is
only important for infinite-dimensional Hilbert spaces.

A : H1 → H2 is called an invertible operator if it satisfies both of the following
conditions [105].q

(1) A is one-to-one and onto, so A−1 : H2 → H1 exists and has a full domain;
(2) A−1 is a bounded operator.

If A is bounded, one-to-one and onto, then according to a theorem due to Banach
its inverse is also bounded; it is invertible [127].r An important class of bounded
invertible operators that play a fundamental role in QM is the unitary operators.
We will examine them in Subsec. 2.3.

Next, consider a linear operator A : H1 → H2 that has a dense domain D(A).
Let D′ be the subset of H2 whose elements ψ2 satisfy the following condition: For
all ψ1 ∈ D(A), there is an element φ1 of H1 such that 〈ψ2 |Aψ1〉2 = 〈φ1 |ψ1〉1 .
Then there is a unique linear operator A† : H2 → H1 fulfilling [195]

〈ψ1 |A†ψ2〉1 = 〈Aψ1 |ψ2〉2 for all ψ1 ∈ D(A) and ψ2 ∈ D′. (21)

This operator is called the adjoint or Hermitian-conjugate of A. By construction,
D′ is the domain of A†; D(A†) = D′.

For the case H2 = H1 =: H, where H is a Hilbert space with inner product 〈· | ·〉,
a linear operator A : H → H having a dense domain D(A) is called a self-adjoint
or Hermitian operators if A† = A. In particular, D(A†) = D(A) and

〈ψ1 |Aψ2〉 = 〈Aψ1 |ψ2〉 for all ψ1, ψ2 ∈ D(A). (22)

pA function f : H1 → H2 is said to be continuous if for all ψ ∈ D(f) and every sequence {ψn} in
D(f) that converges to ψ, the sequence {f(ψn)} converges to f(ψ).
qSome authors do not require the second condition. The above definition is the most convenient
for our purposes.
rA continuous one-to-one onto function with a continuous inverse is called a homeomorphism. The
domain and range of a homeomorphism have the same topological properties. If f : H1 → H2 is
a homeomorphism relating two Hilbert spaces H1 and H1, a sequence {xn} of elements xn of H
converges to an element x ∈ H if and only if the {f(xn)} converges to f(x) in H2.
sIn some mathematics texts, e.g. [195], the term “Hermitian” is used for a more general class of
operators which satisfy (22) but have D(A) ⊆ D(A†). A more commonly used term for such an
operator is “symmetric operator”. We will avoid using this terminology which conflicts with the
terminology used in the literature on PT -symmetric QM [37, 38, 42].
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An occasionally useful property of Hermitian operators is that every Hermitian
operator having a full domain is necessarily bounded. This is known as the Hellinger–
Toeplitz theorem [195].

Hermitian operators play an essential role in QM mainly because of their spec-
tral properties [229]. In particular, their spectrumt is real, their eigenvectors with
distinct eigenvalues are orthogonal, and they yield a spectral resolution of the iden-
tity operator I. For a Hermitian operator A with a discrete spectrum the latter
takes the following familiar form, if we use the Dirac bracket notation.

I =
N∑
n=1

|αn〉〈αn|, (23)

where {αn} is an orthonormal basis consisting of the eigenvectors αn of A whose
eigenvalues an are not necessarily distinct,

Aαn = anαn, for all n ∈ {1, 2, 3, . . . , N}. (24)

Equations (23) and (24) imply that A is diagonalizable and admits the following
spectral representation

A =
N∑
n=1

an|αn〉〈αn|. (25)

Well-known analogs of (23) and (25) exist for the cases that the spectrum is not
discrete [123].

An important property that makes Hermitian operators indispensable in QM is
the fact that for a given densely-definedu linear operator A with D(A) = D(A†), the
expectation value 〈ψ |Aψ〉 is real-valued for all unit state-vectors ψ ∈ D(A) if and
only if the Hermiticity condition (22) holds [123].v This shows that in a quantum
theory that respects von Neumann’s measurement (projection) axiom, the observ-
ables cannot be chosen from among non-Hermitian operators even if they have a real
spectrum. The same conclusion may be reached by realizing that the measurement
axiom also requires the eigenvectors of an observable with distinct eigenvalues to be
orthogonal, for otherwise the reading of a measuring device that is to be identified
with an eigenvalue of the observable will not be sufficient to determine the state of
the system immediately after the measurement [175]. This is because an eigenvec-
tor that is the output of the measurement may have a nonzero component along
an eigenvector with a different eigenvalue. This yields nonzero probabilities for the
system to be in two different physical states, though one measures the eigenvalue
of one of them only!

tFor a precise definition of the spectrum of a linear operator, see Subsec. 3.3.
uObservables must have dense domains, for otherwise one can construct a state in which an
observable cannot be measured!
vA simple proof of this statement is given in the Appendix.
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Let {ξn} be an orthonormal basis of H and A be a Hermitian operator acting
in H, then according to property (ii) of the inner product and the Hermiticity
condition (22) we have

Amn := 〈ξm |Aξn〉 = 〈ξn |Aξm〉∗ = A∗
nm. (26)

This shows that A is represented in the basis {ξn}, according to

A =
N∑
n=1

Amn|ξm〉〈ξn|, (27)

using the N ×N Hermitian matrixw A := (Amn).
It is essential to realize that a Hermitian operator can be represented by a

non-Hermitian matrix in a non-orthonormal basis. This implies that having the
expression for the matrix representation of an operator and knowing the basis used
for this representation are not sufficient to decide if the operator is Hermitian. One
must in addition know the inner product and be able to determine if the basis is
orthonormal. Referring to an operator as being Hermitian or non-Hermitian (using
its matrix representation) without paying attention to the inner product of the space
it acts in is a dangerous practice.

For example, it is not difficult to check that the Hermitian matrix σ1 =
(0 1
1 0

)
represents the operator L : C2 → C2 defined by L

(z1
z2

)
:=
( z1
z1 − z2

)
in the basis B :={(1

0

)
,
(1
1

)}
. The same operator is represented in the standard basis B0 :=

{(1
0

)
,
(0
1

)}
using the non-Hermitian matrix

(1 0
1 −1

)
. We wish to stress that this information

is, in fact, not sufficient to ascertain if L is a Hermitian operator, unless we fix
the inner product on the Hilbert space C2. For instance, if we choose the standard
Euclidean inner product which is equivalent to requiring B0 to be orthonormal,
then L is a non-Hermitian operator. If we choose the inner product that makes the
basis B orthonormal, then L is a Hermitian operator. We can use (20) to construct
the latter inner product. It has the form (�z | �w) := z∗1(w1 − w2) + z∗2(−w1 + 2w2),
where �z =

(z1
z2

)
, and �w =

(w1
w2

)
.

The above example raises the following natural question. Given a linear operator
H that is not represented by a Hermitian matrix in an orthonormal basis, is there
another (non-orthonormal) basis in which it is represented by a Hermitian matrix?
This is equivalent to asking if one can modify the inner product so that H becomes
Hermitian. The answer to this question is: No, in general. As we will see in the
sequel, there is a simple necessary and sufficient condition on H that ensures the
existence of such an inner product.

2.3. Unitary operators and unitary-equivalence

Equations (17) and (18) may be employed to derive one of the essential structural
properties of separable Hilbert spaces, namely that up to unitary-equivalence they

wA square matrix M is called Hermitian if its entries Mmn satisfy Mmn = M∗
nm for all m and n.
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are uniquely determined by their dimension. To achieve this we first explain how
one compares inner product spaces. Two inner product spaces H1 and H2 with
inner products 〈· | ·〉1 and 〈· | ·〉2 are said to be unitary-equivalent, if there is an
everywhere-defined onto linear operator U : H1 → H2 such that for every φ1, ψ1 in
H1 we have

〈Uφ1 |Uψ1〉2 = 〈φ1 |ψ1〉1 . (28)

Such an operator is called a unitary operator. In view of (12) and (28), we have

U †U = I1, (29)

where I1 denotes the identity operator acting on H1. One can use (28) and the
ontoness property of U to show that U is an invertible operator and its inverse
U−1, that equals U †, is also unitary.

Unitary-equivalence is an equivalence relation.x Therefore to establish the
unitary-equivalence of all N -dimensional separable Hilbert spaces, it suffices to
show that all of them are unitary-equivalent to a chosen one. The most convenient
choice for the latter is the Hilbert space

HN
0 =

{
CN for N 	= ∞
2 for N = ∞,

where CN is the set of N -dimensional complex column vectors endowed with
the standard Euclidean inner product 〈�w |�z 〉 := �w∗ · �z, a dot denotes the usual
dot product, 2 is the set of square-summable sequences, 2 := {{cn} | cn ∈
C,
∑∞

n=1 |cn|2 < ∞}, equipped with the inner product: 〈{c̃n}|{cn}〉 :=
∑∞

n=1 c̃
∗
ncn,

and {c̃n}, {cn} ∈ 2. Now, let H be any N -dimensional separable Hilbert space
with inner product (· | ·), {ξn} be an orthonormal basis of H, and U : H → HN

0 be
defined by U(ψ) := {(ξn |ψ)} for all ψ in H. It is not difficult to see that U is an
everywhere-defined and onto linear map. Furthermore in view of (18) it satisfies,
〈Uφ |Uψ〉 =

∑N
n=1(ξn |φ)∗(ξn |ψ) = (φ |ψ), for all φ, ψ ∈ H. Hence, (28) holds, U

is a unitary operator, and H is unitary-equivalence to HN
0 .

For a quantum system having R as its configuration space, one usually uses
the coordinate wave functions ψ(x) to represent the state-vectors. The latter are
elements of the Hilbert space L2(R) of square-integrable complex-valued functions
ψ : R → C. The inner product of L2(R) has the form

〈φ |ψ〉 =
∫ ∞

−∞
dx φ(x)∗ψ(x). (30)

A concrete example for an orthonormal basis {ξn} for L2(R) is the basis consist-
ing of the standard normalized eigenfunctions ξn = ψn−1 of the unit simple har-
monic oscillator Hamiltonian [139], or equivalently that of the operator − d2

dx2 + x2,

xThis means that every inner product space is unitary-equivalent to itself; if H1 is unitary-
equivalent to H2, so is H2 to H1; if H1 is unitary-equivalent to H2 and H2 is unitary-equivalent
to H3, then H1 is unitary-equivalent to H3.
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i.e. ψm(x) = π− 1
4 (m!2m)−

1
2 e−

x2
2 Hm(x), where Hm(x) = e

x2
2 (x − d

dx)me−
x2
2 are

Hermite polynomials and m ∈ N. For this example, switching from the coordinate-
representation of the state-vectors to their representation in terms of the energy
eigenbasis of the above harmonic oscillator corresponds to affecting the unitary
operator U .

Unitary operators have a number of important properties that follow from (28).
For example if U : H1 → H2 is a unitary operator relating two separable Hilbert
spaces H1 and H2, then

(1) U is an everywhere-defined, bounded, and invertible operator.
(2) If {ξn} is an orthonormal basis of H1, then {Uξn} is an orthonormal basis

of H2.y

(3) Let A1 : H1 → H1 be a Hermitian operator with domain D(A1). Then UA1U
† :

H2 → H2 is a Hermitian operator with domain U(D(A1)) = {Uψ1 ∈ H2 |ψ1 ∈
D(A1)}.

A direct consequence of statement 1 above and the fact that the inverse of a unitary
operator is unitary is that unitary operators are homeomorphisms.z As a result, all
N -dimensional separable Hilbert spaces have identical topological properties. In
particular, if two separable Hilbert spaces H1 and H2 share an underlying vector
space, a sequence {xn} converges to x in H1 if and only if it converges to x in H2.

Next, we recall that every quantum system s is uniquely determined by a separa-
ble Hilbert space H that determines the kinematic structure of s and a Hamiltonian
operator H : H → H that gives its dynamical structure via the Schrödinger equa-
tion. Let s1 and s2 be quantum systems corresponding to the Hilbert spaces H1,H2

and the Hamiltonians H1 : H1 → H1, H2 : H2 → H2. By definition the observables
of the system si, with i ∈ {1, 2}, are Hermitian operators Oi : Hi → Hi. s1 and
s2 are physically equivalent, if there is a one-to-one correspondence between their
states and observables in such a way that the physical quantities associated with
the corresponding states and observables are identical. Such a one-to-one corre-
spondence is mediated by a unitary operator U : H1 → H2 according to

ψ1 → ψ2 := Uψ1 O1 → O2 := UO1U
†. (31)

In particular, if ψi(t) is an evolving state-vector of the system si, i.e. it is a solution
of the Schrödinger equation i� d

dtψi(t) = Hiψi(t), we have ψ2(t) = Uψ1(t). The
necessary and sufficient condition for the latter is H2 = UH 1U

†. This observation
motivates the following theorem.

Theorem 1. As physical systems s1 = s2, if there is a unitary operator U : H1 →
H2 satisfying H2 = UH 1U

†.

yThe converse is also true in the sense that given an orthonormal basis {ξ′n} of H2 there is a
unique unitary operator U : H1 → H2 such that ξ′n = Uξn for all n ∈ {1, 2, . . . , N}.
zSee footnote r for the definition.
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To prove this assertion we recall that all physical quantities in QM may be
expressed as expectation values of observables. Suppose that such a unitary oper-
ator exists, and let us prepare a state of s1 that is represented by ψ1 ∈ H1

and measure the observable O1. The expectation value of this measurement is
given by

〈ψ1 |O1ψ1〉1
〈ψ1 |ψ1〉1

=
〈U †ψ2 |U †O2Uψ1〉1
〈U †ψ2 |U †ψ2〉1

=
〈ψ2 |O2ψ2〉2
〈ψ2 |ψ2〉2

, (32)

where 〈· | ·〉i is the inner product of Hi, and we have used (31) and the fact that
U † is also a unitary operator. Equations (32) show that the above measurement
is identical with measuring O2 in a state of s2 represented by the state-vector ψ2.
This argument is also valid for the case that ψ1 is an evolving state-vector. It shows
that the existence of U implies the physical equivalence of s1 and s2.aa

If the hypothesis of Theorem 1 holds, i.e. there is a unitary operator U : H1 →
H2 satisfying H2 = UH 1U

†, we say that the pairs (H1, H1) and (H2, H2) and the
quantum systems they define are unitary-equivalent.

In conventional QM one mostly considers unitary operators that act in a sin-
gle Hilbert space H. These generate linear transformations that leave the inner
product of the state-vectors invariant. They form the unitary group U(H) of the
Hilbert space which includes the time-evolution operator e−itH/� as a one-parameter
subgroup.bb Given a quantum system s with Hamiltonian H , one may use the
unitary operators U ∈ U(H) to generate unconventional unitary-equivalent sys-
tems s

U
having the same Hilbert space. If x and p are the standard position and

momentum operators of s, the position, momentum, and Hamiltonian operators
for s

U
are respectively given by x

U
:= UxU †, p

U
:= UpU †, and H

U
:= UHU †.

The transformation x → x
U
, p → p

U
and H → H

U
is the quantum ana-

log of a classical time-independent canonical transformation. Therefore, unitary
transformations generated by the elements of U(H) play the role of canonical
transformations.

2.4. Biorthonormal systems

Let {ψn} be a basis of an N -dimensional separable Hilbert space H, with N ≤ ∞,
and {ξn} be the orthonormal basis obtained by performing the Gram–Schmidt
process on {ψn}. Because {ψn} is a basis, there are unique complex numbers Bmn ∈
C such that for all m ∈ {1, 2, 3, . . . , N}

ξm =
N∑
n=1

Bnmψn, (33)

aaThe converse of Theorem 1 can be formulated similarly to the Wigner’s symmetry theorem
[231, p. 91].
bbAll possible symmetry, dynamical, and kinematic groups are also subgroups of U(H) [142].
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and because {ξn} is an orthonormal basis,

ψn =
N∑
k=1

〈ξk |ψn〉ξk, (34)

for all n ∈ {1, 2, 3, . . . , N}. If we substitute (34) in (33) and use the orthonormality
of ξn, we find

∑N
n=1Bnm〈ξj |ψn〉 = δmj for all m, j ∈ {1, 2, 3, . . . , N}. This shows

that the N ×N matrix B = (Bmn) is invertible and the entries of B−1 are given by
B−1
mn = 〈ξm |ψn〉. We can use this relation to express (34) in the form

ψn =
N∑
k=1

B−1
kn ξk. (35)

This equation suggests that the vectors φm defined by

φm :=
N∑
j=1

B∗
mjξj for all m ∈ {1, 2, 3, . . . , N}, (36)

fulfil

〈φm |ψn〉 = δmn for all m,n ∈ {1, 2, 3, . . . , N}. (37)

Furthermore, employing (16), (35), and (36), we can show that for all ψ ∈ H,∑N
n=1〈φ |ψ〉ψn = ψ. We can use Dirac’s bracket notation to express this identity as

N∑
n=1

|ψn〉〈φn| = I. (38)

This is a generalization of the more familiar completeness relation (23).
A sequence {(ψn, φn)} of ordered pairs of elements of H that satisfy (37) is called

a biorthonormal system [201, 205, 236]. A biorthonormal system satisfying (38) is
said to be complete.

Let {ψn} be a basis of a separable Hilbert space H, and {φn} be a sequence in
H such that {(ψn, φn)} is a complete biorthonormal system. Then, one can show
that {φn} is the unique sequence with this property and that it is necessarily a
basis of H [236]. {φn} is called the biorthonormal basis associated with {ψn}, and
the biorthonormal system {(ψn, φn)} is called a biorthonormal extension of {ψn}.

If N <∞, the right-hand side of (36) is well-defined and the above construction
yields the biorthonormal basis {φn} associated with every basis {ψn} of H. If N =
∞, {φm} can be constructed provided that the right-hand side of (36) converges.
This is the case if and only if

∞∑
j=1

|Bmj |2 <∞ for all m ∈ Z
+. (39)

A theorem due to Bari [94] states that given a basis {ψn}, the biorthonormal
system {(ψn, φn)} exists and

∑∞
n=1 |〈ψn|ψ〉|2 and

∑∞
n=1 |〈φn|ψ〉|2 both converge
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for all ψ ∈ H, if and only if {ψn} is a Riesz basis, i.e. there are an orthonormal
basis {χn} and an everywhere-defined bounded invertible operator A : H → H
such that ψn = Aχn.cc In this case {φn} is also a Riesz basis, and {(ψn, φn)} is the
unique biorthonormal extension of {ψn} [94, 201, 236].

The coefficients of the expansion of a vector ψ ∈ H in a Riesz basis {ψn} can
be expressed in terms of its biorthonormal basis {φn}. Given ψ =

∑N
n=1 cnψn we

have, in light of (37), cn = 〈φn |ψ〉. Hence, for all ψ ∈ H,

ψ =
N∑
n=1

〈φn |ψ〉ψn. (40)

Clearly the roles of {φn} and {ψn} are interchangeable. In particular,∑N
n=1 |φn〉〈ψn| = I and ψ =

∑N
n=1〈ψn |ψ〉φn for all ψ ∈ H.

Let {ψn} be a Riesz basis and {(ψn, φn)} be its biorthonormal extension. As we
explained in Subsec. 2.1, we can construct a unique inner product (· | ·) on H that
makes a Riesz basis orthonormal. We can use (20) and (40) to obtain the following
simplified expression for this inner product.

(ψ |φ) :=
N∑
n=1

〈ψ |φn〉〈φn |φ〉 = 〈ψ | η+φ〉, for all ψ, φ ∈ H, (41)

where we have introduced the operator η+ : H → H according to

η+ψ :=
N∑
n=1

〈φn |ψ〉φn. (42)

Using Dirac’s bracket notation we can write it in the form

η+ =
N∑
n=1

|φn〉〈φn|. (43)

Because {ψn} is a Riesz basis, the inner product (41) is defined for all ψ, φ ∈ H.
This shows that η+ is everywhere-defined. Furthermore, it is not difficult to see, by
virtue of (37), that it has an everywhere-defined inverse given by

η−1
+ :=

N∑
n=1

|ψn〉〈ψn|. (44)

This shows that η+ is a one-to-one onto linear operator. As suggested by (43) it
is also Hermitian, which in particular implies that both η+ and η−1

+ are bounded.
Moreover, in view of (43), 〈ψ | η+ψ〉 =

∑N
n=1 |〈φn |ψ〉|2, for all ψ ∈ H. Therefore η+

is a positive operator. Finally because it is an invertible operator, its spectrum is

ccAs any pair of orthonormal bases are related by a unitary operator U : H → H which is an
everywhere-defined bounded invertible operator, one can take χn = ξn without loss of generality.
This allows for the identification of the infinite matrix B with the matrix representation of A−1

in the basis {ξn}, for we have Bmn = 〈ξm |A−1ξn〉.
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strictly positive. A Hermitian operator with this property is called a positive-definite
operator. The operator η+ constructed above is an everywhere-defined, bounded,
positive-definite and invertible operator. A linear operator with these properties is
called a metric operator.

2.5. Metric operators and conventional QM

Consider a pair of separable Hilbert spaces H1 and H2 that are identical as vector
spaces but have different inner products. We will denote the inner products of H1

and H2 by 〈· | ·〉1 and 〈· | ·〉2 , respectively, and view 〈· | ·〉2 as an alternative inner
product on H1. Our aim is to find a way to express 〈· | ·〉2 in terms of 〈· | ·〉1 . We
will first consider the case that the underlying vector space V of both H1 and H2

is finite-dimensional, i.e. N <∞.
Let {ξn} be an orthonormal basis of H1. As we argued above, it satisfies the

completeness relation:
∑N
n=1 |ξn〉11〈ξn| = I, where I is the identity operator of V.

In general, {ξn} is not an orthonormal basis of H2 and the operator

η+ :=
N∑
n=1

|ξn〉2 2〈ξn|, (45)

does not coincide with I. Equation (45), which we can express in the more conven-
tional form:

η+ψ :=
N∑
n=1

〈ξn |ψ〉2ξn, for all ψ ∈ V , (46)

defines η+ as a linear operator η+ : V → V having a full domain.
Now, let φ be an arbitrary element of V . In view of (16), we can express it as

φ =
N∑
m=1

〈ξm |φ〉1ξm. (47)

Using Eqs. (46), (47) and the properties (ii) and (iii) shared by both the inner
products, we can easily show that η+ fulfils

〈φ |ψ〉2 = 〈φ | η+ψ〉1 for all ψ, φ ∈ V . (48)

Employing properties (i) and (ii) of 〈· | ·〉2, we can also verify that

〈φ | η+ψ〉∗1 = 〈ψ | η+φ〉1 for all ψ, φ ∈ V , (49)

〈ψ | η+ψ〉1 > 0 for all nonzero ψ ∈ V . (50)

Equation (49) shows that η+ is a Hermitian operator acting in H1, in particular
it has a real spectrum. Equation (50) implies that indeed the spectrum of η+ is
strictly positive; η+ is a positive-definite operator.

If H1 and H2 are infinite-dimensional, the sum appearing in (46) stands for an
infinite series and we must address the issue of its convergence. The convergence of
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this series is equivalent to the requirement that
∑∞
n= |〈ξn |ψ〉2 |2 <∞ for all ψ ∈ V .

According to the above-mentioned theorem of Bari this requirement is fulfilled
provided that {ξn} is a Riesz basis of H2. Under this assumption (46) defines a linear
operator η+ acting in H1 and satisfying (48). It is a positive-definite (in particular
Hermitian) operator with a full domain. Being Hermitian and everywhere-defined
it is also necessarily bounded.

Next, we exchange the roles of H1 and H2. This gives rise to an everywhere-
defined bounded positive-definite operator η′+ acting in H2 such that 〈φ |ψ〉1 =
〈φ | η′+ψ〉2 for all ψ, φ in V . Combining this equation and (48) yields 〈φ |ψ〉1 =
〈φ | η+η′+ψ〉1 for all ψ, φ in V . This in turn implies that η′+η+ = I.dd Because η′+
is a bounded operator with a full domain, η+ is an invertible operator with inverse
η−1
+ = η′+.ee Therefore η+ is a metric operator.

The above construction of the metric operator η+ is based on the choice of an
orthonormal basis {ξn} of H1. We will next show that indeed η+ is independent of
this choice. Let η′+ : V → V be an everywhere-defined linear operator satisfying

〈φ |ψ〉2 = 〈φ | η′+ψ〉1 for all ψ, φ ∈ V . (51)

Equations (48) and (51) show that 〈φ | (η′+ − η+)ψ〉1 = 0 for all ψ, φ ∈ V . In view
of the argument presented in footnote n, this implies η′+ψ = η+ψ for all ψ ∈ V , i.e.
η′+ = η+. This establishes the uniqueness of the metric operator η+ which in turn
means that the inner products that make a complex vector space V into a separable
Hilbert space are in one-to-one correspondence with the metric operators η+ acting
in one of these Hilbert spaces.

To employ the characterization of the inner products in terms of metric operators
we need to select a Hilbert space H. We will call this Hilbert space a reference Hilbert
space. We will always fix a reference Hilbert space and use its inner product 〈· | ·〉 to
determine if a given linear operator acting in V is Hermitian or not. The following
are some typical examples.

• For systems having a finite number (N) of linearly independent state-vectors, i.e.
when V = C

N , H is defined by the Euclidean inner product, 〈�φ | �ψ〉 := �φ∗ · �ψ, for
all �φ, �ψ ∈ CN .

• For systems whose configuration space is a differentiable manifold M with an
integral measure dµ(x),V is the space L2(M) of all square-integrable functions ψ :
M → C and H is defined by the L2-inner product: 〈φ |ψ〉 :=

∫
M φ(x)∗ψ(x)dµ(x),

for all φ, ψ ∈ L2(M). The systems whose configuration space is a Euclidean space
(M = Rd) or a complex contour (M = Γ) belong to this class. We will discuss
the latter systems in Sec. 5.

ddThe proof uses the argument given in footnote n.
eeIf we use the prescription of Subsec. 2.1 to obtain the inner product (· | ·) on H2 that renders
the Riesz basis {ξ1} orthonormal, we find by its uniqueness that (· | ·) = 〈· | ·〉1 . According to (41),
there is an everywhere-defined bounded invertible operator η̃+ such that 〈· | ·〉1 = 〈· | η̃+·〉2 . It is
given by η̃+ = η−1

+ .
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In summary, given a separable Hilbert space H with inner product 〈· | ·〉, we can
characterize every other inner product on H by a metric operator η+ : H → H
according to

〈· | ·〉η+
:= 〈· | η+·〉. (52)

Each choice of η+ defines a unique separable Hilbert space Hη+
. Because η+ is a

positive-definite operator, we can use its spectral representation to construct its
positive square root ρ :=

√
η
+
. As a linear operator acting in H, ρ is a Hermitian

operator satisfying ρ2 = η+. We can use this observation to establish

〈φ |ψ〉η+ = 〈φ | η+ψ〉 = 〈ρ†φ | ρψ〉 = 〈ρ φ | ρψ〉, for all φ, ψ ∈ H. (53)

This relation shows that as a linear operator mapping Hη+ onto H, ρ is a unitary
operator.ff It provides a realization of the unitary-equivalence of the Hilbert spaces
Hη+

and H.
In ordinary QM one fixes the physical Hilbert space of the system to be one of the

reference Hilbert spaces listed above and develops a theory based on this preassigned
Hilbert space. The argument that the unitary-equivalence of all separable Hilbert
spaces justifies this convention is not quite acceptable. For example, although for
all d ∈ Z+, L2(Rd) is unitary-equivalent to L2(R), we never use L2(R) to describe
a system having more than one real degree of freedom. The choice of the particular
Hilbert space should in principle be determined by physical considerations or left as
a freedom of the formulation of the theory. In view of lack of a direct measurement
of the inner product or the associated metric operator, we propose to adopt the
second option. We will see that this does not lead to a genuine generalization
of QM, but reveals a set of alternative and equally useful representations of QM
which could not be utilized within its conventional formulation. Furthermore, the
introduction of the freedom in choosing the metric operator may be used as an
interesting method of extending QM by relaxing some of the restrictions put on
the metric operator. Indeed the indefinite-metric quantum theories are examples of
such a generalization.

3. Pseudo-Hermitian QM: Ingredients and Formalism

3.1. Quasi-Hermitian versus pseudo-Hermitian QM

To the best of our knowledge, the first publication investigating the consequences
of the freedom in the choice of the metric operator is the article by Scholtz, Geyer
and Hahne [207] in which the choice of the metric operator is linked to that of
an irreducible set of linear operators. The latter is any (minimal) set S of oper-
ators Oα acting in a vector space V that do not leave any proper subspace of

ffStrictly speaking (53) shows that ρ is an isometry. However, in view of the fact that η+ is
invertible, so does ρ. This implies that ρ : Hη+

→ H is a genuine unitary operator.
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V-invariant, i.e. the only subspace V ′ of V that satisfies: “Oα ∈ S and ψ ∈ V ′ imply
Oαψ ∈ V ′,” is V .

The approach pursued in [207] involves using the physical characteristics of a
given system to determine an irreducible set of operators (that are to be identified
with the observables of the theory) and employing the latter to fix a metric operator
and the associated inner product of the Hilbert space. We will call this formalism
quasi-Hermitian Quantum Mechanics. The main problem with this formalism is
that it is generally very difficult to implement. This stems from the fact that the
operators belonging to an irreducible set must in addition be compatible, i.e. there
must exist an inner product with respect to which all the members of the set are
Hermitian. In order to use this formalism to determine the inner product, one must
in general employ a complicated iterative scheme.

• Select a linear operator O1 with a complete set of eigenvectors and a real
spectrum;

• Find the set U1 of all possible metric operators that make O1 Hermitian, and
select a linear operator O2, linearly independent of O1, from among the linear
operators that are Hermitian with respect to the inner product defined by some
η+ ∈ U1;

• Find the set U2 of all possible metric operators that make O2 Hermitian, and
select a linear operator O3, linearly independent of O1 and O2, from among the
linear operators that are Hermitian with respect to the inner product defined by
some η+ ∈ U1 ∩ U2, where ∩ stands for the intersection of sets;

• Repeat this procedure until the inner product (respectively, metric operator η+)
is fixed up to a constant coefficient.

As we see, in trying to employ quasi-Hermitian QM, one needs a procedure to
compute the most general metric operator associated with a given diagonalizable
linear operator with a real spectrum. This is the main technical tool developed
within the framework of pseudo-Hermitian QM.

Pseudo-Hermitian QM differs from quasi-Hermitian QM in that, in the former,
one choosesO1 to be the Hamiltonian, finds U1 and leaves the choice ofO2 arbitrary,
i.e. identifies all the operators O that are Hermitian with respect to the inner
product associated with some unspecified metric operator η+ belonging to U1. The
metric operator η+ fixes a particular inner product and defines the “physical Hilbert
space” Hphys of the system. The “physical observables” are the Hermitian operators
O acting in Hphys. We can use the unitary-equivalence of Hphys and H realized by
ρ :=

√
η
+

to construct the physical observables O using those of the conventional
QM, i.e. Hermitian operators o acting in the reference Hilbert space H. This is done
according to [152, 175]

O = ρ−1oρ. (54)
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Note that as an operator mapping Hphys onto H, ρ is a unitary operator. Hence
O is a Hermitian operator acting in Hphys if and only if o is a Hermitian operator
acting in H.

For instance, let H = L2(Rd) for some d ∈ Z+. Then we can select the usual
position xi and momentum pi operators to substitute for o in (54). This defines a
set of basic physical observables,

Xi := ρ−1xiρ, Pi := ρ−1piρ, (55)

which we respectively call the η+-pseudo-Hermitian position and momentum oper-
ators. They furnish an irreducible unitary representation of the Weyl–Heisenberg
algebra,

[Xi, Xj ] = [Pi, Pj ] = 0, [Xi, Pj ] = �δijI, for all i, j ∈ {1, 2, . . . , d}. (56)

In principle, we can express the Hamiltonian H as a function of Xi and Pi and
attempt to associate a physical meaning to it by devising a quantum-to-classical
correspondence principle. One way of doing this is to define the underlying classical
Hamiltonian Hc for the system as

Hc(�xc, �pc) := lim
�→0

H( �X, �P )
∣∣∣ �X→�xc
�P→�pc

, (57)

where �w := (w1, w2, . . . , wd)T for �w = �X, �P , �xc, �pc; and �xc and �pc stand for classical
position and momentum variables. Supposing that the right-hand side of (57) exists,
one may reproduce the quantum system described by the Hilbert space Hphys and
Hamiltonian H by quantizing the classical system corresponding to Hc according to

�xc → �X, �pc → �P , {·, ·}c → −i�−1[·, ·], (58)

where {·, ·}c and [·, ·] stand for the Poisson bracket and the commutator, respec-
tively. This is called the η+-pseudo-Hermitian canonical quantization scheme
[175, 158].

The quantum system described by Hphys and H admits a representation in
conventional QM in which the Hilbert space is H = L2(Rd), the observables are
Hermitian operators acting in H, and the Hamiltonian is given by

h := ρHρ−1. (59)

Because ρ : Hphys → H is unitary, so is its inverse ρ−1 : H → Hphys. This in turn
implies that h is a Hermitian operator acting in H. We will call the representation
of the quantum system that is based on the Hermitian Hamiltonian h the Her-
mitian representation. In this representation, we can proceed employing the usual
prescription for identifying the underlying classical Hamiltonian, namely as

Hc(�xc, �pc) := lim
�→0

h(�x, �p )
∣∣∣
�x→�xc
�p→�pc

. (60)
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Note that this relation is consistent with (57), because in view of (55) and (59),
h = f(�x, �p ) if and only if H = f( �X, �P ), where we suppose that f : R

2d → C is a
piecewise real-analytic function.

Each choice of a metric operator η+ ∈ U1 corresponds to a particular quantum
system with an associated Hermitian representation. One can, in principle, con-
fine his (her) attention to this representation which can be fully understood using
the conventional QM. The main disadvantage of employing the Hermitian repre-
sentation is that, in general, the Hamiltonian h is a terribly complicated nonlocal
operator. Therefore, the computation of the energy levels and the description of
the dynamics are more conveniently carried out in the pseudo-Hermitian represen-
tation. In contrast, it is the Hermitian representation that facilitates the computa-
tion of the expectation values of the physical position and momentum operators as
well as that of the localized states in physical position or momentum spaces. See
[175, 158, 159, 162] for explicit examples.

3.2. Pseudo-Hermitian and pseudo-metric operators

Definition 1. A linear operator A : H → H acting in a separable Hilbert space
H is said to be pseudo-Hermitian if D(A) is a dense subset of H, and there is an
everywhere-defined invertible Hermitian linear operator η : H → H such that

A† = ηAη−1. (61)

We will refer to an operator η satisfying (61) as a pseudo-metric operator associated
with the operator A and denote the set of all such operators by MA. Clearly, A is
pseudo-Hermitian if and only if MA is nonempty. Furthermore, for every linear
operator A, MA ⊆ MI where I is the identity operator. We will call elements of
MI pseudo-metric operators. Because they are Hermitian and have full domain,
they are necessarily bounded.gg

Clearly if η1 belongs to MA, then so does ηr := rη1, for every nonzero real
number r. The scaling η1 → ηr of the pseudo-metric operators has no physical
significance. It signifies a spurious symmetry that we will eliminate by restricting our
attention to pseudo-metric operators η whose spectrum σ(A) is bounded above by 1,
i.e. max[σ(A)] = 1.hh The latter form a subset of MA which we will denote by UA.

ggThe definition of a pseudo-Hermitian operator given in [143] requires η to be a Hermitian
automorphism. This is equivalent to the definition given above because of the following. Firstly, an
automorphism is, by definition, everywhere-defined. Hence, if it is Hermitian, it must be bounded.
Secondly because the inverse of every Hermitian automorphism is a Hermitian automorphism, η−1

is everywhere-defined and bounded, i.e. η is invertible. The fact that every everywhere-defined
invertible operator is an automorphism is obvious.
hhFor a given η1 ∈ MA there always exists r� ∈ R such that the spectrum of ηr� is bounded above
by 1. This follows from the fact that because η1 is an invertible bounded self-adjoint operator,
its spectrum σ(η1) is a compact subset of R excluding zero [127]. Let α1 and α2 be respectively
the minimum and maximum values of σ(η1). If α2 > 0, we take r� := α−1

2 ; if α2 < 0, we take

r� := −α−1
1 .
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In general, either UA is the empty set and A is not pseudo-Hermitian or UA
is an infinite setii; the pseudo-metric operator associated with a pseudo-Hermitian
operator is not unique. To see this, let η ∈ UA, B : H → H be an everywhere-
defined invertible bounded operator commuting with A, and η̃ := B†ηB. Then
B† is an everywhere-defined bounded operator [235] commuting with A†. These
in turn imply that η̃ is an everywhere-defined invertible Hermitian operator which
in view of (61) satisfies η̃Aη̃−1 = B†ηBAB−1η−1B−1† = B†A†B−1† = A†, i.e.
η̃ ∈ MA. Clearly there is an infinity of choices for B defining an infinite set of
pseudo-metric operators of the form B†ηB. It is not difficult to observe that upon
making appropriate scaling of these pseudo-metric operators one can construct an
infinite set of elements of UA, i.e. UA is an infinite set.

The nonuniqueness of pseudo-metric operators associated with a pseudo-
Hermitian operator motivates the following definition.

Definition 2. Let A be a pseudo-Hermitian operator acting in H and η ∈ MI be
a pseudo-metric operator. Then A is said to be η-pseudo-Hermitian if η ∈ MA.

Clearly, in order to determine whether a pseudo-Hermitian operator A is
η-pseudo-Hermitian one must know both A and η. It is quite possible that a pseudo-
Hermitian operator fails to be η-pseudo-Hermitian for a given η ∈ MI .jj

Given a pseudo-Hermitian operator A, the set MA may or may not include a
positive-definite element η+. If such a positive-definite element exists, we can use
it to construct the inner product

〈· | ·〉η+ := 〈· | η+·〉 (62)

that renders A Hermitian,

〈· |A·〉η+ = 〈A· | ·〉η+ . (63)

This means that if we endow the underlying vector space V of H with the inner
product (62), we find a separable Hilbert space H

η+
such that A : H

η+
→ H

η+

is Hermitian. In particular the spectrum σ(A) of A is real. If σ(A) happens to
be discrete, we can construct an orthonormal basis {ψn} of H

η+
consisting of the

eigenvectors of A. As a sequence of elements of H, {ψn} is a Riesz basis. Hence
A : H → H is diagonalizable. This shows that for a densely-defined operator having
a discrete spectrum, the condition that it is a diagonalizable operator having a real
spectrum is necessary for the existence of a metric operator η+ among the elements
of MA. The existence of η+, in particular, implies that MA is nonempty. Hence, A
is necessarily pseudo-Hermitian.

iiThis is true unless the Hilbert space is one-dimensional.
jjThe term “η-pseudo-Hermitian operator” is used to emphasize that one works with a particular
pseudo-metric operator. It coincides with the notion of a “J-Hermitian operator” used by mathe-
maticians [192, 18] and the old notion of a “pseudo-Hermitian operator” used occasionally in the
context of indefinite-metric quantum theories [65, 223].
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It is not difficult to show that the same conditions are also sufficient for the
inclusion of a metric operator in MA [144, 145]. Suppose that A : H → H is a
densely-defined diagonalizable operator having a real spectrum. Let {ψn} be a Riesz
basis consisting of the eigenvectors of A and {(ψn, φn)} be its biorthonormal exten-
sion. Then, in view of the spectral representation of A, i.e. A =

∑N
n=1 an|ψn〉〈φn|

where an are eigenvalues of A, and the basic properties of the biorthonormal system
{(ψn, φn)}, we can easily show that η+, as defined by

η+ :=
N∑
n=1

|φn〉〈φn|, (64)

is a positive-definite operator belonging to MA. As we explained in Subsec. 2.4,
this is the unique metric operator whose inner product makes {ψn} orthonormal.

Again if MA includes a metric operator η+, then η̃+ = B†η+B for any
everywhere-defined, bounded, invertible operator B commuting with A is also a
metric operator belonging to MA. This shows that the subset M+

A of MA that con-
sists of metric operators is either empty or has an infinity of elements [146, 148].
The same holds for U+

A := M+
A ∩ UA. In summary, for a Hilbert space with dimen-

sion N > 1, either there is no metric operator η+ satisfying (63) or there is an in-
finite set of such metric operators that in addition fulfil max[σ(η+)] = 1.

One may generalize the notion of the inner product by replacing condition (i)
of Subsec. 2.1 by the following weaker condition.

(̃i) 〈· | ·〉 is nondegenerate, i.e. given ψ ∈ H the condition “〈φ |ψ〉 = 0 for all φ ∈ H”
implies “ψ = 0”.

A function ≺· | ·� : H×H → C which satisfies conditions (̃i), (ii) and (iii) is called a
pseudo-inner product. Clearly every inner product on H is a pseudo-inner product.
The converse is not true, because in general there are pseudo-inner products ≺· | ·�
that fail to satisfy (i). This means that there may exist nonzero ψ ∈ H such that
≺ψ |ψ�≤ 0. Such a pseudo-inner product is called an indefinite inner product. It
is not difficult to see that given a pseudo-metric operator η ∈ MI , the following
relation defines a pseudo-inner product on H.

≺· | ·�= 〈· | η·〉 =: 〈· | ·〉
η
. (65)

Let A : H → H be a densely-defined operator, η : H → H be a pseudo-metric
operator, and A†

η := η−1A†η. Then for all ψ1 ∈ D(A) and ψ2 ∈ D(A†
η), we have

〈ψ1 |A†
ηψ2〉η = 〈Aψ1 |ψ2〉η . In particular, if A is η-pseudo-Hermitian, A†

η = A and

〈ψ1 |Aψ2〉η
= 〈Aψ1 |ψ2〉η

. (66)

This means that every pseudo-Hermitian operator A is Hermitian with respect to
the pseudo-inner product 〈· | ·〉η defined by an arbitrary element η of MA. It is not
difficult to see that the converse is also true: If ηA and A†η have the same domains
and A satisfies (66) for some η ∈ MI , then A is pseudo-Hermitian and η ∈ MA.



December 16, 2010 9:36 WSPC/S0219-8878 IJGMMP-J043
S0219887810004816

Pseudo-Hermitian Representation of Quantum Mechanics 1221

An indefinite-metric space is a complex vector space V endowed with a function
≺ · | · �: H × H → C satisfying (̃i), (ii) and (iii) [53, 18]. One can turn a Hilbert
space into an indefinite-metric space by endowing the underlying vector space with
an indefinite inner product 〈· | ·〉η whose pseudo-metric operator η is not positive-
definite. The latter is called an indefinite metric operator. It is important to realize
that the study of general indefinite-metric spaces is not the same as the study of
consequences of endowing a given Hilbert space with an indefinite inner product.
The latter, which is known as the η-formalism, avoids a host of subtle questions
such as the nature of the topology of indefinite-metric spaces [183, 185].

The indefinite-metric quantum theories [190, 223, 183, 185] involve the study
of particular indefinite-metric spaces having a fixed indefinite-inner product. In
this sense they share the philosophy adopted in conventional QM; the indefinite-
inner product is fixed from the outset and the theory is built upon this choice. The
situation is just the opposite in pseudo-Hermitian QM where the space of state-
vectors is supposed to have the structure of a (separable) Hilbert space with an
inner product which is neither indefinite nor fixed a priori.kk

In pseudo-Hermitian QM, the physical Hilbert space is constructed using the
following prescription. First one endows the vector space of state-vectors with a
fixed auxiliary (positive-definite) inner product. This defines the reference Hilbert
space H in which all the relevant operators act. Next, one chooses a Hamilto-
nian operator that acts in H, is diagonalizable, has a real spectrum, but need not
be Hermitian. Finally, one determines the (positive-definite) inner products on H
that render the Hamiltonian Hermitian. Because there is an infinity of such inner
products, one obtains an infinite class of kinematically different but dynamically
equivalent quantum systems. The connection to indefinite-metric theories is that
for the specific PT -symmetric models whose study motivated the formulation of
pseudo-Hermitian QM, there is a simple and universal choice for an indefinite inner
product, namely the PT -inner product (3), which makes the Hamiltonian Hermi-
tian. But this indefinite inner product does not define the physical Hilbert space of
the theory.

Clearly the basic ingredient in both the indefinite-metric and pseudo-Hermitian
QM is the pseudo-metric operator. In general the spectrum of a pseudo-metric
operator need not be discrete. However, for simplicity, we first consider a pseudo-
metric operator η ∈ MI that has a discrete spectrum. We can express it using its
spectral representation as

η =
N∑
n=1

en|εn〉〈εn|, (67)

Because η is a bounded invertible Hermitian operator, its eigenvalues en are nonzero
and its eigenvectors |εn〉 form a complete orthonormal basis of the Hilbert space

kkFailure to pay attention to this point is responsible for confusing pseudo-Hermitian QM with
indefinite-metric quantum theories. See for example [126].
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H. Therefore, we can define

B :=
N∑
n=1

|en|−
1
2 |εn〉〈εn| = |η|− 1

2 , (68)

and use it to obtain a new pseudo-metric operator, namely

η̃ := B†ηB =
N∑
n=1

sgn(en)|εn〉〈εn|. (69)

The presence of a continuous part of the spectrum of η does not lead to any difficulty
as far as the above construction is concerned. Because η is Hermitian, one can
always define |η| :=

√
η2 and set B := |η|− 1

2 . Both of these operators are bounded,
positive-definite, and invertible. Hence η̃ := B†ηB is an element of MA whose
spectrum is a subset of {−1, 1}.

If we perform the transformation η → η̃ on a (positive-definite) metric operator
η+, we find η̃ = I and 〈· | ·〉

η̃
= 〈· | ·〉. This observation is used by Pauli to argue that

we would only gain “something essentially new if we take into consideration indefi-
nite bilinear forms . . . ,” [190].ll To provide a precise justification for this assertion,
let η+ be a (positive-definite) metric operator and Hη+ be the Hilbert space having
the inner product 〈· | ·〉

η+
. Then, for all ψ1, ψ2 ∈ H,

〈Bψ1 |Bψ2〉η+
= 〈Bψ1 | η+Bψ2〉 = 〈ψ1 |B†ηBψ2〉 = 〈ψ1 | η̃+ψ2〉 = 〈ψ1 |ψ2〉, (70)

where we have used the identities B := |η+ |−
1
2 = η+

− 1
2 and η̃+ := B†η+B = I.

Equations (70) show that B is a unitary operator mapping H onto Hη+ . As a result,
the quantum system sη+ whose state-vectors belong to Hη+ is unitary-equivalent to
the quantum system sI whose Hilbert space is the reference Hilbert space H. They
describe the same physical system. This is the conclusion reached by Pauli in 1943
[190]. There is a simple objection to this argument. It ignores the dynamical aspects
of the theory. As we will see below, the description of the Hamiltonian and the time-
evolution operator can be very complicated in the “Hermitian representation” of the
physical system. Therefore, although considering Hη+ with a (positive-definite) met-
ric operator η+ generally yields an equivalent “pseudo-Hermitian representation”
of the conventional QM, a clever choice of η+ may be of practical significance in
deriving the physical properties of the system under investigation. As we discuss in
Subsec. 9.2, it turns out that indeed these new representations play a key role in the
resolution of one of the oldest problems of modern physics, namely the problem of
negative probabilities in relativistic QM of Klein–Gordon fields [150, 151, 161, 179]
and certain quantum field theories [35].

We end this subsection with the following remarks.

• Strictly speaking Pauli’s above-mentioned argument does not hold, if one keeps
η+ to be positive-definite but does not require it to be invertible or bounded

llPauli uses the term “bilinear form” for what we call a “pseudo-inner product”.



December 16, 2010 9:36 WSPC/S0219-8878 IJGMMP-J043
S0219887810004816

Pseudo-Hermitian Representation of Quantum Mechanics 1223

[123, 211]. For example, one might consider the case that η+
−1 exists but is

unbounded. In this case, η+ is not onto and B fails to be a unitary operator. This
type of generalized metric operators and the corresponding non-unitary transfor-
mations B have found applications in the description of resonances [133, 12, 196].
They also appear in the application of pseudo-Hermitian quantum mechanics
for typical PT -symmetric and non-PT -symmetric models. For these models the
Hamiltonian operator is a second-order differential operatorH acting in an appro-
priate function space F that renders the eigenvalue problem for H well-posed.
As discussed in great detail in [160], if H is to serve as the Hamiltonian opera-
tor for a unitary quantum system, one must construct an appropriate reference
Hilbert space H in which H acts as a quasi-Hermitian operator. This, in par-
ticular, implies the existence of an associated metric operator that satisfies the
boundedness and other defining conditions of the metric operators.

Suppose H ′ is a differential operator acting in a function space F and having
a discrete spectrum, i.e. there is a countable set of linearly-independent eigen-
functions of H ′ with isolated non-degenerate or finitely degenerate eigenvalues.
We can use H ′ and F to define a unitary quantum system as follows [149, 175].

First, we introduce F to be the subset of F that contains the eigenfunc-
tions of H ′ with real eigenvalues, and let L be the span of F , i.e. L :=
{
∑M
m=1 cmψm |M ∈ Z

+, cm ∈ C, ψm ∈ F}. Next, we endow L with the inner
product [129]

〈
J∑
j=1

cjψj

∣∣∣∣∣
K∑
k=1

dkψk

〉
:=

min(J,K)∑
m=1

c∗mdm, (71)

and Cauchy-completemm the resulting inner product space into a Hilbert space
K. We can then identify the restriction of H ′ onto L, that we denote by H , with
the Hamiltonian operator of a quantum system. It is a densely-defined operator
acting in K, because its domain has a subset L that is dense in K [195]. In fact,
in view of (71) and the fact that L is dense in K, the eigenvectors of H form
an orthonormal basis of K. Moreover, H : K → K has, by construction, a real
spectrum. Therefore, it is a Hermitian operator.

This construction is quite difficult to implement in practice. Instead, one
takes the reference Hilbert space H to be an L2-space, ensures that the given
differential operator that is now denoted by H has a real spectrum, and that
the set of its eigenfunctions F is dense in H. Then, one constructs an invertible
positive operator η+ satisfying the pseudo-Hermiticity condition,

H† = η+Hη
−1
+ , (72)

mmEvery separable inner product space N can be extended to a separable Hilbert space K, called
its Cauchy completion, in such a way that N is dense in K and there is no proper Hilbert subspace
of K with the same properties [195].
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and uses it to construct the physical Hilbert space and the Hermitian represen-
tation of the system.

For most of the concrete models that have so far been studied, the obtained
η+ turns out not to be everywhere-defined or bounded. But, these qualities are
highly sensitive to the choice of the reference Hilbert space that may also be
considered as a degree of freedom of the formalism. The mathematical data that
have physical content are the eigenfunctions of H and their linear combinations,
i.e. elements of L. Therefore, the only physical restriction on the reference Hilbert
spaces H is that L be a dense subset of H. This means that the question of the
existence of a genuine metric operator associated with H requires addressing the
problem of the existence of a (reference) Hilbert space H such that

(1) L is a dense subset of H, and
(2) there is metric operator η+ : H → H satisfying (72).

It is also possible that given a Hilbert space H fulfilling the first of these condi-
tions and an unbounded invertible positive operator η+ : H → H satisfying (72),
one can construct a genuine bounded metric operator fulfilling the latter con-
dition. These mathematical problems require a systematic study of their own.
Following physicists’ tradition, we shall ignore mathematical subtleties related
to these problems when we deal with specific models that allow for an explicit
investigation.

• Let A be a densely-defined linear operator with a nonempty U+
A and η+ ∈ U+

A.

Because B−1 := η
1
2
+ : Hη+ → H is a unitary operator and A : Hη+

→ Hη+
is

Hermitian, the operator a := B−1AB is a Hermitian operator acting in H. This
shows that A : H → H is related to a Hermitian operator a : H → H via a
similarity transformation,

A = BaB−1. (73)

Such an operator is called quasi-Hermitian [207].nn

• Let B := η
− 1

2
+ , B′ : H → Hη+ be an arbitrary unitary operator, and a′ :=

B′−1
AB′. Then in view of (73), a′ = U−1aU , where U : H → H is defined by

U := B−1B′. Because both B and B′ are unitary operators mapping H onto
H

η+
, a′ and U are, respectively, Hermitian and unitary operators acting in H.

Conversely, for every unitary operator U : H → H the operator B′ := BU is
a unitary operator mapping H onto Hη+ and a′ := B′−1

AB′ is a Hermitian

nnA linear densely-defined operator A : H → H acting in a Hilbert space H is said to be quasi-
Hermitian if there exists an everywhere-defined, bounded, invertible linear operator B : H → H
and a Hermitian operator a : H → H such that A = BaB−1. The above analysis shows that A
is quasi-Hermitian if and only if it is pseudo-Hermitian and U+

A is nonempty. In mathematical
literature, the term quasi-Hermitian is used for bounded operators A satisfying A†T = TA for a
positive but possibly non-invertible linear operator T [76]. These and their various generalizations
and special cases have been studied in the context of symmetrizable operators [197, 131, 213, 239,
125]. For a more recent review see [109].



December 16, 2010 9:36 WSPC/S0219-8878 IJGMMP-J043
S0219887810004816

Pseudo-Hermitian Representation of Quantum Mechanics 1225

operator acting in H. These observations show that the most general Hermitian
operator a′ : H → H that is related to A via a similarity transformation,

A = B′a′B′−1
, (74)

has the form

B′ = BU = η
− 1

2
+ U, (75)

where U is an arbitrary unitary transformation acting in H, i.e. U ∈ U(H). If we
identify A with the Hamiltonian operator for a quantum system and employ the
formalism of pseudo-Hermitian QM, the metric operator η+ defines the physical
Hilbert space as Hphys := Hη+ . Being Hermitian operators acting in Hphys, the
observables O can be constructed using the unitary operator B : H → Hη+ and
Hermitian operators o : H → H according to

O = BoB−1 = η
− 1

2
+ oη

1
2
+. (76)

One can use any other unitary operator B′ : H → Hη+ for this purpose. Different
choices for B′ correspond to different one-to-one mappings of the observablesO to
Hermitian operators o. According to (75), if o = B−1OB, then o′ := B′−1

OB′ =
U−1oU . Therefore making different choices for B′ corresponds to performing
quantum canonical transformations in H. This in turn means that, without loss
of generality, we can identify the physical observables of the system in its pseudo-
Hermitian representation using (76).

3.3. Spectral properties of pseudo-Hermitian operators

Consider a pseudo-Hermitian operator A acting in an N -dimensional separable
Hilbert space H, with N ≤ ∞, and let η ∈ MA. The spectrum of A is the set σ(A)
of complex numbers λ such that the operator A−λI is not invertible. Let λ ∈ σ(A),
then A− λI is not invertible and because η is invertible, η(A− λI)η−1 = A† − λI

must not be invertible. This shows that λ ∈ σ(A†). But the spectrum of A† is the
complex-conjugate of the spectrum of A, i.e. λ ∈ σ(A†) if and only if λ∗ ∈ σ(A)
[123]. This argument shows that as a subset of the complex plane C, the spectrum of
a pseudo-Hermitian operator is symmetric under the reflection about the real axis
[18, 53]. In particular, the eigenvalues an of A (for which A−anI is not one-to-one)
are either real or come in complex-conjugate pairs [190, 143].

Let A be a diagonalizable pseudo-Hermitian operator with a discrete spectrum
[195].oo Then, one can use a Riesz basis {ψn} consisting of a set of eigenvectors
of A and the associated biorthonomal basis {φn} to yield the following spectral
representation of A and a pseudo-metric operator η ∈ MA [143, 146].

A =
N0∑
n0=1

an0|ψn0〉〈φn0| +
N∑
ν=1

(αν |ψν〉〈φν | + α∗
ν |ψ−ν〉〈φ−ν |), (77)

ooThis, in particular, implies that the eigenvalues of A have finite multiplicities.
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η :=
N0∑
n0=1

σn0|φn0〉〈φn0| +
N∑
ν=1

(|φν〉〈φ−ν | + |φ−ν〉〈φν |), (78)

where n0 labels the real eigenvalues an0 (if any), ν labels the complex eigenvalues αν
with positive imaginary part (if any), −ν labels the complex eigenvalues α−ν = α∗

ν

with negative imaginary part, the eigenvalues with different spectral labels n ∈
{n0, ν,−ν} need not be distinct, 0 ≤ N0,N ≤ ∞, σn0 ∈ {−1, 1} are arbitrary, and
we have

A|ψn0〉 = an0|ψn0〉, A|ψ±ν〉 = α±ν |ψ±ν〉, (79)

〈φm0 |ψn0〉 = δm0,n0 for all m0, n0 ∈ {1, 2, 3, . . . , N0}, (80)

〈φgµ |ψh ν〉 = δg,hδµ,ν for all g, h ∈ {−,+} and µ, ν ∈ {1, 2, 3, . . . ,N}. (81)

Consider the set L({ψn}) of finite linear combinations of ψn’s, as defined by (14).
According to (77), elements of L({ψn}) belong to the domain of A, i.e. L({ψn}) ⊆
D(A). But because {ψn} is a basis, L({ψn}) is a dense subset of H. This implies
that D(A) is a dense subset of H.

Next, we show that the operator η defined by (78) does actually define a pseudo-
metric operator, i.e. it is an everywhere-defined, bounded, invertible, Hermitian
operator.

Let {χn} be an orthonormal basis of H and B : H → H be the everywhere-
defined, bounded, invertible operator that maps {χn} onto the Riesz basis {ψn},
i.e. ψn = Bχn for all n. It is not difficult to see that the biorthonormal basis {φn}
may be mapped onto {χn} by B†, χn = B†φn for all n. We can use this relation
and (78) to compute

η̃ := B†ηB =
N0∑
n0=1

σn0|χn0〉〈χn0| +
N∑
ν=1

(|χν〉〈χ−ν | + |χ−ν〉〈χν |). (82)

It is not difficult to show that η̃ is a pseudo-metric operator, η̃ ∈ MI . To see
this, let ψ ∈ H be arbitrary. Then because {χn} is orthonormal,

ψ =
N∑
n=1

〈χn |ψ〉χn =
N0∑
n0=1

〈χn0 |ψ〉χn0 +
N∑
ν=1

(〈χν |ψ〉χν + 〈χ−ν |ψ〉χ−ν). (83)

In view of (82) and (83), we have

η̃ψ =
N0∑
n0=1

σn0〈χn0 |ψ〉χn0 +
N∑
ν=1

(〈χ−ν |ψ〉χν + 〈χν |ψ〉χ−ν). (84)

In particular,

‖η̃ψ‖2 =
N0∑
n0=1

| 〈χn0|ψ〉|2 +
N∑
ν=1

(|〈χ−ν |ψ〉|2 + |〈χν |ψ〉|2) = ‖ψ‖2. (85)
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This shows that not only η̃ is everywhere-defined but it is bounded. Indeed, we have
‖η̃‖ = 1. Because η̃ is a bounded everywhere-defined operator, η̃† is also everywhere-
defined and as is obvious from (82), it coincides with η̃, i.e. η̃ is Hermitian. Finally,
in view of (82), we can easily show that η̃2 = I. In particular, η̃−1 = η̃ is bounded
and η̃ is invertible. This completes the proof of η̃ ∈ MI .

Next, we observe that η̃ ∈ MI implies η ∈ MI . This is because according to (82),
η = B†−1

η̃B−1 and B−1 and B†−1 are bounded everywhere-defined invertible
operators. Therefore, η as defined by (78) is a pseudo-metric operator. Let us also
note that the inverse of η is given by

η−1 = Bη̃B† =
N0∑
n0=1

σn0|ψn0〉〈ψn0| +
N∑
ν=1

(|ψν〉〈ψ−ν | + |ψ−ν〉〈ψν |). (86)

We can easily show that η belongs to MA by substituting (77), (78), and (86) in
ηAη−1 and checking that the result coincides with A†.

In Reference [146], it is shown that any element η ∈ MA can be expressed in
the form (78) where {ψn} is the biorthonormal basis associated with some (Riesz)
basis {ψn} consisting of the eigenvectors of A. As any two Riesz bases are related
by a bounded everywhere-defined invertible operator L : H → H one may conclude
that the elements of MA have the following general form.

η′ = L†ηL, (87)

where η is the pseudo-metric operator (78) that is defined in terms of a fixed (but
arbitrary) (Riesz) basis {ψn} consisting of the eigenvectors of A and σn0 are a set
of arbitrary signs. The operator L appearing in (87) maps eigenvectors ψn of A to
eigenvectors Lψn of A in such a way that ψn and Lψn have the same eigenvalue
[146]. This, in particular, implies that L commutes with A.

Suppose that A has a complex-conjugate pair of nonreal eigenvalues α±ν . Let
ψ±ν be a corresponding pair of eigenvectors, η′ ∈ MA be an arbitrary pseudo-
metric operator associated with A, L be an everywhere-defined, bounded, invertible
operator commuting with A and satisfying (87), and ξ := L−1ψν . Then 〈ξ | η′ξ〉 =
〈ψν | ηψν〉 = 0. Because L is invertible ξ 	= 0, this is an indication that η′ is not
a positive-definite operator. Similarly suppose that one of the signs σn0 appearing
in (78) is negative and let ζ := L−1ψn0 . Then 〈ζ | η′ζ〉 = 〈ψn0 | ηψn0〉 = σn0 = −1,
and again η′ fails to be positive-definite. These observations show that in order for
η′ to be a positive-definite operator, the spectrum of A must be real and all the
signs σn0 appearing in (78) must be positive. In this case, we have η′ = η′+, where

η′+ := L†η+L, η+ =
N∑
n=1

|φn〉〈φn|. (88)

The choice of the signs σn0 is not dictated by the operator A itself. Therefore
it is the reality of the spectrum of A that ensures the existence of positive-definite
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elements of MA. By definition, such elements are metric operators belonging to
M+
A. Their general form is given by (88).

3.4. Symmetries of pseudo-Hermitian Hamiltonians

Consider a pseudo-Hermitian operator A : H → H and let η1 and η2 be a pair of
associated pseudo-metric operators; η1Aη−1

1 = A† = η2Aη
−1
2 . Then it is a trivial

exercise to show that the invertible linear operator S := η−1
2 η1 commutes with A

[143]. If we identify A with the Hamiltonian of a quantum system, which we shall
do in what follows, S represents a linear symmetry of A.

Next, consider a diagonalizable pseudo-Hermitian operator A with a discrete
spectrum, ψn be eigenvectors of A, and {(ψn, φn)} be the complete biorthonormal
extension of {ψn} so that A admits a spectral representation of the form (77):

A =
N0∑
n0=1

an0 |ψn0〉〈φn0 | +
N∑
ν=1

(αν |ψν〉〈φν | + α∗
ν |ψ−ν〉〈φ−ν |). (89)

Moreover, for every sequence σ = (σn0) of signs (σn0 ∈ {−1,+1}), let

ησ :=
N0∑
n0=1

σn0 |φn0〉〈φn0 | +
N∑
ν=1

(|φν〉〈φ−ν | + |φ−ν〉〈φν |), (90)

Cσ :=
N0∑
n0=1

σn0 |ψn0〉〈φn0 | +
N∑
ν=1

(|ψν〉〈φν | + |ψ−ν〉〈φ−ν |), (91)

and η1,S : H → H be defined by

η1 :=
N0∑
n0=1

|φn0〉〈φn0 | +
N∑
ν=1

(|φν〉〈φ−ν | + |φ−ν〉〈φν |), (92)

S :=
N0∑
n0=1

|ψn0〉 � 〈φn0 | +
N∑
ν=1

(|ψν〉 � 〈φν | + |ψ−ν〉 � 〈φ−ν |), (93)

where for every ψ, φ ∈ H the symbol |ψ〉 � 〈φ| denotes the following antilinear
operator acting in H.

|ψ〉 � 〈φ|ζ := 〈ζ |φ〉ψ = 〈φ | ζ〉∗ ψ, for all ζ ∈ H. (94)

As we discussed in Subsec. 3.3, ησ and η1 are pseudo-metric operators associated
with A. The operators Cσ and S have the following remarkable properties [148].

• In view of the fact that η−1
1 =

∑N0
n0=1 |ψn0〉〈ψn0 |+

∑N
ν=1(|ψν〉〈ψ−ν |+ |ψ−ν〉〈ψν |),

we have

Cσ = η−1
1 ησ. (95)



December 16, 2010 9:36 WSPC/S0219-8878 IJGMMP-J043
S0219887810004816

Pseudo-Hermitian Representation of Quantum Mechanics 1229

Therefore, Cσ is a linear invertible operator that generates a symmetry of A:

[Cσ, A] = 0. (96)

• Using (94) and the biorthonormality and completeness properties of {(ψn, φn)},
we can check that S is an invertible antilinear operator that also commutes
with A,

[S, A] = 0. (97)

• Cσ and S are commuting involutions, i.e.

[Cσ,S] = 0, C2
σ = S2 = I. (98)

In summary, we have constructed an involutive antilinear symmetry generator S

and a class of involutive linear symmetry generators Cσ that commute with S.
It turns out that if a given diagonalizable operator A with a discrete spectrum

commutes with an invertible antilinear operator, then A is necessarily pseudo-
Hermitian. Therefore, for such operators pseudo-Hermiticity and the presence of
(involutive) antilinear symmetries are equivalent conditions [145, 219]. Furthermore,
each of these conditions is also equivalent to the pseudo-reality of the spectrum of
A. The latter means that the complex-conjugate of every eigenvalue of A is an
eigenvalue with the same multiplicity [145, 219]. These observations are the key for
understanding the role of PT -symmetry in the context of our study. They admit
extensions for a certain class of non-diagonalizable operators with discrete spectrum
[147, 208, 218, 62] and some operators with continuous spectrum [150, 159, 165].

The reality of the spectrum of A is the necessary and sufficient condition for the
existence of an associated metric operator and the corresponding positive-definite
inner product that renders A Hermitian [144]. For the case that the spectrum of A
is real, the expressions for ησ, η1, Cσ, and S simplify:

ησ :=
N∑
n=1

σn|φn〉〈φn|, η1 =
N∑
n=1

|φn〉〈φn| = η+, (99)

Cσ =
N∑
n=1

σn|ψn〉〈φn|, S =
N∑
n=1

|ψn〉 � 〈φn|, (100)

and we find

Cσψn = σnψn, Sψn = ψn. (101)

Hence, Cσ and S generate exact symmetries of A.
In order to make the meaning of Cσ more transparent, we use the basis expansion

of an arbitrary ψ ∈ H, namely ψ =
∑N
n=1 cnψn, to compute

Cσψ =
N∑
n=1

cnCψn =
N∑
n=1

σncnψn = ψ+ − ψ−, (102)

where ψ± :=
∑
n∈N± cnψn and N± := {n ∈ {1, 2, 3, . . . , N} |σn = ±1}. According

to (102), for every ψ ∈ H there are unique state-vectors ψ± belonging to the
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eigenspaces H± := {ψ ∈ H | Cσψ = ±ψ} of Cσ such that ψ = ψ+ − ψ−. This
identifies Cσ with a (Z2-) grading operator for the Hilbert space.

If σn = ±1 for all n, we find Cσ = ±I. In the following we consider the nontrivial
cases: C 	= ±I. Then H± are proper subspaces of H satisfying

H = H+ ⊕H−, (103)

Cσ is a genuine grading operator, both ησ and −ησ fail to be positive-definite, and
〈· | ·〉ησ is indefinite. Furthermore, in view of (102), the operators Π± := 1

2 (I ± Cσ),
satisfy Π±ψ = ψ±, i.e. they are projection operators onto H±.

Next, consider computing 〈ψg |φh〉ησ for arbitrary g, h ∈ {−,+} and ψ±, φ± ∈
H±. Using the basis expansion of ψ± and φ±, i.e. φ± =

∑
n∈N± dnψn and ψ± =∑

n∈N± cnψn, and (99), we have ησφ± = ±
∑
n∈N± dnφn and

〈ψg |φh〉ησ = 〈ψg | ησφh〉 = gδg,h
∑
n∈Ng

c∗ndn. (104)

Therefore, with respect to the indefinite inner product 〈· | ·〉ησ , the subspaces H+

and H− are orthogonal, and (103) is an orthogonal direct sum decomposition.
Another straightforward implication of (104) is that, for all ψ, φ ∈ H,

〈ψ |φ〉ησ = 〈ψ+ |φ+〉ησ + 〈ψ− |φ−〉ησ

=
∑
n∈N+

c∗ndn −
∑
n∈N−

c∗ndn = 〈ψ+ |φ+〉η+ − 〈ψ− |φ−〉η+ , (105)

where ψ± := Π±ψ, φ± := Π±φ, cn := 〈φn |ψ〉 and dn := 〈φn |φ〉. Similarly, we have

〈ψ | Cσφ〉ησ = 〈ψ+ |φ+〉ησ − 〈ψ− |φ−〉ησ

=
∑
n∈N+

c∗ndn +
∑
n∈N−

c∗ndn =
N∑
n=1

c∗ndn = 〈ψ |φ〉η+ . (106)

This calculation shows that the positive-definite inner product 〈· | ·〉η+ can be
expressed in terms of the indefinite inner product 〈· | ·〉ησ and the grading oper-
ator Cσ according to

〈· | ·〉η+ = 〈· | Cσ·〉ησ . (107)

Conversely, one can use (107) to define a positive-definite inner product that makes
H Hermitian. The latter scheme may be traced back to a similar construction
developed in the 1950’s in the context of indefinite-metric quantum theories [187].
See [183, 185] for reviews. In the context of PT -symmetric quantum mechanics,
it was proposed (with a specific choice for the sequence σ) in [37] and coined the
name CPT -inner product.

To see the connection with the treatment of [37], consider the case that A, which
is now viewed as the Hamiltonian operator for a quantum system, is symmetric,
i.e. AT := T A†T = A, where T is the time-reversal operator.pp Then given the

ppRecall that T is an antilinear Hermitian (and unitary) involution [233, 139].
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spectral representation of A and A†, we can easily choose a biorthonormal system
{(ψn, φn)} such that

φn = σnT ψn. (108)

Using this relation together with the biorthonormality and completeness properties
of {(ψn, φn)}, we can obtain the following spectral representation of T .

T =
N∑
n=1

σn|φn〉 � 〈φn|. (109)

In view of Eqs. (99), (100), (109), and T 2 = I, we have

〈ψm |ψn〉 = σmσn〈φn |φm〉, (110)

S = T ησ. (111)

Clearly, we could use (109) to define an invertible antilinear operator satisfying (108)
for an arbitrary possibly nonsymmetric A, namely

Tσ :=
N∑
n=1

σn|φn〉 � 〈φn|. (112)

But in this more general case, (110) may not hold and Tσ may not be an involution.
In fact, condition (110) is not only a necessary condition for T 2

σ = I but it is
also sufficient [148]. An analogous necessary and sufficient condition for η2

σ = I is
[148]

〈ψm |ψn〉 = σmσn〈φm |φn〉. (113)

If both (110) and (113) hold,

T 2
σ = η2

σ = I, (114)

and as a result

S = Tσησ. (115)

By virtue of this relation and S2 = I,

[ησ, Tσ] = 0. (116)

Therefore,

S = ησTσ. (117)

For the symmetric and PT -symmetric Hamiltonians (1) that are considered in
[37], we can find a biorthonormal system {(ψn, φn)} satisfying (110)–(113) [148].
Moreover, setting σn := (−1)n+1 for all n ∈ Z+, we have

ησ = P . (118)



December 16, 2010 9:36 WSPC/S0219-8878 IJGMMP-J043
S0219887810004816

1232 A. Mostafazadeh

Therefore, in light of (111) and (116), the antilinear symmetry generator S coincides
with PT ,

S = PT , (119)

and the linear symmetry generator Cσ is the “charge-conjugation” operator C of
[37]. In view of (95), (97), (99), (98) and (118), it satisfies

C2 = I, [C, A] = [C,PT ] = 0, C = η−1
+ P . (120)

Furthermore, because in the position representation of the state-vectors (T ψ)(x) =
ψ(x)∗, the positive-definite inner product (107) coincides with the CPT -inner
product.

This completes the demonstration that the CPT -inner product is an example
of the positive-definite inner products 〈· | ·〉η+ that we explored earlier.

We conclude this subsection by noting that, although in general we can introduce
a pair of generalized time-reversal and parity operators, ησ and Tσ, they may fail to
be involutions.

3.5. A two-level toy model

In this subsection, we demonstrate the application of our general results in the study
of a simple two-level model which, as we will see in Subsec. 9.2, admits physically
important infinite-dimensional generalizations [150, 161, 151].

Let H be the (reference) Hilbert space obtained by endowing C2 with the
Euclidean inner product and {e1, e2} be the standard basis of C2, i.e. e1 :=

(1
0

)
,

e2 :=
(0
1

)
. Then we can represent every linear operator K acting in H in the basis

{e1, e2} by a 2 × 2 matrix which we denote by K; the entries of K have the form
Kij := 〈ei |Kej〉 where i, j ∈ {1, 2}.

Now, consider a linear operator A : C2 → C2 represented by

A :=
1
2

(
D + 1 D − 1

−D + 1 −D − 1

)
, (121)

where D is a real constant. A : H → H is a Hermitian operator if and only if
D = 1. We can easily solve the eigenvalue problem for A. Its eigenvalues an and
eigenvectors ψn have the form

a1 = −a2 = D
1
2 , ψ1 = c1

(
1 +D

1
2

1 −D
1
2

)
, ψ2 = c2

(
1 −D

1
2

1 +D
1
2

)
, (122)

where c1, c2 are arbitrary nonzero complex numbers. Clearly, for D = 0, a1 = a2 =
0, the eigenvectors become proportional, and A is not diagonalizable. For D 	= 0, A
has two distinct eigenvalues and {ψ1, ψ2} forms a basis of C2. This shows that
D = 0 marks an exceptional spectral point [123, 103], for D > 0 the eigenvalues
are real and for D < 0 they are imaginary.
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It is an easy exercise to show that A is Σ3-pseudo-Hermitian where Σ3 : C2 → C2

is the linear operator represented in the standard basis by the Pauli matrix σ3 :=(1 0
0 −1

)
. Hence MA includes Σ3, and A is Σ3-pseudo-Hermitian for all D ∈ R.

This is consistent with the fact that Σ3 is not a positive-definite operator, because
otherwise A could not have imaginary eigenvalues. According to our general results,
for D > 0, MA must include positive-definite operators. To construct these we first
construct the biorthonormal basis {φ1, φ2} associated with {ψ1, ψ2}. For D > 0,
the basis vectors φn are given by

φ1 = (4c∗1)
−1

(
1 +D− 1

2

1 −D− 1
2

)
, φ2 = (4c∗2)

−1

(
1 −D− 1

2

1 +D− 1
2

)
. (123)

Inserting these relations in (78) we find the following expression for the matrix
representation of the most general pseudo-metric operator η ∈ MA.

η = r1σ1

(
(1 +D− 1

2 )2 1 −D−1

1 −D−1 (1 −D− 1
2 )2

)
+ r2σ2

(
(1 −D− 1

2 )2 1 −D−1

1 −D−1 (1 +D− 1
2 )2

)
,

(124)

where r1 := |4c1|−2 and r2 := |4c2|−2 are arbitrary positive real numbers and σ1, σ2

are arbitrary signs.

The choice σ1 = −σ2 = 1 and r1 = r2 = D
1
2

4 yields η = Σ3. The choice
σ1 = σ2 = 1 yields the form of the most general positive-definite element of MA.

A particularly simple example of the latter is obtained by taking c1 = c2 = D−
1
4

2

which implies r1 = r2 = D
1
2

4 . It has the form

η
+

=
1
2

(
D

1
2 +D− 1

2 D
1
2 −D− 1

2

D
1
2 −D− 1

2 D
1
2 +D− 1

2

)
. (125)

We can simplify this expression by introducingqq θ := 1
2 lnD, and using the fact

that the Pauli matrix σ1 :=
(0 1
1 0

)
squares to the identity matrix I. This yields

η
+

=

(
cosh θ sinh θ

sinh θ cosh θ

)
= cosh θI + sinh θ σ1 = eθσ1 . (126)

The metric operator represented by (125) and (126) defines the following (positive-
definite) inner product on C2 with respect to which A is a Hermitian operator.

〈�z | �w〉
η+

:= 〈�z | η+ �w〉 = (z∗1w1 + z∗2w2) cosh θ + (z∗1w2 + z∗2w1) sinh θ, (127)

where �z = (z1, z2)T , �w = (w1, w2)T ∈ C2 are arbitrary. The inner product (127)
has a more complicated form than both the reference (Euclidean) inner product,

qqThis was pointed out to me by Professor Haluk Beker.
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〈�z | �w〉 = z∗1w1 + z∗2w2, and the indefinite inner product defined by Σ3,

〈�z | �w〉Σ3
:= 〈�z |Σ3 �w〉 = z∗1w1 − z∗2w2. (128)

Furthermore, unlike 〈· | ·〉 and 〈· | ·〉Σ3 , the inner product 〈· | ·〉η+ depends on θ and
consequentlyD. In particular, asD → 0 it degenerates. In fact, a quick inspection of
Eq. (124) shows that every D-independent pseudo-metric operator is proportional
to Σ3 and hence necessarily indefinite; ±Σ3 are the only D-independent elements
of UA.

Now, suppose that A is the Hamiltonian operator of a two-level quantum system.
If we employ the prescription provided by the indefinite-metric quantum theories,
we should endow C

2 with an indefinite inner product from the outset. The simplest
choice that is historically adopted and viewed, according to the above-mentioned
argument due to Pauli, as being the unique choice is η = Σ3. In this case the system
has a physical state corresponding to the state-vector e1 and a hypothetical state
or ghost corresponding to e2. Unfortunately, the subspace of physical state-vector,
i.e. the span of {e1}, is not invariant under the action of A unless D = 1. Hence,
for D 	= 1, such an indefinite-metric quantum theory suffers from interpretational
problems and is inconsistent. In contrast, pseudo-Hermitian quantum mechanics
provides a consistent description of a unitary quantum theory based on the Hamil-
tonian A. This is done by endowing C2 with the (positive-definite) inner product
〈· | ·〉η′+ , where η′+ is given by the right-hand side of (124) with σ1 = σ2 = 1. It
involves the free parameters r1 and r2 that can be fixed from the outset or left as
degrees of freedom of the formulation of the theory. We can represent this most
general metric operator by

η′
+

= r

(
cosh θ + s sinh θ

sinh θ cosh θ − s

)
, (129)

where r := 2(r1 + r2)D− 1
2 ∈ R+ and s := r1−r2

r1+r2
∈ (−1, 1) are arbitrary. We

can use (129) to determine the most general inner product on C2 that makes A
Hermitian. This is given by

〈�z | �w〉
η′+

:= 〈�z | η′+ �w〉 = r[〈�z | �w〉
η+

+ s〈�z | �w〉Σ3
], (130)

where 〈· | ·〉
η+

and 〈· | ·〉Σ3
are respectively defined by (127) and (128).

We can relate η′+ to η+ using a linear operator L : C2 → C2 commut-
ing with A via η′+ = L†η+L. This operator has the following general form
L = 2D− 1

4 [
√
r1e

iϕ1 |ψ1〉〈φ1|+
√
r2e

iϕ2 |ψ1〉〈φ1|], where ϕ1, ϕ2 ∈ [0, 2π) are arbitrary.
We can represent it by

L =

(
λ− cosh θ + λ+ λ− sinh θ

−λ− sinh θ −λ− cosh θ + λ+

)
, (131)

where λ± := D− 1
4 (
√
r1e

iϕ1 ±
√
r2e

iϕ2). With the help of (126), (129) and (131), we
have checked that indeed η′

+
= L†η

+
L.
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Next, we wish to establish the quasi-Hermiticity of A for D > 0, i.e. show that
it can be expressed as A = BaB−1 for an invertible operator B : C2 → C2 and a
Hermitian operator a : H → H. As we explained in Subsec. 3.2, we can identify B
with the inverse of the positive square root of a metric operator belonging to M+

A.

A convenient choice is B = η
− 1

2
+ , for in light of (126) we have

B±1 = e∓
θ
2σ1 =

(
cosh θ

2 ∓ sinh θ
2

∓ sinh θ
2 cosh θ

2

)
.

This leads to the following remarkably simple expression for the matrix represen-
tation of a.

a = B−1AB =

(
D

1
2 0

0 −D 1
2

)
= D

1
2σ3. (132)

Hence, a = D
1
2 Σ3.

Because every Hermitian operator o : H → H is a linear combination, with real
coefficients, of the identity operator I and the operators Σ1, Σ2, and Σ3 that are
respectively represented by Pauli matrices σ1, σ2, and σ3, we can express every
physical observable O : Hη+ → Hη+ as O = a0I +

∑3
j=1 ajSj , where a0, a1, a2, a3

are some real numbers and Sj := BΣjB−1 = η
− 1

2
+ Σj η

1
2
+ for all j ∈ {1, 2, 3}. The

observables Sj are represented by S1 = σ1, S2 = cosh θσ1 − i sinh θσ3, and S3 =
i sinh θσ2 + cosh θσ3.

Next, we repeat the calculation of the Hermitian Hamiltonian and the physical
observables for the case that we choose the general metric operator η′+ to construct
the physical Hilbert space, i.e. set Hphys = Hη′+ . The matrix representation of the
Hermitian Hamiltonian a′ : H → H is then given by

a′ = η′+
1
2 Aη′+

− 1
2 = D

1
2

(
u(θ, s) v(θ, s)

v(θ, s) −u(θ, s)

)

= D
1
2 [v(θ, s)σ1 + u(θ, s)σ3], (133)

where u(θ, s) :=
√

1−s2 sinh2 θ+s2 cosh θ
sinh2 θ+s2

and v(θ, s) := s(cosh θ−√
1−s2) sinh θ

sinh2 θ+s2
. We can

similarly express the physical observables in the form

O′ = a0I +
3∑
j=1

ajS
′
j , (134)

where S′
j := η′+

− 1
2 Σjη′+

1
2 .

As seen from (133) the Hermitian Hamiltonian a′ describes the interaction of a
spin 1

2 particle with a magnetic field that is aligned along the unit vector (u, 0, v)T

in R3. As one varies s the magnetic field rotates in the x–z plane. It lies on the
z-axis for s = 0 which corresponds to using η+ to define the physical Hilbert space.
Clearly, there is no practical advantage of choosing s 	= 0. Furthermore, for all
s ∈ (−1, 1) and in particular for s = 0, the Hermitian representation of the physical
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system is actually less complicated than its pseudo-Hermitian representations. This
seems to be a common feature of a large class of two-level systems [149].

Next, we compute the symmetry generator Cσ for σ1 = −σ2 = 1. Denoting this
operator by C for simplicity, realizing that C = |ψ1〉〈φ1|− |ψ2〉〈φ2|, and using (122),
(123), and D = e2θ, we find

C =

(
cosh θ sinh θ

−sinh θ −cosh θ

)
. (135)

Observing that in view of (121), A2 = DI, and making use of this relation and (135)
we are led to the curious relation [161]

C =
A√
A2

. (136)

It is important to note that in performing the above calculation, we have not
fixed the normalization constants c1 and c2 appearing in (122) and (123). Therefore,
up to an unimportant sign, C is unique.

As we mentioned above, setting c1 = c2 = D−
1
4

2 and σ1 = −σ2 = 1, we find
the pseudo-metric operator ησ = |φ1〉〈φ1| − |φ2〉〈φ2| = Σ3. Because Σ3 is a linear
involution we can identify it with P . It is a simple exercise to show that P , C and
η+ actually satisfy

C = η−1
+ P . (137)

We can similarly construct the antilinear symmetry generator S. It turns out
that unlike C, S depends on (the phase of) normalization constants c1 and c2 that

appear in (122) and (123). Setting c1 = c2 = D−
1
4

2 , we find

S = T , (138)

where T denotes complex conjugation, T �z = �z ∗. In view of (138), the symmetry
condition [S, A] = 0 corresponds to the statement that A is a real operator, i.e. A
is a real matrix, which is a trivial observation.

Similarly, we can introduce an antilinear operator Tσ according to (112). This
yields Tσ := |φ1〉�〈φ1|−|φ2〉�〈φ2|, which in general depends on the choice of c1 and

c2. For c1 = c2 = D−
1
4

2 , we have Tσ = PT . Combining this relation with (138) yields
S = PTσ. It is not difficult to see that indeed Tσ is an involution. But it differs from
the usual time-reversal operator T . Let us also point out that we could construct
the pseudo-Hermitian quantum system defined by A without going through the
computation of C, P and Tσ operators. What is needed is a metric operator that
defines the inner product of the physical Hilbert space.

The construction of the C operator for two-level systems with a symmetric
Hamiltonian has been initially undertaken in [50]. The C operator for general two-
level systems and its relation to the metric operators of pseudo-Hermitian quantum
mechanics are examined in [149]. See also [243]. A comprehensive treatment of
the most general pseudo-Hermitian two-level system that avoids the use of the C
operator is offered in [178].
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4. Calculation of Metric Operator

A pseudo-Hermitian quantum system is defined by a (quasi-Hermitian) Hamiltonian
operator and an associated metric operator η+. This makes the construction of η+
the central problem in pseudo-Hermitian quantum mechanics. There are various
methods of calculating a metric operator. In this section, we examine some of the
more general and useful of these methods.

4.1. Spectral method

The spectral method, which we employed in Subsec. 3.5, is based on the spectral
representation of the metric operator:

η+ =
N∑
1

|φn〉〈φn|. (139)

It involves the construction of a complete set of eigenvectors φn of A† and summing
the series appearing in (139) (or performing the integrals in case that the spectrum
is continuous).

4.1.1. PT -symmetric infinite square well

The first pseudo-Hermitian and PT -symmetric model with an infinite-dimensional
Hilbert space that has been treated within the framework of pseudo-Hermitian
quantum mechanics is the one corresponding to the PT -symmetric square well
potential [241, 19]:

v(x) =



−iζ sgn(x) for |x| < L

2
,

∞ for |x| ≥ L

2
,

(140)

where ζ and L are real parameters, L is positive, and x takes real values. This was
achieved in [175] using the spectral method combined with a certain approximation
scheme that allowed for a reliable approximate evaluation of a metric operator as
well as the corresponding equivalent Hermitian Hamiltonian and pseudo-Hermitian
position and momentum operators. A more recent treatment of this model that
makes use of the spectral method and obtains a perturbative expansion for a C
operator and the corresponding metric operator η+ in powers of ζ is given in [51].

4.1.2. PT -symmetric barrier

In [159], the spectral method has been used for treating a pseudo-Hermitian quan-
tum system defined by the scattering potential:

v(x) =



−iζ sgn(x) for |x| < L

2
,

0 for |x| ≥ L

2
,

(141)
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where again ζ, L, x ∈ R and L is positive. This potential was originally used in
[199] as a phenomenological tool for describing the propagation of electromagnetic
waves in certain dielectric wave guides.rr It is the first example of a PT -symmetric
potential with a continuous spectrum that could be studied thoroughly within the
context of pseudo-Hermitian quantum mechanics.

Application of the spectral method for this potential involves replacing the sum
in (139) with an integral over the spectral parameter and taking into account
the double degeneracy of the energy levels. The extremely lengthy calculation
of a metric operator for this potential yields the following remarkably simple
expression [159].

〈x|η+|y〉 = δ(x− y) + s
imL2ζ

16�2
(2L+ 2|x+ y|

− |x+ y + L| − |x+ y − L|) sgn(x− y) + O(ζ2), (142)

where x, y ∈ R, and O(ζ2) stands for terms of order ζ2 and higher.
An unexpected feature of the scattering potential (141) is that the corresponding

equivalent Hermitian Hamiltonian has an effective interaction region that is three
times larger than that of the potential (141). In other words, in the physical space,
which is represented by the spectrum of the pseudo-Hermitian position operator,
the interaction takes place in the interval [− 3L

2 ,
3L
2 ] rather than [−L

2 ,
L
2 ].

4.1.3. Delta-function potential with a complex coupling

Another complex scattering potential for which the spectral method could be suc-
cessfully applied is the delta-function potential [165]:

v(x) = zδ(x), (143)

where z is a complex coupling constant with a positive real part. For this system
it has been possible to compute a metric operator and show that it is actually a
bounded operator up to and including third-order terms in the imaginary part of
z. It is given by

〈x|η+|y〉 = δ(x − y) +
im ζ

2�2
[θ(xy)e−κ|x−y| + θ(−xy)e−κ|x+y|]

× sgn(y2 − x2) + O(ζ2), (144)

where ζ := �(z), κ := m�
−2�(z),� and � denote the real and imaginary parts of

their arguments, θ is the step function defined by θ(x) := [1+sgn(x)]
2 for all x ∈ R,

and we have omitted the quadratic and cubic terms for brevity.
In order to determine the physical meaning of the quantum system defined

by the potential (143) and the metric operator (144), we should examine the

rrThe use of complex potential in constructing various phenomenological models and effective
theories has a long history. For a discussion that is relevant to complex scattering potentials, see
the review article [181] and [2, 72, 63].
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Hermitian representation of the system. The equivalent Hermitian Hamiltonian
is given by [165]

h =
p2

2m
+ �(z)δ(x) +

mζ2

8�2
h2 + O(ζ3), (145)

where

(h2ψ)(x) := aψe
−κ|x| + bψδ(x), (146)

ψ ∈ L2(R) and x ∈ R are arbitrary, aψ := ψ(0), and bψ :=
∫∞
−∞ e−κ|y|ψ(y)dy. As

seen from (145) and (146) the nonlocal character of the Hermitian Hamiltonian h

is manifested in the ψ-dependence of the coefficients aψ and bψ.
A generalization of the delta-function potential (143) that allows for a similar

analysis is the double-delta function potential: v(x) = z−δ(x + a) + z+δ(x − a),
where z± and a are complex and real parameters, respectively [177, 138]. Depend-
ing on the values of the coupling constants z±, this potential may develop spectral
singularities [184, 132]. These are the points where the eigenfunction expansion for
the corresponding Hamiltonian breaks down [177]. This is a well-known mathe-
matical phenomenon [184, 132] with an interesting and potentially useful physical
interpretation: A spectral singularity is a real energy where both the reflection
and transmission coefficients diverge. Therefore it corresponds to a peculiar type
of scattering states that behave exactly like resonances: They are resonances with
zero-width [172, 173].ss

4.1.4. Other models

The application of the spectral method for systems with an infinite-dimensional
Hilbert space is quite involved. If the system has a discrete spectrum it requires
summing complicated series, and if the spectrum is continuous it involves evaluating
difficult integrals. This often makes use of certain approximation scheme necessary
and leads to approximate expressions for the metric operator. A counterexample
to this general situation is the quantum system describing a free particle confined
within a closed interval on the real line and subject to a set of PT -symmetric
Robin boundary conditions [128]. For this system the spectral method may be
employed to yield a closed formula for a metric operator. Other systems for which
the spectral method could be employed to give an explicit and exact expression for
the metric operator are the infinite-dimensional extensions of the two-level system
considered in Subsec. 3.5 where D is identified with a positive-definite operator
acting in an infinite-dimensional Hilbert space [150, 151]. These quantum systems
appear in a certain two-component representation of the Klein–Gordon [140] and
(minisuperspace) Wheeler–DeWitt fields [141].

ssThe single delta-function potential (143) develops a spectral singularity for imaginary values
of z. For other examples of complex potentials with a spectral singularity, see [202, 172, 173].
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4.2. Perturbation theory

The standard perturbation theory has been employed in the determination of the
spectrum of various complex potentials since long ago [60].tt In the present dis-
cussion we use the term “perturbation theory” to mean a particular perturbative
method of constructing a metric operator for a given quasi-Hermitian Hamiltonian
operator. This method involves the following steps.

(1) Decompose the Hamiltonian H in the form

H = H0 + εH1, (147)

where ε is a real (perturbation) parameter, and H0 and H1 are respectively
Hermitian and anti-Hermitian ε-independent operators.

(2) Use the fact that η+ (being a positive-definite operator) has a unique Hermitian
logarithm to introduce the Hermitian operator Q := −ln η+, so that

η+ = e−Q, (148)

and express the pseudo-Hermiticity relation H† = η+Hη
−1
+ in the form

H† = e−QHeQ. (149)

In view of the Backer–Campbell–Hausdorff identity [200],

e−QHeQ = H +
∞∑

=1

1
!

[H,Q]


= H + [H,Q] +
1
2!

[[H,Q], Q] +
1
3!

[[[H,Q], Q], Q] + · · · , (150)

where [H,Q]
 := [[· · · [[H,Q], Q], . . .], Q] and  is the number of copies of Q
appearing on the right-hand side of this relation, (149) yields

H† = H +
∞∑

=1

1
!

[H,Q]
. (151)

(3) Expand Q in a power series in ε of the form

Q =
∞∑
j=1

Qjε
j , (152)

where Qj are ε-independent Hermitian operators.
(4) Insert (147) and (152) in (151) and equate terms of the same order in powers

of ε that appear on both sides of this equation. This leads to a set of operator
equations for Qj which have the form [162]

[H0, Qj] = Rj . (153)

ttFor more recent developments, see [45, 61, 59] and references therein.
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Here j ∈ Z+ and Rj is determined in terms of H1 and Qk with k < j

according to

Rj :=



−2H1 for j = 1,
j∑

k=2

qkZkj for j ≥ 2,
qk :=

k∑
m=1

m∑
n=1

(−1)nnkm!
k!2m−1n!(m− n)!

, (154)

Zkj :=
∑

s1,...,sk∈Z
+

s1+···+sk=j

[[[· · · [H0, Qs1], Qs2 ], . . . , ], Qsk
]. (155)

More explicitly we have

[H0, Q1] = −2H1, (156)

[H0, Q2] = 0, (157)

[H0, Q3] = −1
6
[H1, Q1]2 , (158)

[H0, Q4] = −1
6
([[H1, Q1], Q2] + [[H1, Q2], Q1]), (159)

[H0, Q5] =
1

360
[H1, Q1]4

− 1
6
([H1, Q2]2 + [[H1, Q1], Q3] + [[H1, Q3], Q1]). (160)

(5) Solve the above equations for Qj iteratively by making an appropriate ansatz
for their general form.

A variation of this method was originally developed in [40] to compute the C
operator for the following PT -symmetric Hamiltonians and some of their multidi-
mensional and field-theoretical generalizations.

H =
1

2m
p2 +

1
2
µ2x2 + iεx3, (161)

H =
1

2m
p2 + iεx3, (162)

where µ and ε are nonzero real coupling constants.

4.2.1. PT -symmetric cubic anharmonic oscillator

A perturbative calculation of a metric operator and the corresponding equivalent
Hermitian Hamiltonian and pseudo-Hermitian position and momentum operators
for the Hamiltonian (161) has been carried out in [158, 118].
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Following [40] one can satisfy the operator equations for Qj by taking Q2i = 0
for all i ∈ Z

+ and adopting the ansatz

Q2i+1 =
i+1∑
j,k=0

cijk{x2j , p2k+1}, (163)

where {·, ·} stands for the anticommutator and cijk are real constants. Inserting
(163) in (153), one can determine cijk for small values of i [158]. See also [40, 118].

Again, to determine the physical content of the system defined by the Hamil-
tonian (161) and the metric operator η+ = e−Q, we need to inspect the associated
Hermitian Hamiltonian operator [158]:

h =
p2

2m
+

1
2
µ2x2 +

1
mµ4

(
{x2, p2} + p x2p+

3mµ2

2
x4

)
ε2

+
2
µ12

(
p6

m3
− 63µ2

16m2
{x2, p4} − 81µ2

8m2
p2x2p2 − 33µ4

16m
{x4, p2}

− 69µ4

8m
x2p2x2 − 7µ6

4
x6

)
ε4 + O(ε6), (164)

and the underlying classical Hamiltonian (60):

Hc =
p2
c

2m
+

1
2
µ2x2

c +
3

2µ4

(
2
m
x2
cp

2
c + µ2x4

c

)
ε2

+
2
µ12

(
p6
c

m3
− 18µ2

m2
x2
cp

4
c −

51µ4

4m
x4
cp

2
c −

7µ6

4
x6
c

)
ε4 + O(ε6). (165)

If we only consider the terms of order ε2 and lower, we can express (165) in the
form

Hc =
p2
c

2M(xc)
+
µ2

2
x2
c +

3ε2

2µ2
x4
c + O(ε4), (166)

where M(xc) := m(1 + 3µ−4ε2x2
c)−1 = m(1 − 3µ−4ε2x2

c) + O(ε4). This shows that
for small values of ε, the PT -symmetric Hamiltonian (161) describes a position-
dependent-mass quartic anharmonic oscillator [158]. This observation has motivated
the use of non-Hermitian constant-mass standard Hamiltonians, H = p2

(2m)+v(x) , in
the perturbative description of a class of position-dependent-mass standard Hamil-
tonians [21].

As seen from (164), the fourth-order (in ε) contribution to the equivalent Her-
mitian Hamiltonian h involves p6. It is not difficult to show that h =

∑∞

=0 h
ε

2
,
where h
 is a polynomial in p whose degree is an increasing function of . There-
fore, the perturbative expansion of h includes arbitrarily large powers of p. This
confirms the expectation that h is a nonlocal operator. The same holds for the
pseudo-Hermitian position and momentum operators [158, 118].
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4.2.2. Imaginary cubic potential

Reference [162] gives a perturbative treatment of the Hamiltonian

H =
p2

2m
+ iεx3, (167)

in which the operator equations (153) are turned into certain differential equations
and solved iteratively. This method relies on the observation that for this Hamilto-
nian, H0 = p2

2m . Therefore, 〈x|[H0, Qj ]|y〉 = − �
2

2m (∂2
x − ∂2

y)〈x|Qj |y〉. In view of this
identity and (153), we find

(−∂2
x + ∂2

y)〈x|Qj |y〉 =
2m
�2

〈x|Rj |y〉. (168)

Because Rj is given in terms of H1 and Qi with i < j, one can solve (168) iteratively
for 〈x|Qj |y〉. Note also that this equation is a non-homogeneous (1+1)-dimensional
wave equation which is exactly solvable.

This approach has two important advantages over the earlier perturbative cal-
culation of the metric operator for the imaginary cubic potential [40]. Firstly, it
involves solving a well-known differential equation rather than dealing with diffi-
cult operator equations. Secondly, it is not restricted by the choice of an ansatz,
i.e. it yields the most general expression for the metric operator. In particular, it
reveals large classes of CPT and non-CPT -inner products that were missed in an
earlier calculation given in [40]. Here we give the form of the equivalent Hermitian
Hamiltonian associated with the most general admissible metric operator:

h =
p2

2m
+

3m
16

({
x6,

1
p2

}
+ 22�

2

{
x4,

1
p4

}
+ α2�

4

{
x2,

1
p6

}

+
(14α2 + 1680)�6

p8
+ β2�

3

{
x3,

1
p5

}
P
)
ε2

+ �
6

(
α3

(
�

{
x2,

1
p11

}
+

44�3

p13

)
+ iβ3

{
x3,

1
p10

}
P
)
ε3 + O(ε4), (169)

where α2, α3, β2, β3 are free real parameters characterizing the nonuniqueness of
the metric operator, and P is the parity operator [162].

A remarkable feature of the Hamiltonian (167) is that the underlying classical
Hamiltonian is independent of the choice of the metric operator (to all orders of
perturbation). Up to terms of order ε3 it is given by the following simple expression.

Hc =
p2
c

2m
+

3
8
mε2

x6
c

p2
c

+ O(ε4). (170)

The presence of p2
c in the denominator of the second term is a clear indication that

the equivalent Hermitian Hamiltonian is a nonlocal operator (and that this is the
case regardless of the choice of the metric operator). Again the classical Hamiltonian
(170) clarifies the meaning of the imaginary cubic potential iεx3.
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4.2.3. Other models

The perturbation theory usually leads to an infinite series expansion for the metric
operator whose convergence behavior is difficult to examine. There are, however,
very special models for which this method gives exact expressions for Q and con-
sequently the metric operator η+ = e−Q. Examples of such models are given in
[35, 48, 120, 49]. The simplest example is the free particle Hamiltonian studied in
[162].

For other examples of the perturbative calculation of a metric operator and the
corresponding equivalent Hermitian Hamiltonian, see [22] and particularly [88].

4.3. Differential representations of pseudo-Hermiticity

In the preceding subsection, we show how one can turn the operator equations
appearing in the perturbative calculation of the metric operator into certain differ-
ential equations. In this subsection, we outline a direct application of differential
equations in the computation of pseudo-metric operators for a large class of pseudo-
Hermitian Hamiltonian operators H acting in the reference Hilbert space L2(R).

In the following we outline two different methods of identifying a differential
representation of the pseudo-Hermiticity condition,

H† = ηHη−1. (171)

4.3.1. Field equation for the metric from Moyal product

Consider expressing (171) in the form

ηH = H†η, (172)

and viewing η and H as complex-valued functions of x and p that are composed by
the Moyal ∗-product:

f(x, p) ∗ g(x, p) := f(x, p)ei�
←
∂x

→
∂pg(x, p) =

∞∑
k=0

(i�)k

k!
[∂kxf(x, p)]∂kpg(x, p). (173)

This yields: η(x, p) ∗H(x, p) = H(x, p)∗ ∗ η(x, p) [206]. With the help of (173) we
can express this equation more explicitly as

∞∑
k=0

(i�)k

k!
{[∂kpH(x, p)]∂kx − [∂kxH(x, p)∗]∂kp}η(x, p) = 0. (174)

This is a linear homogeneous partial differential equation of finite order only if
H(x, p) is a polynomial in x and p. For example, for the imaginary cubic potential,
i.e. the Hamiltonian H = p2

2m + iεx3, it reads

[ε�3∂3
p − 3iε�2x∂2

p − (2m)−1
�

2∂2
x − 3ε�x2∂p + im−1

�p∂x + 2iεx3]η(x, p) = 0.

(175)

The presence of variable coefficients in this equation is an indication that it is
not exactly solvable. Particular perturbative solutions can however be constructed.
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This applies more generally for other polynomial Hamiltonians. Explicit examples
are given in [206, 89, 15].

We should like to note however that not every solution of (174) defines a pseudo-
metric (respectively metric) operator. We need to find solutions that correspond to
Hermitian (respectively positive-definite) and invertible operators η. Reference [206]
suggests ways to address this problem.

The above-described method that is based on the Moyal product has two impor-
tant shortcomings.

(1) If the Hamiltonian is not a polynomial of x and p, then the resulting Eq. (174) is
not a differential equation with a finite order. This makes its solution extremely
difficult. This is true unless H(x, p) has a particularly simple form. A typical
example is the exponential potential eix treated in Reference [69]. This potential
is actually one of the oldest PT -symmetric potentials whose spectral problem
has been examined thoroughly [91]. For x ∈ R, its spectrum includes an infinity
of spectral singularities that prevent this potential from defining a genuine
unitary evolution.uu

(2) For the polynomial Hamiltonians, for which (174) is a differential equation, the
general form and even the order of this equation depends on the Hamiltonian.
In particular, for the standard Hamiltonians of the form

H =
p2

2m
+ v(x), (176)

they depend on the choice of the potential v(x).

We shall next discuss a differential representation of the pseudo-Hermiticity that
does not suffer from any of these shortcomings.

4.3.2. Universal field equation for the metric

Consider a pseudo-Hermitian Hamiltonian of standard form (176). Substituting
(176) in the pseudo-Hermiticity relation ηH = H†η and evaluating the matrix
elements of both sides of the resulting equation in the coordinate basis {|x〉}, we
find [163]

[−∂2
x + ∂2

y + µ2(x, y)]η(x, y) = 0, (177)

where µ2(x, y) := 2m
h2 [v(x)∗−v(y)], and η(x, y) := 〈x|η|y〉. Equation (177) is actually

a Klein–Gordon equation for 〈x|η|y〉 (with a variable mass term). As such, it is
much easier to handle than the equation obtained for the pseudo-metric in the
preceding subsection, i.e. (174). Moreover, it applies to arbitrary polynomial and
non-polynomial potentials.

uuFor a discussion of biorthonormal systems for this potential with x taking values on a circle
(a closed interval with periodic boundary condition on the eigenfunctions), see [68].
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It turns out that one can actually obtain a formal series expansion for the most
general solution of (177) that satisfies the Hermiticity condition: η(x, y) = η(y, x)∗.
This solution has the form [163]

η(x, y) =
∞∑

=0

K
u(x, y), (178)

where K is the integral operator defined by

K f(x, y) :=
m

�2

[∫ y

dr

∫ x+y−r

x−y+r
dsv(r)f(s, r) +

∫ x

ds

∫ x+y−s

−x+y+s
drv(s)∗f(s, r)

]
,

(179)

f : R2 → C is an arbitrary test function, u : R2 → C is defined by u(x, y) :=
u+(x − y) + u−(x + y), and u± are arbitrary complex-valued (piecewise) smooth
(generalized) functions satisfying u±(x)∗ = u±(∓x).

For imaginary potentials, the series solution (178) provides an extremely effec-
tive perturbative method for the construction of the most general metric operator.
For example, the application of this method for the PT -symmetric square well
potential that we discussed in Subsec. 4.1.1 yields, after a page-long straightfor-
ward calculation [163]

η(x, y) = δ(x− y) + ζ

[
w+(x− y) + w−(x + y) +

im
2�2

|x+ y| sgn(x− y)
]

+ O(ζ2),

(180)

where w± : [−L
2 ,

L
2 ] → C are arbitrary functions satisfying w±(x)∗ = w±(∓x) and

w±(±L) = 0. The metric operator associated with the CPT -inner product that is
computed using the spectral method in [51] turns out to correspond to a particular
choice for w± in (180).

A probably better evidence of the effectiveness of this method is its appli-
cation in the construction of a metric operator for the PT -symmetric barrier
potential that we examined in Subsec. 4.1.2. Again, a two-page-long calculation
yields [163]

η(x, y) = δ(x − y) + ζ

[
w+(x− y) + w−(x+ y)

+
im
4�2

(2|x+ y| − |x+ y + L| − |x+ y − L|) sgn(x− y)
]

+ O(ζ2).

(181)

This expression reproduces the result obtained in [159] using the spectral method
(after over a hundred pages of calculations), namely (142), as a special case.

In [163], this differential representation of pseudo-Hermiticity has been used
to obtain a perturbative expression for the metric operator associated with the
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imaginary delta-function potentials of the formvv

v(x) = i

N∑
n=1

ζnδ(x− an), (182)

where ζn, an ∈ R. The result is

η(x, y) = δ(x− y) +
N∑
n=1

2mζn
�2

[
wn+(x − y) + wn−(x+ y)

+
i

2
θ(x + y − 2an) sgn(y − x)

]
+ O(ζ2

n). (183)

For the special case: N = 2, a1 = −a2 > 0 and ζ1 = −ζ2 > 0, where (182) is
a PT -symmetric potential, a careful application of the spectral method yields a
positive-definite perturbatively bounded metric operator [24] that turns out to be
a special case of (183). The general N = 2 case, that depending on the choice of ζk
may or may not possess PT -symmetry, has been examined in [177, 138].

The main difficulty with the approaches presented in this section (and its
subsections) is that they may lead to a “metric” operator that is unbounded or
non-invertible.ww For example, setting N = 1 in (182), one finds a delta func-
tion potential with an imaginary coupling that gives rise to a spectral singular-
ity [165]. Therefore, the corresponding Hamiltonian is not quasi-Hermitian, and
there is actually no genuine (bounded, invertible, positive-definite) metric oper-
ator for this potential. Yet, one can use (183) to obtain a formula for a “met-
ric operator”! This observation suggests that one must employ this method with
extra care.

4.4. Lie algebraic method

In Subsec. 4.2, we described a perturbative scheme for solving the pseudo-
Hermiticity relation,

H† = e−QHeQ, (184)

for the operator Q that yields a metric operator upon exponentiation, η+ = e−Q. In
this section, we explore a class of quasi-Hermitian Hamiltonians and corresponding
metric operators for which (184) reduces to a finite system of numerical equations,
although the Hilbert space is infinite-dimensional. The key idea is the use of an
underlying Lie algebra. In order to describe this method we first recall some basic
facts about Lie algebras and their representations.

vvThe spectral properties of PT -symmetric potentials of this form and their consequences have
been studied in [117, 1, 7, 72, 226]. In particular, see [177].
wwOne must also restrict the free functions appearing in the formula for η(x, y) so that the operator
η they define, is at least densely-defined.
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4.4.1. Lie algebras and their representations

Consider a matrix Lie group G, i.e. a subgroup of the general linear groupGL(N,C)
for someN ∈ Z+, and let G denote its Lie algebra [83, 108]. A unitary representation
of G is a mapping U of G into the group of all unitary operators acting in a
separable Hilbert space H such that the identity element of G is mapped to the
identity operator acting in H and for all g1, g2 ∈ G, U(g1g2) = U(g1)U(g2). Such a
unitary representation induces a unitary representation for G, i.e. a linear mapping
U of G into the set of anti-Hermitian linear operators acting in H such that for
all X1, X2 ∈ G, U([X1, X2]) = [U(X1),U(X2)] [83, 85]. The mappings U and U

are related according to: U(eX) = eU(X), for all X ∈ G. Furthermore, because for
all X ∈ G, U(X) is an anti-Hermitian operator acting in H, there is a Hermitian
operator K : H → H such that U(X) = iK.

Let {K1,K2, . . . ,Kd} be a set of Hermitian operators acting in H such that
{iK1, iK2, . . . , iKd} is a basis of U(G). Then Ka with a ∈ {1, 2, . . . , d} are called
generators of G in the representation U . If U is a faithful representation, i.e. it is a
one-to-one mapping, the same holds for U, and d coincides with the dimension of
G. In this case, we refer to the matrices

Ka := U−1(Ka) (185)

as generators of G in its standard representation.
Next, consider the set of complex linear combinations of Ka, i.e. the complexifi-

cation of G: G
C

:= {
∑d
a=1 caKa | ca ∈ C}. We can extend the domain of definition of

U to G
C

by linearity: For all ca ∈ C, U(
∑d

a=1 caKa) :=
∑d

a=1 caU(Ka) =
∑d

a=1 caKa.
Similarly, we extend the definition of U to the set of elements of GL(N,C) that are
obtained by exponentiation of those of G

C
. This is done according to

U(eX) = eU(X), for all X ∈ G
C
. (186)

Next, we recall that according to Backer–Campbell–Hausdorff identity (150), for
all X,Y ∈ GC, e−XY eX ∈ G

C
. Furthermore, (150) and (186) imply

U(e−XYeX) = e−U(X)U(Y )eU(X) = U(e−X)U(Y )U(eX) for all X,Y ∈ GC.

(187)

This completes our mathematical digression.

4.4.2. General outline of the method

Suppose that H : H → H can be expressed as a polynomial in the Hermitian
generates Ka of G in a faithful unitary representation U ,xx i.e.

H =
n∑
k=1

d∑
a1,a2,...,ak=1

λa1,a2,...,ak
Ka1Ka2 · · ·Kak

, (188)

xxIn mathematical terms, one says that H is an element of the enveloping algebra of G in the
representation U .
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where n ∈ Z+, d is the dimension of G, and λa1,a2,...ak
∈ C. Demand that H admits

a metric operator of the form η+ = e−Q with Q given by

Q =
d∑
a=1

raKa, for some ra ∈ R. (189)

Then as we will show below, the right-hand side of (184) can be evaluated using
the standard representation of G and readily expressed as a polynomial in Ka with
the same order as H . Upon imposing (184), we therefore obtain a (finite) set of
numerical equations involving the coupling constants λa1,a2,...ak

and the parameters
ra that determine the metric operator via

η+ := exp

(
−

d∑
a=1

raKa

)
. (190)

In order to demonstrate how this method works, we introduce the matrix η+ :=

exp(−
∑d
a=1 raKa), that belongs to exp(G

C
) and satisfies η+ = U(η+). This together

with (185) and (187) imply

η+Hη+
−1 =

n∑
k=1

d∑
a1,a2,...,ak=1

λa1,a2,...ak
(η+Ka1η+

−1)(η+Ka2η+
−1) · · · (η+Kak

η+
−1)

=
n∑
k=1

d∑
a1,a2,...,ak=1

λa1,a2,...ak
U(η+ Ka1 η+

−1) · · ·U(η+ Kak
η+
−1) (191)

Because for all a ∈ {1, 2, . . . , d}, η+Kaη+
−1 belongs to G

C
, there are complex coeffi-

cients κab depending on the structure constants Cabc of the Lie algebra G and the
coefficients ra such that

η+ Ka η+
−1 =

d∑
b=1

κabKb. (192)

As a result, U(η+ Ka η+
−1) =

∑d
b=1 κabU(Kb) =

∑d
b=1 κabKb. Inserting this relation

in (191), we find

η+Hη+
−1 =

n∑
k=1

d∑
b1,b2,...,bk=1

λ̃b1b2···bk
Kb1Kb2 · · ·Kbk

, (193)

where λ̃b1b2···bk
:=
∑d
a1,a2,...,ak=1 λa1,a2,...ak

κa1b1κa2b2 · · ·κakbk
. Note that the coef-

ficients λ̃b1b2···bk
depend on the parameters ra of the metric operator (190).

In view of (188) and (193), the pseudo-Hermiticity relation H† = η+Hη+
−1 takes

the form
n∑
k=1

d∑
c1,c2,...,ck−1,ck=1

(λ∗ckck−1···c2c1 − λ̃c1c2···ck−1ck
)Kc1Kc2 · · ·Kck

= 0. (194)

We can use the commutation relations for the generators Ka, namely [Ka,Kb] =
i
∑d
c=1 CabcKc, to reorder the factors Kc1Kc2 · · ·Kck

and express the left-hand side
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of (194) as a sum of linearly independent operators. Consequently, the coefficients of
this sum must identically vanish. This yields a system of equations for ra. In general,
this system is overdetermined and a solution might not exist. However, there is a
class of Hamiltonians of the form (188) for which this system has solutions. In this
case, each solution determines a metric operator.

For the particular case that n = 1, so that

H =
d∑
a=1

λaKb, (195)

we may employ a more direct method of deriving the system of equations for ra.
This is based on the observation that, in this case, we can obtain a representation
of the pseudo-Hermiticity relation H† = η+Hη+

−1 in GC, namely

H� = η+ H η+
−1, (196)

whereyy

H :=
d∑
a=1

λaKa, H� :=
d∑
a=1

λ∗aKa. (197)

The matrix equation (196) is equivalent to a system of d complex equations for d
real variables ra. Therefore, it is generally overdetermined.

We can use the above Lie algebraic method to compute the equivalent Hermitian
Hamiltonian h for the quasi-Hermitian Hamiltonians of the form (188). In view of
the definitions: h := ρHρ−1 and ρ := √

η+ = exp(
∑d

a=1
ra

2 Ka), h is given by the
right-hand side of (192) provided that we use ra

2 in place of ra.
An alternative Lie algebraic approach of determining metric operator and the

equivalent Hermitian Hamiltonian is the following. First, we use the argument lead-
ing to (191) to obtain

h = ρHρ−1

=
n∑
k=1

d∑
a1,a2,...,ak=1

λa1,a2,...,ak
U(ρKa1 ρ

−1)U(ρKa2 ρ
−1) · · ·U(ρKak

ρ−1),

(198)

where ρ := exp(
∑d

a=1
ra

2 Ka). Then, we evaluate ρ Ka ρ
−1 and express it as

a linear combination of Ka with ra-dependent coefficients.zz Substituting the
result in (198) and using the linearity of U and Ka = U(Ka) give h =∑n

k=1

∑d
a1,a2,...,ak=1 εa1,a2,...,ak

Ka1Ka2 · · ·Kak
, where εa1,a2,...,ak

are ra-dependent
complex coefficients. In this approach, we obtain the desired system of equations
for ra by demanding that h = h†. This is the root taken in [194] where the Lie
algebraic method was originally used for the construction of the metric operators

yyUnless G is a unitary group, U is not a ∗-representation [85], and H� �= H†.
zzThis is possible because ρ ∈ exp(G

C
).
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and equivalent Hermitian Hamiltonians for a class of quasi-Hermitian Hamiltonians
of the linear form (195) with underlying su(1, 1) algebra. For an application of this
approach to Hamiltonians that are quadratic polynomials in generators of SU(1, 1),
see [17].

4.4.3. Swanson model: G = su(1, 1)

In this section, we explore the application of the Lie algebraic method to construct
metric operators for Swanson’s Hamiltonian [224]:

H = �ω

(
a†a+

1
2

)
+ αa2 + βa†

2
, (199)

where a := x+ip√
2

, x :=
√

mω
�
x, p := p√

m�ω
, α, β, ω,m are real parameters, m > 0,

ω > 0, and �2ω2 > 4αβ. The latter condition ensures the reality and discreteness
of the spectrum of (199).

The problem of finding metric operators for the Hamiltonian (199) is addressed
in [118, 206, 182]. The use of the properties of Lie algebras for solving this problem
was originally proposed in [194].

Swanson’s Hamiltonian (199) is an example of a rather trivial class of quasi-
Hermitian Hamiltonians of the standard form

H =
[p+A(x)]2

2M
+ v(x), (200)

where A and v are, respectively, a complex-valued vector potential and a real-valued
scalar potential, and M ∈ R+ is the mass. It is easy to see that these Hamiltonians
admit the x-dependent metric operator: η+ = exp(− 2

�

∫
dx �[A(x)]). This in turn

yields the equivalent Hermitian Hamiltonian: h = 1
2m (p + �[A(x)])2 + v(x). The

subclass of the Hamiltonians (200) corresponding to imaginary vector potentials
has been considered in [3]. The Swanson Hamiltonian (199) is a special case of
the latter. It corresponds to the choice: M = m

1−α̃−β̃ , A(x) = i
(
mω(α̃−β̃)

1−α̃−β̃

)
x, and

v(x) = 1
2

(
1−4α̃β̃

1−α̃−β̃

)
mω2x2, where

α̃ :=
α

�ω
, β̃ :=

β

�ω
. (201)

As shown in [118, 182], the Hamiltonian (199) admits other exactly constructible
metric operators. The Lie algebraic method considered in this section offers a sys-
tematic approach for constructing metric operators for this Hamiltonian. In order
to describe the details of this construction, we begin by recalling that the operators
a and a† are the usual harmonic oscillator annihilation and creation operators that
satisfy

[a, a†] = 1. (202)

A well-known consequence of this relation is the possibility of constructing a unitary
representation of the Lie algebra su(1, 1) using quadratic polynomials in a and a†.
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To see this, consider the Hermitian operators: K1 := 1
4 (a2 +a†2), K2 := i

4 (a2−a†2)
and K3 := 1

4 (aa† + a†a) = 1
2 (a†a + 1

2 ) that act in H := L2(R) [142]. In view
of (202), they satisfy the su(1, 1) algebra: [K1,K2] = −iK3, [K2,K3] = iK1,
[K3,K1] = iK2. Clearly the Hamiltonian (199) can be expressed as a linear combi-
nation of K1,K2 and K3:

H = 2[(α+ β)K1 + i(α− β)K2 + �ωK3]. (203)

This relation identifies the Hamiltonian (203) as a special case of the Hamiltonians
of the form (195) with G = SU(1, 1), d = 3, λ1 = 2(α + β), λ2 = 2i(α − β), and
λ3 = 2�ω. We can further simplify (203) by introducing non-Hermitian generators
K± := K1 ± iK2. In terms of these, we have H = 2(αK+ + βK− + �ωK3).

In order to apply the above method of constructing a metric operator for (203),
we need to find a set of generators Ka of SU(1, 1) in its standard representation and
a faithful unitary representation U of the Lie algebra su(1, 1) such that Ka = U(Ka)
for all a ∈ {1, 2, 3}. A simple choice is

K1 :=
i

2
σ1 =

1
2

(
0 i

i 0

)
, K2 :=

i

2
σ2 =

1
2

(
0 1

−1 0

)
,

K3 :=
1
2
σ3 =

1
2

(
1 0
0 −1

)
,

(204)

where σ1, σ2, and σ3 are the Pauli matrices. We also have

K+ := K1 + iK2 =
(

0 i

0 0

)
, K− := K1 − iK2 =

(
0 0
i 0

)
, (205)

that fulfil U(K±) = K±.
Comparing (204) and (205), we see that it is more convenient to work with

the generators K± and K3 rather than Ka with a ∈ {1, 2, 3}. This, in particular,
suggests the following alternative parametrization of the metric operator (190).

η+ = exp(zK+) exp(2rK3) exp(z∗K−), with z ∈ C, r ∈ R. (206)

Clearly,

η+ = exp(zK+) exp(2rK3) exp(z∗K−) =

(
er − e−r|z|2 ie−rz

ie−rz∗ e−r

)
, (207)

η+
−1 = exp(−z∗K−) exp(−2rK3) exp(−zK+) =

(
e−r −ie−rz

−ie−rz∗ er − e−r|z|2

)
,

(208)
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where we have made use of (204) and (205). Also in view of (197), (201), (203), and
K± := K1 ± iK2 = K†

∓, we have

H = 2�ω[α̃K+ + β̃K− + K3] = �ω

(
1 2iα̃

2iβ̃ −1

)
, (209)

H� = 2�ω[α̃K− + β̃K+ + K3] = �ω

(
1 2iβ̃

2iα̃ −1

)
. (210)

Next, we insert (207)–(210) in (196). This yields the following three independent
complex equations that are more conveniently expressed in terms of s := er and
w := e−rz.

s(α̃s− w) + β̃(w2 − 1) + s|w|2[w + α̃s(|w|2 − 2)] = 0, (211)

β̃ − α̃s2 + sw∗(1 + α̃sw∗) = 0, (212)

β̃w + sw∗[w + α̃s(|w|2 − 1)] = 0. (213)

To solve these equations, we rewrite (213) as: w + α̃s(|w|2 − 2) = −α̃s− β̃w
sw∗ , and

use this relation in (211) to obtain

α̃s(1 − |w|2) =
β̃

s
+ w. (214)

Substituting this equation back into (213), we find β̃(w−w∗) = 0. Therefore, either
β̃ = 0 or w ∈ R. It is easy to show using (212) that the condition β̃ = 0 implies
w ∈ R as well. Hence, w is real and (214) reduces to a quadratic equation whose
solution is

w =
−1 ±

√
4α̃2s2 + 1 − 4α̃β̃

2α̃s
. (215)

It turns out that (211)–(213) do not impose any further restriction on s. Therefore,
(215) is the solution of the system (211)–(213). In terms of the original parameters

r and z, it reads z = −1 ±
√

4α̃2e2r+1−4α̃β̃
2α̃ = −�ω ±

√
4α2e2r+�ω−4αβ

2α . Substituting
this formula in (206), we find two one-parameter families of metric operators for
Swanson’s Hamiltonian.

5. Systems Defined on a Complex Contour

5.1. Spectral problems defined on a contour

Consider the Schrödinger operator − d2

dx2 + V (x), where V : R → C is a complex-
valued piecewise real-analytic potential. The study of the spectral problem for this
operator and its complex generalization, − d2

dz2 + V (z), with z taking values along
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a contouraaa Γ in C, predates the discovery of quantum mechanics.bbb The case
of polynomial potentials have been studied thoroughly in [212]. For a more recent
discussion, see [210].

The spectrum of − d2

dz2 + V (z) depends on the choice of the contour Γ. In the
case that Γ visits the point at infinity, the spectrum is essentially determined by the
boundary condition imposed on the solutions Ψ : Γ → C of the following eigenvalue
equation at infinity. [

− d2

dz2
+ V (z)

]
Ψ(z) = EΨ(z). (216)

For an extended contour Γ, that is obtained by a continuous invertible deforma-
tion of the real axis in C, the eigenvalue problem (216) is well-posed provided that
we demand Ψ(z) to decay exponentially as |z| → ∞ along Γ. To make this condition
more explicit, we identify Γ with the graph of a parametrized curve ζ : R → C in
C, i.e.

Γ = {ζ(s) | s ∈ R}. (217)

The assumption that Γ is simple implies that ζ is a one-to-one function, and we
can express the above-mentioned boundary condition as

|Ψ(ζ(s))| → 0 exponentially as s→ ±∞. (218)

A simple consequence of this condition is∫ ∞

−∞
|Ψ(ζ(s))|2ds <∞. (219)

If we view C as a Riemannian manifold, namely R2 endowed with the Euclidean
metric tensor, and consider Γ as a submanifold of this manifold, we can use the
embedding map ζ : R → C to induce a metric tensor (g) on Γ. The corresponding
line element is given by d :=

√
g ds =

√
dx(s)2 + dy(s)2 = |ζ′(s)| ds, where x(s) :=

�(ζ(s)) and y(s) := �(ζ(s)). Therefore, the integral measure defined by g on Γ is the
arc-length element |ζ′(s)| ds. This in turn suggests the following parametrization-
invariant definition of the L2-inner product on Γ.

≺Ψ |Φ�:=
∫ ∞

−∞
Ψ(ζ(s))∗Φ(ζ(s)) |ζ′(s)| ds. (220)

If we identify s with the arc-length parameter, for which |ζ′(s)| = 1, and let L2(Γ) :=
{Ψ : Γ → C |≺Ψ |Ψ�<∞}, we can express (219) as

Ψ ∈ L2(Γ). (221)

This shows that the boundary condition (218) implies the square-integrability con-
dition (221) along Γ. The converse is not generally true; the spectrum defined by

aaaHere by the term “contour” we mean (the graph of) a piecewise smooth simple curve that need
not be closed.
bbbHermann Weyl’s dissertation of 1909 provides a systematic approach to this problem. For a
detailed discussion of Weyl’s results, see [104, §10].
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the boundary condition (218) is a subset of the point spectrumccc of the operator
− d2

dz2 + V (z) viewed as acting in the Hilbert space L2(Γ). In the following we shall
use the term spectrum to denote the subset of the point spectrum that is defined
by the boundary condition (218).

In order to demonstrate the importance of the choice of the contour in dealing
with the spectral problem (216), consider the imaginary cubic potential V (z) = iz3.
As we mentioned in Sec. 1, the spectrum defined by the boundary condition (218)
along the real axis (ζ(s) = s) is discrete, real and positive [79, 209]. But, the spec-
trum defined by the same boundary condition along the imaginary axis is empty. To
see this, we parametrize the imaginary axis according to z = ζ(s) = is with s ∈ R.
Then the operator − d2

dz2 + iz3 takes the form d2

ds2 + s3, and we can respectively
express the eigenvalue equation (216) and the boundary condition (218) as[

d2

ds2
+ s3
]
ψ(s) = Eψ(s), (222)

and

|ψ(s)| → 0 exponentially as s→ ±∞, (223)

where ψ(s) := Ψ(is) for all s ∈ R.ddd But, it is well-known that (222) does not have
any solution fulfilling (223) for either real or complex values of E.eee

The imaginary cubic potential belongs to the class of potentials of the form

Vν(x) = λx2(ix)ν , ν ∈ R, λ ∈ R
+. (224)

As shown in [79, 209], for ν ≥ 0 these potentials share the spectral properties of
the imaginary cubic potential, if we impose the boundary condition (218) along a
contour Γν that lies asymptotically in the union of the Stokes wedges [32]:

S±
ν := {re−i(θ±ν +ϕ) | r ∈ [0,∞), ϕ ∈ (−δν , δν)}, (225)

where

θ+ν :=
πν

2(ν + 4)
=: θν , θ−ν := π − θν , δν :=

π

ν + 4
. (226)

Here by asymptotic inclusion of Γν in S−
ν ∪S+

ν , we mean that if Γν = {ζν(s) | s ∈ R}
for a piecewise smooth one-to-one function ζν : R → C, then there must exist a

cccBy definition, the spectrum σ(A) of an operator A acting in a Banach space is the set of
complex numbers E for which the operator A − EI is not invertible, i.e. one or more of the
following conditions hold: (1) A − EI is not one-to-one; (2) A − EI is not onto; (3) A − EI is
one-to-one so that it has an inverse, but the inverse is not a bounded operator [105]. The point
spectrum of A is the subset of σ(A) consisting of the eigenvalues E of A, i.e. the numbers E for
which A−EI is not one-to-one [195].
dddThis was pointed out to me by Prof. Yavuz Nutku.
eeeThe point spectrum of d2

ds2 + s3 is C, i.e. (222) admits square-integrable solutions for all E ∈ C

(this was pointed out to me by Prof. Patrick Dorey). These solutions do not, however, satisfy (223).
They do not represent physically acceptable bound states, because they do not belong to the
domain of the observables such as position, momentum or some of their powers.
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Fig. 1. A contour Γν (the solid curve) lying asymptotically in the union of the Stokes wedges (the
grey region). The dashed lines are the bisectors of the Stokes wedges S±

ν . The angle θν between
the positive real axis and the bisector of S+

ν is also depicted.

positive integer M such that for all s ∈ R the condition ±s > M implies ζ(s) ∈ S±
ν .

Figure 1 shows Stokes wedges and a typical contour lying in S−
ν ∪S+

ν asymptotically.
For ν = 2, (224) gives the wrong-sign quartic potential,

V2(x) = −λx4, λ ∈ R
+, (227)

which is known to have an empty spectrum (defined by (218) along the real axis).
Setting ν = 2 in (225) and (226), we have S−

2 = {reiθ | r ∈ [0,∞), θ ∈ (−π,− 2π
3 )}

and S+
2 = {reiθ | r ∈ [0,∞), θ ∈ (−π

3 , 0)}. Therefore the condition that Γ2 must lie
asymptotically inside S−

2 ∪ S+
2 excludes the real axis as a possible choice for Γ2. It

is not difficult to see that the same holds for all ν ≥ 2.

5.2. Equivalent spectral problems defined on R

The fact that the spectrum of the potentials (224) defined by the above-mentioned
boundary condition along Γν is discrete, real and positive is by no means obvious,
and its proof is quite complicated [79, 209]. In this subsection, we will outline
a transformation scheme that maps the spectral problem for these and similar
potentials to an equivalent spectral problem that is defined on the real line [157].
This scheme provides an intuitive understanding of the spectral properties of the
potentials (224) and in particular allows for a straightforward treatment of the
wrong-sign quartic potential (227) that we shall consider in the following subsection.

Given an extended contour Γ, we can use x := �(z) to parametrize it. We do this
by setting Γ = {ζ(x) |x ∈ R} where ζ(x) := x+if (x) for all x ∈ R, and f : R → R is
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a piecewise smooth function. This implies that along Γ, dz = dζ(x) = [1+ if ′(x)]dx
and the eigenvalue equation (216) takes the form[

−g(x)2 d
2

dx2
+ ig(x)3f ′′(x)

d

dx
+ ṽ(x)

]
ψ̃(z) = Eψ̃(z), (228)

where for all x ∈ R,

g(x) :=
1

1 + if ′(x)
, ṽ(x) := V (x+ if (x)), ψ̃(x) := Ψ(x+ if (x)), (229)

and a prime stands for the derivative of the corresponding function.
Next, we examine the consequences of using the arc-length parametrization of

Γ. If we define F : R → R by F (x) :=
∫ x
0

√
1 + f ′(u)2 du, we can express the

arc-length parameter along Γ, which we denote by x, as x := F (x). Under the
transformation x→ x, the eigenvalue equation (228) takes the form

e−2iξ(x)

[
− d2

dx2
+ ia(x)

d

dx
+ v(x)

]
ψ(x) = Eψ(x), (230)

wherefff

ξ(x) := tan−1(f ′(x))|x=F−1(x), a(x) := ξ′(x) =
f ′′(x)

[1 + f ′(x)2]
3
2

∣∣∣∣
x=F−1(x)

, (231)

v(x) := e2iξ(x)ṽ(F−1(x)), ψ(x) := ψ̃(F−1(x)). (232)

The arc-length parametrization of Γ is achieved by the function G : R → Γ
defined by G(x) := F−1(x) + if (F−1(x)) for all x ∈ R. This is the invertible
function that maps the real line R onto the contour Γ in such a way that the
(Euclidean) distance is preserved, i.e. if x1,x2 ∈ R are respectively mapped to
z1 := G(x1) and z2 := G(x2), then the length of the segment of Γ that lies between
z1 and z2 is given by |x1−x2|. In other words, G : R → Γ is an isometry. In light of
(229) and (232), G relates the solutions Ψ and ψ of the eigenvalue equations (216)
and (230) according to ψ(x) = Ψ(G(x)). We can use G to express v in terms of the
potential V directly:

v(x) = e2iξ(x)V (G(x)). (233)

Furthermore, recalling that the arc-length parametrization of Γ corresponds to iden-
tifying s and ζ(s) of (217)–(219) respectively with x and G(x), we have

≺Ψ |Ψ�=
∫ ∞

−∞
|Ψ(G(x))|2dx =

∫ ∞

−∞
|ψ(x)|2dx = 〈ψ |ψ〉. (234)

This observation has two important consequences. Firstly, it implies that Ψ ∈ L2(Γ)
if and only if ψ ∈ L2(R). Secondly, it allows for the introduction of an induced

fffBecause F is a monotonically increasing function, it is one-to-one. In particular, it has an inverse
that we denote by F−1.
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unitary operator G∗ : L2(Γ) → L2(R), namely G∗(Ψ) := ψ if ψ(x) = Ψ(G(x)) for
all x ∈ R.ggg

The above constructions show that a pseudo-Hermitian quantum system that is
defined by a Hamiltonian operator of the form − d2

dz2 + V (z) acting in the reference
Hilbert space L2(Γ) is unitary-equivalent to the one defined by the Hamiltonian
operator

H = e−2iξ(x)

[
− d2

dx2
+ ia(x)

d

dx
+ v(x)

]
(235)

that is defined in the reference Hilbert space L2(R). In terms of the unitary operator
G∗, we have − d2

dz2 + V (z) = G−1∗ HG∗.
A particularly simple choice for a contour is a wedge-shaped contour: Γ(θ) :=

{x+ if (x) |x ∈ R} where f(x) := −tan θ|x| and θ ∈ [0, π2 ). A typical example is the
contour obtained by adjoining the bisectors of the Stokes wedges (the dashed lines
in Fig. 1). For such a contour,

x = F (x) = sec θx, x = F−1(x) = cos θx, (236)

G(x) = cos θx − i sin θ|x| =

{
eiθx for x < 0,
e−iθx for x ≥ 0,

(237)

and in view of (231), (232) and (233) the Hamiltonian operator (235) takes the
form

H = −e2iθ sgn(x)

[
d2

dx2
+ 2iθδ(x)

d

dx

]
+ V (cos θx − i sin θ|x|). (238)

The presence of delta-function in (238) has its root in the non-differentiability
of Γ(θ) at the origin. One can smooth out Γ(θ) in an arbitrarily small open neigh-
borhood of the origin and show that this delta-function singularity amounts to the
imposition of a particular matching condition at x = 0 for the solutions of the
corresponding eigenvalue problem. As shown in [157], these are given by

ψ(0+) = ψ(0) = ψ(0−), e−2iθψ′(0−) = e2iθψ′(0+), (239)

where for every function φ : R → R, φ(0±) := limx→0± φ(x).
In view of (238), we can express the eigenvalue equation for H in the form

H±ψ±(x) = Eψ±(x), for x ∈ R
±, (240)

where

H± := −e±2iθ d
2

dx2
+ V (e∓iθx), (241)

and ψ− : (−∞, 0] → C, ψ+ : [0,∞) → C are defined by ψ±(x) := ψ(x) for all
x ∈ R±, ψ±(0) := ψ(0±), and ψ′±(0) := ψ′(0±).

gggEquation (234) shows that G∗ preserves the norm. This is sufficient to conclude that it is a
unitary operator, for in an inner product space the norm uniquely determines the inner product
[123, §6.1].
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In summary, the eigenvalue problem for the Schrödinger operator − d2

dz2 + V (z)
that is defined by the boundary condition (218) along Γ(θ) is equivalent to finding
a pair of functions ψ± satisfying

−e±2iθψ′′
±(x) + V (e∓iθ x)ψ±(x) = Eψ±(x) for x ∈ R±, (242)

ψ−(0) = ψ+(0), e−2iθψ′−(0) = e2iθψ′
+(0), (243)

ψ±(x) → 0 exponentially as x → ±∞. (244)

To elucidate the practical advantage of this formulation, we explore its application
for the potentials Vν(z) = λz2(iz)ν with λ ∈ R+.

As we explained in the preceding subsection, we need to choose a contour that
belongs to the union of the Stokes wedges S±

ν asymptotically. We shall choose the
wedge-shaped contour Γ(θν) that consists of the bisectors of S±

ν . Setting V = Vν
and θ = θν in (241) and using (226) we find the following most surprising result.

H± = e±2iθν

[
− d2

dx2
+ λ|x|ν+2

]
. (245)

Similarly, (242) becomes

−ψ′′
±(x) + λ|x|ν+2ψ±(x) = E e∓2iθνψ±(x) for x ∈ R

±. (246)

The appearance of the real confining potential λ|x|ν+2 in (245) and (246) allows for
an alternative proof of the discreteness of the spectrum of the potentials z2(iz)ν .
See [157, Appendix] for details.hhh

5.3. Wrong-sign quartic potential

In the preceding section we showed how one can transform the spectral problem
for a potential defined along a complex contour to one defined along R. The form
of the transformed Hamiltonian operator depends on the choice of the contour and
its parametrization. This raises the natural question of whether one can choose
an appropriate parametrized contour so that the transformed Hamiltonian admits
an easily constructible metric operator. The wrong-sign quartic potential V2(z) =
−λz4, with λ ∈ R+, is a remarkable example for which the answer to this question
is in the affirmative.

Let Γ2 = {ζ(s) | s ∈ R} be the contour defined by [120]

ζ(s) := −2i
√

1 + is, for all s ∈ R. (247)

If we parametrize Γ2 using x = �(ζ(s)), we find Γ2 = {x + if (x) |x ∈ R} where
f is given by f(x) := −

√
x2 + 1 for all x ∈ R. This shows that Γ2 is a hyperbola

with asymptotes ± := {±re−iπ
4 | r ∈ R+}. Because ± lies in the Stokes wedge S±

2 ,
(247) defines an admissible contour for the potential V2.

hhhIt would be interesting to see if this approach can lead to an alternative proof of the reality of
the spectrum.
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If we perform the change of variable z → ζ(s), we can express the eigenvalue
equation: [− d2

dz2 − λz4]Ψ(z) = EΨ(z), in the form[
−(1 + is)

d2

ds2
− i

2
d

ds
− 16λ (1 + is)2

]
φ(s) = Eφ(s), (248)

where φ(s) := Ψ(ζ(s)). We can identify s with a usual (Hermitian) position opera-
tor, introduce the corresponding wave number operator K as 〈s|K := −i dds〈s|, and
express (248) as the eigenvalue equation for the Hamiltonian

H := (1 + is)K2 +
K

2
− 16λ(1 + is)2 (249)

that acts in L2(R).
As shown in [120], the application of the perturbative scheme of Subsec. 4.2

yields the following exact expressions for a metric operator and the corresponding
equivalent Hermitian Hamiltonian, respectively.

η+ = exp
(

K3

48λ
− 2K

)
, (250)

h =
K4

64λ
− K

2
+ 16λs2. (251)

We shall offer an alternative derivation of these formulas momentarily.
Because h is a Hermitian operator that is isospectral to H , the spectrum of H

and consequently the operator − d2

dz2 −λz4 defined along Γ2, is real. It is also easy to
show that the common spectrum of all these operators is positive and discrete. To
see this, we express h in its K-representation where eigenvalue equation hΦ = EΦ
reads [

−16λ
d2

dK2
+

K4

64λ
− K

2

]
Φ̃(K) = EΦ̃(K), (252)

and Φ̃(K) := 〈K |Φ〉 = (2π)−
1
2
∫∞
−∞ dse−iKsΦ(s). The operator in the square bracket

in (252) is a Schrödinger operator with a confining quartic polynomial potential.
Therefore its spectrum is positive and discrete [139].

We can also use the same approach to treat the quartic anharmonic oscilla-
tor, V (z) = ω2z2 − λz4. Using the parametrization (247), we find the following
generalizations of (249)–(252).

H := (1 + is)K2 +
K

2
− 16λ(1 + is)2 − 4ω2(1 + is) (253)

η+ = exp
[

K3

48λ
−
(

2 +
ω2

4λ

)
K

]
, (254)

h =
(K2 − 4ω2)2

64λ
− K

2
+ 16λs2. (255)[

−16λ
d2

dK2
+

(K2 − 4ω2)2

64λ
− K

2

]
Φ̃(K) = EΦ̃(K). (256)
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Therefore, by scaling the eigenvalues according to E → γE where γ := 1
(16λ) , we

can identify the spectrum of the operator − d2

dz2 + ω2z2 − λz4 (defined along Γ2)
with that of the operator

− d2

dx2
+
γ

4
[γ(x2 − 4ω2)2 − 2x] (257)

that acts in L2(R) [120]. This observation has previously been made in [58]. As
discussed in [11], the approach of [10] also leads to the same conclusion.

Next, we outline an alternative and more straightforward method of constructing
a metric operator for the Hamiltonian (253).

If we separate the Hermitian and anti-Hermitian parts of H , we find

H = 16λs2 + K2 − K

2
− (16λ+ 4ω2) +

i

2
{s,K2 − 4ω2 − 32λ}. (258)

We can combine the first and last terms on the right-hand side of this equation to
express H in the form

H = 16λ
[
s+

i(K2 − 4ω2 − 32λ)
32λ

]2
+

(K2 − 4ω2)2

64λ
− K

2
. (259)

As seen from this relation, the term responsible for the non-Hermiticity of H may
be removed by a translation of s, namely

s→ s− i(K2 − 4ω2 − 32λ)
32λ

. (260)

It is not difficult to see that such a translation is affected by a K-dependent simi-
larity transformation of the form s→ eg(K)se−g(K). Recalling that for any analytic
function g : R → R,

eg(K)se−g(K) = s− ig′(K), (261)

and comparing this equation with (260), we find

g(K) =
K3

96λ
−
(

1 +
ω2

8λ

)
+ c. (262)

Here c is an integration constant that we can set to zero without loss of generality.
In view of (261), we can map H to a Hermitian Hamiltonian h according to

H → h := eg(K)He−g(K) = 16λs2 +
(K2 − 4ω2)2

64λ
− K

2
. (263)

This is precisely the equivalent Hermitian Hamiltonian given by (255). Moreover,
comparing (263) with the defining relation for the equivalent Hermitian Hamil-
tonian, namely h := ρHρ−1, and recalling that ρ :=

√
η
+
, where η+ is a metric

operator associated with the Hamiltonian H , we find η+ = e2g(K). In light of (262),
this coincides with the metric operator given by (254).

Next, we wish to explore the underlying classical system for the pseudo-
Hermitian quantum system defined by the potential V (z) = ω2z2 − λz4 along Γ2.
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If we view this potential as an analytic continuation of V (x) = ω2x2 − λx4, with
x denoting the Hermitian position operator, we should identify the Hamiltonian
operator for the system with

HΓ2 :=
P 2
Z

2m
+ Ω2Z2 − ΛZ4, (264)

where Ω ∈ R and Λ ∈ R+ are dimensionful coupling constants, and Z and PZ are
the dimensionful coordinate and momentum operators along Γ2. Using an arbitrary
length scale , we can introduce the corresponding dimensionless quantities:

λ :=
2m6Λ

�2
, ω :=

√
2m2Ω

�
, pz :=

PZ
�
, z :=

Z


. (265)

In terms of these the eigenvalue equation HΓ2Ψ = EΨ takes the form[
− d2

dz2
+ ω2z2 − λz4

]
Ψ(z) = EΨ(z), (266)

where E := 2m
2E
�2 .

Now, we are in a position to apply our earlier results. Setting z = ζ(s) :=
−2i

√
1 + is, we can identify (266) with the eigenvalue equation for the pseudo-

Hermitian Hamiltonian (253). One might argue that because z and pz represent
dimensionless position and momentum operators, the same should also hold for
s and K, respectively. This suggests to identify the dimensionful position (x) and
momentum (p) operators as

x = αs, p =
�K

α
, (267)

where α ∈ R
+ is an arbitrary constant. In view of (255), (265), (259) and (267),

we obtain the following expressions for the dimensionful pseudo-Hermitian and
equivalent Hermitian Hamiltonians.

H ′ :=
�2H

2m2
=

(p2 − 8m̃2Ω2)2

64Λ̃4
− � p

4m̃

+ 16Λ

[
̃ x+

i(̃−2p2 − 8mΩ2 − 64m2Λ)
64mΛ

]2
, (268)

h′ :=
�2h

2m2
=

(p2 − 8m̃2Ω2)2

64Λ̃4
− �p

4m̃
+ 16Λ̃2x2, (269)

where ̃ := 

α . Note that unlike h′ that only involves the length scale ̃, H ′ depends

on both  and ̃. The same is true for the metric operator η+. This shows that the
pseudo-Hermitian quantum systems defined by the Hamiltonian H ′ and the metric
operator η+ with different values of the parameter α are unitary-equivalent to a
Hermitian quantum system that depends on a single length scale (̃). The latter
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is not, however, fixed by the Hamiltonian (264) and the contour Γ2 along which
it is defined.iii

Supposing that ̃ is independent of �, we can take � → 0, x → xc, and p → pc
in (269) to obtain the underlying classical Hamiltonian. The result is

H ′
c =

(p2
c − 8m̃2Ω2)2

64Λ̃4
− 16̃2Λx2

c . (270)

We can also introduce the pseudo-Hermitian position and momentum opera-
tors (55):

X := η
− 1

2
+ xη

1
2
+ = x+

i(̃−2p2 − 8mΩ2 − 64m2Λ)
64mΛ̃

, P := η
− 1

2
+ pη

1
2
+ = p.

(271)

As expected, in terms of X and P , the Hamiltonian H ′ takes the form

H ′ =
(P 2 − 8m̃2Ω2)2

64Λ̃4
− �P

4m̃
+ 16Λ̃2X2. (272)

Furthermore, the η+-pseudo-Hermitian canonical quantization of the classical
Hamiltonian (270) yields (272) except for the linear term in P .

The fact that the pseudo-Hermitian quantum systems defined by the Hamilto-
nian (264) depend on an arbitrary length scale has its root in our identification
of s with the relevant dimensionless position operator. We will next consider an
alternative approach that incorporates the spectral equivalence of the Hamilto-
nians (264) and (257). It is based on treating K as the appropriate dimension-
less position operator. More specifically, it involves replacing (267) with x = βK

and p = − �s
(β
) , where β is an arbitrary dimensionless real parameter. If we set

β := 1
(4

√
λ)

= (32mΛ)−
1
2 −3

�, we find the following -independent expressions for

the equivalent Hermitian Hamiltonian and the underlying classical Hamiltonianjjj:

h′ = p2

2m +4Λ
(
x2 − Ω2

4Λ

)2

−�

√
2Λ
m x and H ′

c = p2c
2m +4Λ

(
x2
c − Ω2

4Λ

)2

. Note, however,
that H ′ still depends on :

H ′ =
1

2m

[
p− i

√
m

2

(
4
√

Λ x2 − Ω2

√
Λ

− 8
√

Λ 2
)]2

+ 4Λ
(
x2 − Ω2

4Λ

)2

− �

√
2Λ
m

x.

(273)

This is also true for η+. Again the quantum systems determined by H ′ and η+ with
different values of  are unitary-equivalent to a system that is independent of .
Similar to our earlier analysis, we can obtain an -independent expression for H ′

iiiIf Ω �= 0, we can choose α such that ̃ = Ω√
Λ

.
jjjThe expression for the Hamiltonian h′ was previously obtained in [36] where the last term in
this expression is attributed to an anomaly in a path-integral quantization of the complex classical

Hamiltonian
p2

c
2m

+Ω2z2c −Λz4c along the contour Γ2. For a more careful treatment of this problem,
see [121].
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in terms of the pseudo-Hermitian position and momentum operators: X = x and

P = p−i
√

m
2

(
4
√

Λx2 − Ω2√
Λ
− 8

√
Λ 2
)
. The result is H ′ = P 2

2m+4Λ
(
X2 − Ω2

4Λ

)2

−

�

√
2Λ
m X .

6. Complex Classical Mechanics versus pseudo-Hermitian QM

6.1. Classical-quantum correspondence and observables

In Subsec. 3.1 we outlined a procedure that assigns an underlying classical system
for a given pseudo-Hermitian quantum system with reference Hilbert space L2(Rd).
According to this procedure that we employed in Subsecs. 4.2.1, 4.2.2 and 5.3, the
classical Hamiltonian Hc may be computed using (60). In other words, to obtain
Hc, we replace the standard position and momentum operators with their classical
counterparts in the expression for the equivalent Hermitian Hamiltonian h and
evaluate its (� → 0)-limit. We can quantize Hc to yield h, if we employ the standard
canonical quantization scheme. We obtain the pseudo-Hermitian Hamiltonian H , if
we use the pseudo-Hermitian canonical quantization scheme (58).kkk

By definition, a classical observable Oc is a real-valued function of the classical
states (�xc, �pc), i.e. points of the phase space R2d. If we apply the usual (Hermitian)
canonical quantization program, the operator associated with a classical observ-
able Oc(�xc, �pc) is given by o := Oc(�x, �p ) where �x and �p are the usual Hermitian
position and momentum operators. If we apply the pseudo-Hermitian quantiza-
tion, we find instead O := Oc( �X, �P ) where �X and �P are the pseudo-Hermitian
position and momentum operators, respectively (55). The common feature of both
these quantization schemes is that they replace the usual classical Poisson bracket,
{Ac, Bc}PB :=

∑d
j=1

(
∂Ac

∂xcj

∂Bc

∂pcj
− ∂Bc

∂xcj

∂Ac

∂pcj

)
, of any pair of classical observables Ac

and Bc with (i�)−1 times the commutator of the corresponding operators A and B,
{Ac, Bc}PB −→ (i�)−1[A,B]. Let us also recall that given a pseudo-Hermitian quan-
tum system specified by the reference Hilbert space H, a quasi-Hermitian Hamil-
tonian operator H : H → H, and an associated metric operator η+ : H → H, the
observables of the system are by definition η+-pseudo-Hermitian operatorsO acting
in H,

O† = η+Oη
−1
+ . (274)

It is absolutely essential to note that such an operator acquires its physical meaning
through the classical-to-quantum correspondence:

Oc → O, (275)

where Oc is the classical observable corresponding to the operator O. For example
in conventional quantum mechanics, we identify the operator p : L2(R) → L2(R)
defined by pψ = −i�ψ′, with the momentum of a particle moving on R, because

kkkClearly this is true up to factor-ordering ambiguities/terms proportional to positive powers
of �.
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p corresponds to the classical momentum pc of the underlying classical system.
Without this correspondence p is void of a physical meaning. It is merely a constant
multiple of the derivative operator acting in a function space.

The situation is not different in pseudo-Hermitian quantum mechanics. Again
the (η+-pseudo-Hermitian) operators that represent observables derive their
physical meaning from their classical counterparts through the pseudo-Hermitian
version of the classical-to-quantum correspondence. This is also of the form (275),
but the operator O is now selected from among the η+-pseudo-Hermitian opera-
tors. As we discussed in Subsec. 3.1, if o : H → H denotes the Hermitian observ-
able associated with a classical observable Oc, the corresponding pseudo-Hermitian
observable is given by Eq. (54), i.e. O := ρ−1oρ where ρ :=

√
η
+

.
Whenever one deals with a symmetric, PT -symmetric, diagonalizable Hamilto-

nian H with a real spectrum, one can define the observables as operatorsO fulfilling
the condition [39]

OT = CPT OCPT , (276)

where

OT := T O†T (277)

stands for the transpose of O, and C, P , T are respectively the charge, parity, and
time-reversal operators that are assumed to satisfy

C2 = P2 = T 2 = I, [C,PT ] = [P , T ] = [C, H ] = 0. (278)

As we explained in Subsec. 3.4, we can relate C to an associated metric operator
η+ according to

C = η−1
+ P . (279)

Because C2 = P2 = I, we also have

C = Pη+. (280)

Inserting (277) in (276) and making use of (278), we obtain T O†T =
CPT OCPT = PT COCPT = T PCOCPT . In view of (278), (279) and (280), this
relation is equivalent to O† = PCOCP = P(Pη+)O(η−1

+ P)P = η+Oη
−1
+ . Therefore

(276) implies the η+-pseudo-Hermiticity of O. The converse is also true for the
cases that (276) can be applied consistently. This is actually not always the case.
For example, the application of (276) for the Hamiltonian operator that commutes
with CPT gives HT = H . Therefore, unlike the η+-pseudo-Hermiticity conditions
(274), (276) cannot be employed for non-symmetric Hamiltonians. This shows that
(276) has a smaller domain of application than (274).

Another advantage of the requirement of η+-pseudo-Hermiticity (274) over the
condition (276) is that it makes the dynamical consistency of the definition of
observables more transparent. Recall that the main motivation for the introduction
of (276) in [39] is that its original variant [37, 38], namely the requirement of
CPT -symmetry of O, i.e. O = CPT OCPT , conflicts with the Schrödinger time-
evolution in the Heisenberg picture; in general the Heisenberg-picture operators
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OH(t) := e−
itH

� Oe
itH

� do not commute with CPT for t 	= 0, even if they do for
t = 0 [153]. The reason why (276) does not suffer from this problem is that it is a
restatement of the η+-pseudo-Hermiticity of O. To see why the Heisenberg-picture
operators satisfy the latter condition for all t, we first recall that because H is η+-
pseudo-Hermitian, it is a Hermitian operator acting in the physical Hilbert space
Hphys defined by the inner product 〈· | ·〉

η+
. This implies that the time-evolution

operator e−
itH

� is a unitary operator acting in Hphys. Therefore, e−
itH

� Oe
itH

� acts
in Hphys as a Hermitian operator for all t, i.e. it is η+-pseudo-Hermitian for all
t. Alternatively, we could argue that because H is η+-pseudo-Hermitian, e−

itH
� is

η+-pseudo-unitary [4, 5, 159] and e−
itH

� Oe
itH

� is η+-pseudo-Hermitian.

6.2. Complex classical systems and compatible Poisson brackets

In their pioneering article [32], Bender and Boettcher perform an asymptotic anal-
ysis of the spectral properties of the complex potentials Vν(z) = z2(iz)ν that makes
use of the complex WKB-approximation. This involves the study of a certain type
of complex classical dynamical system SBBM that Bender, Boettcher and Meisenger
(BBM) [33] identify with the underlying classical system for the quantum system
defined by Vν . This approach, which has been the focus of attention in a number
of publications [186, 43, 46, 47], is fundamentally different from the prescription
we used in Subsecs. 3.1 and 6.1 to associate a classical system S with a pseudo-
Hermitian quantum system S. In this subsection, we examine the structure of the
complex classical system SBBM. For simplicity, we consider complex potentials V
that depend on a single complex variable z.lll

According to [33] the dynamics of SBBM is determined by the Newton’s equation

mz̈ = −V ′(z), (281)

where m ∈ R+, each overdot stands for a time-derivative, and a prime marks
the differentiation with respect to z. We can express (281) as a pair of first-order
differential equations:

mż = p, ṗ = −V ′(z). (282)

This is the Hamiltonian formulation of the dynamics of SBBM ; introducing the
complex Hamilton function h := p2

2m + V (z), we can express (282) as the following
pair of Hamilton equations.

ż =
∂h

∂p
, ṗ = −∂h

∂z
. (283)

The variables z and p are the coordinates of the phase-space of the system P which
is as a set identical to C2 and R4. This observation suggests that, similarly to the

lllThe use of complex phase-space variables in standard classical mechanics is an old idea [137].
See also [222]. The subject of the present study is to consider complex configuration variables.
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quantum systems defined along a complex contour, the complex classical system
SBBM might admit a formulation that involves real variables. This is actually quite
straightforward. We can define the real variables

x := �(z), y := �(z), p := �(p), q := �(p), Vr := �(V ), Vi := �(V ),

(284)

Hr := �(h) =
p2 − q2

2m
+ Vr(x, y), Hi := �(h) =

pq

m
+ Vi(x, y), (285)

and use the well-known relations ∂
∂z = 1

2

(
∂
∂x − i ∂∂y

)
and ∂

∂p = 1
2

(
∂
∂p − i ∂∂q

)
, to turn

the complex Hamilton equations (283) to a system of four real equations.
It turns out that the resulting system of equations and consequently the complex

Hamilton equations (283) are not consistent with the standard symplectic structure
(Poisson bracket) on the phase space C

2 = R
4 [68, 166]. To see this, let us also

introduce w1 := x, w2 := p, w3 := y, and w4 := q. Then the standard Poisson
bracket on R4 takes the form

{A,B}PB =
4∑

j,k=1

J
(st)
jk

∂A

∂wj

∂B

∂wj
, (286)

where J (st)
jk are the entries of the standard symplectic matrix

J (st) :=




0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0


 , (287)

and A and B are a pair of classical observables (real-valued functions of wj).mmm

Recall that given a Hamilton function H on the four-dimensional phase space
obtained by endowing R4 with the symplectic structure corresponding to the stan-
dard Poisson bracket (286), we can express the Hamilton equations in the form
ẇj = {wj , H}PB. If we express (286) in terms of the complex variables z and p, we
find that {z,h}PB = {p,h}PB = 0 [166]. Therefore, it is impossible to formulate the
dynamics defined by (283) using the standard symplectic structure on C2.

This observation raises the problems of the existence, uniqueness, and classi-
fication of the symplectic structures on C2 = R4 that are compatible with the
dynamical Eq. (283). Reference [68] gives a family of dynamically compatible sym-
plectic structures. Reference [166] offers a complete classification of such structures.
The most general compatible symplectic structure is defined by the following non-
standard Poisson bracket

{{A,B}} =
4∑

j,k=1

Jjk
∂A

∂wj

∂B

∂wj
, (288)

mmmΩ :=
P4

j,k=1 Jjkdwj ∧ dwk is the standard symplectic form on R4 [137].
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where Jij are the entries of the symplectic matrix

J :=
1
2




0 1 + c −a −d
−(1 + c) 0 −d −b

a d 0 −1 + c

d b 1 − c 0


 , (289)

and a, b, c, d are arbitrary real parameters satisfying c2 + d2 − ab 	= 1. Regardless of
the choice of these parameters, we have ż = {{z,h}} and ṗ = {{p,h}}. A particularly
simple choice is a = b = c = d = 0 that yields

J = J0 :=
1
2




0 1 0 0
−1 0 0 0

0 0 0 −1
0 0 1 0


 . (290)

6.3. Real description of a complex classical system

Among the basic results of classical mechanics is the uniqueness theorem for sym-
plectic structures on the phase-space R

2d [13]. In order to explain the content of
this theorem, first we recall that a symplectic structure on R2d is determined by
the corresponding Poisson bracket. Choosing a system of coordinates wj , we can
express the latter in the form {A,B}J =

∑2d
j,k=1 Jjk ∂A

∂wj

∂B
∂wj

, where J is a real,
antisymmetric, nonsingular 2d × 2d matrix. The above-mentioned theorem states
that there is always a system of (so-called Darboux) coordinates in which {A,B}J
takes the form of the standard Poisson bracket. Application of this theorem for the
Poisson bracket (288) yields a description of the dynamics defined by the complex
Hamiltonian h in terms of a real Hamiltonian K.

The construction of the Darboux coordinates associated with the most general
symplectic matrix (289) is described in [166]. These coordinates take the following
particularly simple form for a = b = c = d = 0.

x1 :=
√

2w1 =
√

2x, p1 :=
√

2w2 =
√

2 p,

x2 :=
√

2w4 =
√

2 q, p2 :=
√

2w3 =
√

2 y.
(291)

These are precisely the phase-space coordinates used in [234] to study the complex
trajectories appearing in the semiclassical treatment of the propagator for a quartic
anharmonic oscillator. They are subsequently employed in the description of PT -
symmetric models [124].

The use of the coordinates (291) together with the assumption that the potential
V is an analytic function, i.e. the Cauchy–Riemann conditions, ∂vr

∂x − ∂vi

∂y = ∂vr

∂y +
∂vi

∂x = 0, hold, lead to the following remarkable observations.

• The equivalent real Hamiltonian K that describes the dynamics is twice the real
part of the complex Hamiltonian h [234, 166],

K =
p2
1 − x2

2

2m
+ 2Vr

(x1

2
,
p2

2

)
= 2Hr. (292)
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• The imaginary part of h, i.e.

Hi =
x2p1

2m
+ Vi

(x1

2
,
p2

2

)
(293)

is an integral of motion; {Hi,K}PB = 0 [166].

This implies that the dynamical system defined by the Hamilton equations (283) is
equivalent to a classical Hamiltonian system with phase space R4 and the Hamilto-
nian K = 2Hr. Furthermore, in view of Liouville’s theorem on integrable systems,
because the phase space is four-dimensional and Hi is an integral of motion that is
functionally independent of K, this system is completely integrable [13, 228].

The integral of motion Hi generates a certain class of transformations in the
phase space that leave the dynamics invariant. The infinitesimal form of these
symmetry transformations is given by [166]:

x1 → x1 + δx1, δx1 := ξ{x1, Hi}PB =
ξx2

2m
, (294)

x2 → x2 + δx2, δx2 := ξ{x2, Hi}PB = ξ
∂

∂x1
Vr

(x1

2
,
p2

2

)
, (295)

p1 → p1 + δp1, δp1 := ξ{p1, Hi}PB = ξ
∂

∂p2
Vr

(x1

2
,
p2

2

)
, (296)

p2 → p2 + δp2, δp2 := ξ{p2, Hi}PB = −ξ p1

2m
, (297)

where ξ is an infinitesimal real parameter.
The existence of these symmetry transformations is related to the fact that the

system involves a first class constraint. Choosing a particular value C for Hi, i.e.
imposing the constraint Φ := Hi − C = 0, and moding out the above symmetry
transformations by identifying each orbit of these transformations with a single
point, we can construct a reduced dynamical system S that has a two-dimensional
real phase space [166]. This procedure has been implemented for a class of monomial
potentials in [217] where the above symmetry transformations have been examined
in the Lagrangian formulation and the difficult issue of the quantization of these
systems has been addressed in some detail.nnn In general, the resulting quantum
system depends on whether one imposes the constraint before or after the quan-
tization. In the former case, the prescription used to obtain the reduced classical
system also affects the resulting quantum system. For the imaginary cubic potential
that allows for a fairly detailed analysis, one obtains a variety of quantum systems
[217]. But none of these coincides with the pseudo-Hermitian quantum system we
studied in Subsec. 4.2.2.

In summary, the identification of the complex classical system SBBM with the
classical limit of the pseudo-Hermitian quantum system S that is defined by a
complex potential V meets two serious difficulties. Firstly, while S has a single real

nnnThe application of this approach for some multidimensional systems is studied in [95].
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degree of freedom (one-dimensional real configuration space and two-dimensional
real phase space), SBBM has two real degrees of freedom (a four-dimensional real
phase space). Secondly, the Hamilton equations (283) that determine the dynamics
of SBBM are not consistent with the standard symplectic structure on the phase
space of SBBM. This, in particular, means that under the naive correspondence
SBBM → S, the Hamilton equations (283) are not mapped to the Heisenberg equa-
tions for S. These problems persist regardless of whether the Hamiltonian operator
for S is defined on the real line or a complex contour. In fact, the study of the
systems defined on a complex contour reveals another difficulty with the naive cor-
respondence SBBM → S, namely that while the definition of S requires making a
proper choice for a contour, SBBM is independent of such a choice.ooo

A proper treatment of the complex dynamical systems SBBM requires the inves-
tigation of a dynamically compatible symplectic structure. Once such a structure is
selected, one can adopt a corresponding set of Darboux coordinates and use them to
obtain a standard (real) description of SBBM. The use of the real description reveals
the curious fact that this system admits an integral of motion that is functionally
independent of the Hamiltonian. This has two important consequences:

(1) The system is completely integrable;
(2) The system has a first class constraint.

The choice Hi = 0 that is adopted in [43, 46, 47] is just one way of imposing the
constraint. It corresponds to restricting the dynamics to a three-dimensional sub-
space of the phase space. On this subspace there acts the symmetry transformations
(294)–(297) that leave the dynamics invariant. Moding out these transformations,
one finds a reduced dynamical system S with a two-dimensional real phase space.
It is the latter that can, in principle, be related to the quantum system S. So far the
existence and nature of such a relationship could not be ascertained. For the simple
polynomial potentials that could be studied carefully, the various known ways of
constructing and quantizing S lead to quantum systems that differ from S.

Another important issue is that the above procedure of constructing complex
dynamical systems SBBM and the corresponding reduced systems S may be carried
through for any complex analytic potential. But, not every such potential defines
a unitary pseudo-Hermitian quantum system. A typical example is the exponential
potential V (x) = eiκx that is defined on R. It is well-known that the spectrum of the
Hamiltonian operator H = p2

2m + εeiκx, with m ∈ R+ and ε, κ ∈ R − {0}, includes
spectral singularities [91]. This shows that this operator cannot be mapped to a
Hermitian operator by a similarity transformation, i.e. it is not quasi-Hermitian.

oooThe phase-space path integral formulation of the wrong-sign quartic potential defined on the
contour (247) is consistent with the standard Hilbert-space formulation, if one restricts the complex
classical Hamiltonian h to the contour (247) [36, 121]. Whether imposing this restriction would
lead to a particular reduced classical system that is identical with the classical system S defined

by the Hamiltonian H′
c =

p2
c

2m
+ 4Λ

`
x2

c − Ω2

4Λ

´2
of Subsec. 5.3 is worthy of investigation.
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Hence H is not capable of defining a unitary quantum system. Although the poten-
tial V (x) = eiκx defines a complex dynamical system SBBM, it cannot be related
to a unitary quantum system.ppp

We conclude this section by underlining a rather interesting parallelism between
the quantum and classical mechanics of complex (analytic) potentials. Suppose that
a complex (analytic) potential V defines a unitary pseudo-Hermitian quantum sys-
tem, we showed in Sec. 3 that this system admits an equivalent Hermitian rep-
resentation. The above discussion reveals a classical analogue of this equivalence;
the complex dynamical system defined by the complex Hamiltonian H = p2

2m + V

admits an equivalent description involving a real Hamiltonian. What differentiates
the pseudo-Hermitian and Hermitian representations of quantum mechanics is the
choice of the inner product (equivalently a metric operator) on the space of state-
vectors. What differentiates the complex and real representations of the classical
mechanics is the choice of the symplectic structure (equivalently Poisson bracket)
on the phase (state) space. Mathematically the equivalence of the pseudo-Hermitian
and Hermitian representations of quantum mechanics stems from the uniqueness
theorem for separable Hilbert spaces. The classical counterpart of this theorem
that is responsible for the above-mentioned equivalence of the complex and real
representations of the classical mechanics is the uniqueness theorem for symplectic
manifolds diffeomorphic to R

2d.

7. Time-Dependent Hamiltonians and Path-Integral Formulation

7.1. Time-dependent quasi-Hermitian Hamiltonians

Time-dependent Hamiltonian operators arise in a variety of applications of
conventional quantum mechanics. Their time-dependence does not cause any dif-
ficulties except that, for the cases that the eigenvectors of the Hamiltonian are
time-dependent, the time-evolution operator takes the form of a time-ordered expo-
nential involving the Hamiltonian [54].qqq The situation is quite different when one
deals with time-dependent quasi-Hermitian Hamiltonians.rrr As the following no-go
theorem shows, the observability of the Hamiltonian and the unitarity of the time-
evolution put a severe restriction on the way a quasi-Hermitian Hamiltonian can
depend on time [167].

Theorem 2. Let T ∈ R+ and for all t ∈ [0, T ], H(t) be a time-dependent quasi-
Hermitian operator acting in a reference Hilbert space H. Suppose that H(t) serves

pppFor a study of the classical dynamics generated by this exponential potential, see [68].
qqqA rather common misconception in dealing with time-dependent Hamiltonians is to think that
the time-reversal operator T changes the sign of the time variable t in the Hamiltonian, i.e.H(t) →
TH(t)T = H(−t) which in view of the definition of T , namely for all ψ ∈ L2(R), (T ψ)(x) := ψ(x)∗,
is generally false. See for example [237], where the author considers a trivial non-Hermitian time-
dependent Hamiltonian that is obtained from a constant PT -symmetric Hamiltonian through a
time-dependent point transformation and a time-reparametrization.
rrrTime-dependent quasi-Hermitian Hamiltonians arise naturally in the application of pseudo-
Hermitian quantum mechanics in quantum cosmology [150, 151]. See also [156, 88].
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as the Hamiltonian operator for a pseudo-Hermitian quantum system with physical
Hilbert space Hphys. If the time-evolution of the system, that is determined by the
Schrödinger equation: i�ψ̇(t) = H(t)ψ(t), is unitary and H(t) is an observable for
all t ∈ [0, T ], then the metric operator defining Hphys does not depend on time,
i.e. there must exist a time-independent metric operator η+ such that H(t) is η+-
pseudo-Hermitian for all t ∈ [0, T ].

Following [167] we call a time-dependent quasi- (pseudo-) Hermitian Hamil-
tonian admitting a time-independent metric (pseudo-metric) operator quasi-
stationary. Theorem 2 states that in pseudo-Hermitian quantum mechanics we
are bound to use quasi-stationary Hamiltonians. To demonstrate the severity of
this restriction, consider two-level quantum systems where the Hamiltonian H(t)
may be represented by a 2 × 2 complex matrix H(t) with possibly time-dependent
entries. The requirement that H(t) is quasi-Hermitian implies that H(t) involves six
independent real-valued functions (because its eigenvalues are real). The additional
requirement that H(t) is quasi-stationary reduces this number to four.sss This is
also the same as the maximum number of independent real-valued functions that a
general time-dependent Hermitian Hamiltonian can include.

A simple implication of Theorem 2 is that the inner product of the physical
Hilbert space cannot depend on time, unless one defines the dynamics of the quan-
tum system by an operator that is not observable or allows for nonunitary time-
evolutions. In other words, insisting on observability of the Hamiltonian operator
and requiring unitarity prohibit scenarios involving switching Hilbert spaces as pro-
posed in [41].

7.2. Path-integral formulation of pseudo-Hermitian QM

Among the original motivations to consider PT -symmetric quantum mechanical
models is the potential applications of their relativistic and field theoretical gen-
eralizations [37, 38] in elementary particle physics. A necessary first step in trying
to explore the relativistic and field theoretical generalizations of PT -symmetric or
more generally pseudo-Hermitian QM is a careful examination of its path-integral
formulation. In this section we use the approach of [169] to elucidate the role of
the metric operator in the path-integral formulation of pseudo-Hermitian QM and
demonstrate the equivalence of the latter with the path-integral formulation of the
conventional QM.

We shall first review the emergence of path integrals in dealing with a simple
conventional (Hermitian) quantum system. This requires a brief discussion of the
trace of a linear operator.

sssThis can be easily inferred from the results of [178].



December 16, 2010 9:36 WSPC/S0219-8878 IJGMMP-J043
S0219887810004816

Pseudo-Hermitian Representation of Quantum Mechanics 1273

Let L : H → H be a linear operator acting in a separable Hilbert space H with
inner product 〈· | ·〉. Then the trace of L is defined by

tr(L) :=
N∑
n=1

〈ξn |Lξn〉, (298)

where {ξn} is an arbitrary orthonormal basis of H [195]. Obviously, for N = ∞,
the right-hand side of (298) may not converge, and tr(L) may not exist.

Suppose that K and L are linear operators for which tr(KL) <∞. Then invok-
ing the completeness relation for ξn and using Dirac’s bracket notation, we can
show that

tr(LK) =
N∑

m,n=1

〈ξn|L|ξm〉〈ξm|K|ξn〉 =
N∑

m,n=1

〈ξm|K|ξn〉〈ξn|L|ξm〉

=
N∑
m=1

〈ξm|KL|ξm〉 = tr(KL). (299)

A simple implication of this identity is that the right-hand side of (298) is indepen-
dent of the choice of the orthonormal basis {ξn}.ttt

For a linear operator L acting in L2(R), we can use the position basis {|x〉} to
compute tr(L). To demonstrate how this is done, let {ξn} be an orthonormal basis
of L2(R). Using (298), the completeness relation for |x〉 and ξn, and Dirac’s bracket
notation, we have

tr(L) =
∞∑
n=0

∫ ∞

−∞

∫ ∞

−∞
dxdx′〈ξn|x〉〈x|L|x′〉〈x′|ξn〉

=
∫ ∞

−∞

∫ ∞

−∞
dxdx′〈x|L|x′〉

∞∑
n=0

〈x′|ξn〉〈ξn|x〉

=
∫ ∞

−∞

∫ ∞

−∞
dxdx′, 〈x|L|x′〉〈x′|x〉 =

∫ ∞

−∞
dx〈x|L|x〉. (300)

Now, consider a quantum system defined by the Hilbert space H = L2(R) and
a Hermitian Hamiltonian H that is an analytic (or piecewise analytic) function of
the usual (Hermitian) position operator (x), momentum operator (p), and possibly
time (t). The generating functional (also called partition function) for the n-point
(correlation) functions of the system is given by

Z[J ] = tr
(

T exp
{
− i

�

∫ t2

t1

dt[H − Jx]
})

, (301)

tttTo see this, let {ζn} be another orthonormal basis of H. Then as we described in Subsec. 2.3,
ζn are related to ξn by a unitary operator U : H → H, ζn = Uξn. This in turn impliesPN

n=1〈ζn |Lζn〉 =
PN

n=1〈Uξn |LUξn〉 =
PN

n=1〈ξn |U†(LU)ξn〉 =
PN

n=1〈ξn|(LU)U†ξn〉 =
PN

n=1〈ξn |Lξn〉, where we have used (299) and UU† = I.
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where “T exp” denotes the time-ordered exponential, t1 and t2 are, respectively,
the initial and final times for the evolution of the system that are taken to be −∞
and ∞ in the scattering setups used particularly in quantum field theory, and J

stands for the (possibly time-dependent) coupling constant for the source terms Jx
[70, 231]. The latter is by definition an observable [75]. In view of the fact that x is
also an observable, this implies that J must be real-valued.

One can easily justify the condition of the observability of the source term
by noting that Z[J ] is used to compute the n-point functions according to [70]:〈
T[x(τ1)x(τ2) · · ·x(τn)]

〉
= (−i�)n

Z[J]
δnZ[J]

δJ(τ1)δJ(τ2)···δJ(τn)

∣∣
J=0

, where τ1, τ2, . . . , τn ∈
[t1, t2], x(τ) denotes the position operator in the Heisenberg picture, i.e. x(τ) :=
U

J
(τ, t1)xUJ

(t1, τ), and U
J

is the time-evolution operator associated with the inter-
acting system; for all t1, t2 ∈ R,

UJ (t1, t2) := T exp
{
− i

�

∫ t2

t1

dt[H − Jx]
}
. (302)

The n-point functions are essentially the expectation values of the observables
T[x(τ1) · · ·x(τn)] (in the groundstate of the system if t2 = −t1 → ∞). There-
fore, the observability of the source term Jx is linked to the observability of the
Heisenberg-picture position operators x(τi). The latter is ensured by the unitarity
of the time-evolution operator U

J
(t1, t2) and the observability of the Schrödinger-

picture position operator x.
In view of (300), we can express the partition function (301) in the form

Z[J ] =
∫ ∞

−∞
dx

〈
x

∣∣∣∣T exp
{
− i

�

∫ t2

t1

dt[H − Jx]
}∣∣∣∣x
〉

=
∫ ∞

−∞
dx〈x, t1 |x, t2〉, (303)

where

|x, t〉 := UJ (0, t)†|x〉, (304)

are the (generalized) eigenfunctions of the Heisenberg-picture position operator
x(t). In light of (302) and (304), we also have, for all x1, x2 ∈ R, 〈x1, t1|x2, t2〉 =
〈x1|UJ

(t1, t2)|x2〉 = 〈x1|T exp{− i
�

∫ t2
t1
dt[H−Jx]}|x2〉. Computing this quantity as a

phase-space path integral and substituting the result in (303), we find the following
phase-space path integral expression for the generating functional.

Z[J ] =
∫∫

D(x)D(p)e−
i
�

R t2
t1
dt[H(x,p;t)−J(t)x]. (305)

If H is a quadratic polynomial in p, we can perform the momentum path integral
in (305) and convert it into a configuration-space (Lagrangian) path integral. This
yields

Z[J ] =
∫

D(x)e
i
�

R t2
t1
dtL

J
(x,ẋ;t), (306)



December 16, 2010 9:36 WSPC/S0219-8878 IJGMMP-J043
S0219887810004816

Pseudo-Hermitian Representation of Quantum Mechanics 1275

where LJ (x, ẋ; t) := ẋp−H(x, p; t)+J(t)x, and p is to be identified with its expres-
sion obtained by solving ẋ = ∂H(x,p;t)

∂p for p as a function of x, ẋ and t.
Next, we consider the extension of the above constructions to a system defined

by the reference Hilbert space H = L2(R), a metric operator η+ : L2(R) → L2(R),
and an η+ -pseudo-Hermitian Hamiltonian H : L2(R) → L2(R) that is again a
(piecewise) analytic function of x, p, and possibly t. According to the Theorem 2,
in order for H to be an observable that generates a unitary time-evolution, it must
be quasi-stationary. As discussed in [167], this puts a severe restriction on the form
of allowed time-dependent Hamiltonians.uuu

We can certainly work in the Hermitian representation (H, h) of the system
where h := ρHρ−1 (with ρ := √

η+) is the equivalent Hermitian Hamiltonian (59).
In this representation the generating functional has the form

Z[J ] = tr
(

T exp
{
− i

�

∫ t2

t1

dt[h− Jx]
})

. (307)

As we showed above this quantity admits a phase-space path integral expression.
But even for the case that H is a quadratic polynomial in p, the equivalent Her-
mitian Hamiltonian h does not share this property, and we cannot convert the
right-hand side of (307) into a Lagrangian path integral in general. This provides
a concrete motivation for the derivation of the path-integral expression for the
generating functional in the pseudo-Hermitian representation of the system, i.e.
(Hphys, H).

In [44] the authors use the expression (306) (with t2 = −t1 → ∞) to perform
a perturbative calculation of the generating functional and the one-point function
for the PT -symmetric cubic anharmonic oscillator (161).vvv As a result, they find
an imaginary value for the one-point function. This is simply because the one-
point function they calculate corresponds to the groundstate expectation value of
the usual position operator that is indeed not an observable of the system. The
physically meaningful generating functional is [169]

Z[J ] = trη+

(
T exp

{
− i

�

∫ t2

t1

dt[H − JX ]
})

, (308)

where for every linear operator K : H → H,

trη+(K) :=
N∑
n=1

〈ψn |Kψn〉η+ =
N∑
n=1

〈ψn | η+Kψn〉, (309)

{ψn} is an arbitrary orthonormal basis of Hphys, and X is the η+ -pseudo-Hermitian
position operator (55). The n-point functions generated by (308) correspond to the

uuuIn relativistic field theories, H is obtained by integrating the Hamiltonian density over a space-
like hypersurface. This makes the time-dependence of H quite arbitrary and renders the imposition
of the condition of quasi-stationarity of H an extremely difficult task.
vvvSee also [34].
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expectation value of time-ordered products of the physical position operators and
the resulting numerical values are necessarily real.

It is not difficult to show that trη+ = tr. To do this, we first recall that because
ρ :=

√
η : Hphys → H is a unitary operator, it maps orthonormal bases of Hphys

onto orthonormal bases of H. In particular, ξn := ρψn form an orthonormal basis
of H. This together with ρ2 = η+ , ρ† = ρ, (309), (298) and (299) imply

trη+(K) =
N∑
n=1

〈ψn | ρ2Kψn〉 =
N∑
n=1

〈ρψn | ρKψn〉

=
N∑
n=1

〈ξn | ρKρ−1ξn〉 = tr(ρKρ−1) = tr(K). (310)

This relation allows us to express (308) in the form

Z[J ] = tr
(

T exp
{
− i

�

∫ t2

t1

dt[H − JX ]
})

. (311)

Next, we employ the definitions of h and X , namely h := ρHρ−1 and X :=
ρ−1xρ, and the fact that η+ and consequently ρ do not dependent on time, to
establish T exp{− i

�

∫ t2
t1

[h − Jx]} = ρT exp{− i
�

∫ t2
t1

[H − JX ]}ρ−1. In view of this
relation and (299) the right-hand sides of (307) and (311) coincide. This is another
manifestation of the physical equivalence of Hermitian and pseudo-Hermitian rep-
resentations of the system.

As we emphasized in the preceding sections the metric operator plays a funda-
mental role in the operator formulation of pseudo-Hermitian quantum mechanics.
The same is true about the path-integral formulation of this theory. To elucidate
this point we examine the nature of the dependence of the generating functional on
the choice of a metric operator η+ .

A simple consequence of (300) and (311) is

Z[J ] =
∫ ∞

−∞
fx

〈
x

∣∣∣∣T exp
{
− i

�

∫ t2

t1

dt[H − JX ]
} ∣∣∣∣x
〉
. (312)

Clearly, Z[0] does not depend on η+ [169]. This explains the results of [113] pertain-
ing the metric-independence of thermodynamical quantities associated with non-
interacting pseudo-Hermitian statistical mechanical models. However, in contrast
to the view expressed in [122], the metric-independence of Z[0] does not extend to
Z[J ] with J 	= 0. This is actually to be expected because the knowledge of Z[J ]
allows for the calculation of the n-point functions that are expectation values of
the time-ordered products of the Heisenberg-picture η+ -pseudo-Hermitian position
operators X(τi).

The dependence of Z[J ] on the choice of η+ is rather implicit. In the Her-
mitian representation, η+ enters the expression for Z[J ] through the equivalent
Hermitian Hamiltonian h. In the pseudo-Hermitian representation, this is done
through the source term JX . The presence of X in (312) prevents one from
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obtaining a Lagrangian path integral for Z[J ] even for the cases that H is a
quadratic polynomial in p. Therefore, contrary to claims made in [44], in general,
the pseudo-Hermitian representation is not practically superior to the Hermitian
representation. There are certain calculations that are performed more easily in the
pseudo-Hermitian representation, and there are others that are more straightfor-
ward to carry out in the Hermitian representation [154].

8. Geometry of the State-Space and the Quantum Brachistochrone

8.1. State-space and its geometry in conventional QM

In conventional quantum mechanics the states are not elements of the Hilbert space
H, but the rays (one-dimensional subspaces) of the Hilbert space.www The space of
all rays that is usually called the projective Hilbert space and denoted by P(H) has
the structure of a manifold. For an N -dimensional Hilbert space H, P(H) is the
complex projective space CPN−1. This is a compact manifold for finite N and a
well-known infinite-dimensional manifold with very special and useful mathematical
properties for infinite N [54].

The projective Hilbert space P(H) is usually endowed with a natural geometric
structure that is of direct relevance to physical phenomena such as geometric phases
[189] and optimal-speed unitary evolutions in quantum mechanics [9]. To describe
this structure, we need an appropriate representation of the elements of P(H). This
is provided by the projection operators associated with the states.

Consider a state λψ represented by a state-vector ψ ∈ H − {0}, i.e. λψ =
{cψ | c ∈ C}, and the projection operator

Λψ :=
|ψ〉〈ψ|
〈ψ |ψ〉 . (313)

Clearly the relation between states λψ and state-vectors cψ is one to (infinitely)
many. But the relation between the states λψ and the projection operators Λψ is
one-to-one. This suggests using the latter to identify the elements of the projective
Hilbert space P(H). This parametrization of P(H) has the advantage of allowing
us to use the algebraic properties of the projection operators (313) in the study of
states.

An important property of (313) is that it is a positive operator having a unit
trace. The positivity of Λψ is a simple consequence of the identities

Λ†
ψ = Λψ, Λ2

ψ = Λψ. (314)

We recall from Subsec. 7.2 that the trace of a linear operator J : H → H is
defined by

tr(J) :=
N∑
n=1

〈ξn |Jξn〉, (315)

wwwThroughout this article the word “state” is used to mean “pure state”.
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where {ξn} is an arbitrary orthonormal basis of H [195]. If L : H → H is a linear
operator such that tr(L†L) < ∞, L is said to be a Hilbert–Schmidt operator. In
view of (313)–(315) and (19), we have

tr(Λ†
ψΛψ) = tr(Λ2

ψ) = tr(Λψ)

=
N∑
n=1

〈ξn |ψ〉〈ψ | ξn〉
〈ψ |ψ〉 =

N∑
n=1

|〈ξn |ψ〉|2

〈ψ |ψ〉 =
‖ψ‖2

〈ψ |ψ〉 = 1. (316)

Therefore, Λψ is a Hilbert–Schmidt operator with unit trace.
The set B2(H) of Hilbert–Schmidt operators forms a subspace of the vector

space of bounded linear operators acting in H. We can use “tr” to define the fol-
lowing inner product on B2(H).

(L | J) := tr(L†J) for all L, J ∈ B2(H). (317)

This is called the Frobenius or Hilbert–Schmidt inner product [106, 195]. It has
the appealing property that given an orthonormal set {χn} of state-vectors the
corresponding set of projection operators {Λχn} forms an orthonormal subset of
B2(H); 〈χm |χn〉 = δmn implies (Λχn |Λχm) = δmn.

The set H2(H) of Hermitian Hilbert–Schmidt operators to which the projection
operators Λψ belong is a subset of B2(H) that forms a real vector space with the
usual addition of linear operators and their scalar multiplication. It is not difficult
to see, with the help of (299), that (317) reduces to a real inner product on H2(H),
namely

(L | J) := tr(LJ) for all L, J ∈ H2(H). (318)

Therefore endowing H2(H) with this inner product produces a real inner product
space.

By identifying states λψ with the projection operators Λψ, we can view the
projective Hilbert space P(H) as a subset of H2(H) and use the inner product
(318) to endow P(H) with a natural metric tensor. The corresponding line element
ds at Λψ is given by

ds2(Λψ) :=
1
2
(dΛψ | dΛψ) =

〈ψ |ψ〉〈dψ | dψ〉 − |〈ψ | dψ〉|2
〈ψ |ψ〉2 , (319)

where we have inserted a factor of 1
2 to respect a mathematical convention and used

(313), (315), (318), and the fact that {ξn} is an orthonormal basis of H.
For N < ∞, we can identify ψ with a nonzero complex column vector �z with

components z1, z2, . . . , zN . In terms of these we can express (319) in the form ds2 =∑N
a,b=1 gab∗dzadz

∗
b where

gab∗ :=
|�z |2δab − z∗azb

|�z |4 . (320)
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This is precisely the Fubini-Study metric on the complex projective space CPN−1

[82].
As a concrete example, consider the case that H is two-dimensional, i.e. N = 2.

Then using the standard basis representation of operators acting in C2, and noting
that in this case all operators are Hilbert–Schmidt, we can infer that H2(H) is
equivalent to the set of all Hermitian matrices. This is a four-dimensional real
vector space which we can identify with R4. Specifically, we can represent each
J ∈ H2(H) using its standard matrix representation:

J =
(

z x− iy

x+ iy w

)
, (321)

and observe that these matrices are in one-to-one correspondence with (x, y,
z, w) ∈ R4.

The projective Hilbert space P(H) is a two-dimensional subset of the four-
dimensional real vector space H2(H). To see this let us choose an arbitrary state-
vector ψ ∈ C2 − {�0}. Then ψ =

(z1
z2

)
for some z1, z2 ∈ C such that |z1|2 + |z2|2 	= 0,

and in view of (313) we can represent Λψ by

Λψ =
1

|z1|2 + |z2|2

(
|z1|2 z1z

∗
2

z∗1z2 |z2|2

)
. (322)

Using the parametrization (321), we find that for J = Λψ,

x =
z1z

∗
2 + z∗1z2

2(|z1|2 + |z2|2)
, y =

i(z1z∗2 − z∗1z2)
2(|z1|2 + |z2|2)

, z =
|z1|2

|z1|2 + |z2|2
, w =

|z2|2
|z1|2 + |z2|2

.

(323)

Therefore as expected, w = 1 − z, so that

Λψ =
(

z x− iy

x+ iy 1 − z

)
, (324)

and the condition Λ2
ψ = Λψ takes the form

x2 + y2 +
(
z − 1

2

)2

=
1
4
. (325)

This defines a two-dimensional sphere S2 that we can use to represent P(H).
If we endow R3, that is parametrized by the Cartesian coordinates (x, y, z), with

the Euclidean metric, we can identify S2 with a round sphere of unit diameter. We
will next obtain an expression for the metric induced on S2 by the embedding
Euclidean space R3.

Let N and S respectively denote the north and south poles of S2, i.e. N :=
(x = 0, y = 0, z = 1) and S := (x = 0, y = 0, z = 0), and consider the stereographic
projection of S2 onto the tangent plane ΠN at N, as depicted in Fig. 2. The line
connecting S to an arbitrary point p = (x, y, z) on S2 − {S} intersects ΠN at a
point p. If we set up a Cartesian coordinate system in ΠN with N as its origin
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Fig. 2. Stereographic projection of the sphere S2 defined by x2 + y2 + (z − 1
2
)2 = 1

4
: N and S

are respectively the north and south poles of S2. ΠN is the tangent plane at N. p is a point on
S2 − {S}, and p is its stereographic projection on ΠN.

and axes parallel to the x- and y-axes, and denote by (x,y) the coordinates of p
in this coordinates system, we can uniquely identify the points p ∈ S2 − {S} with
(x,y) ∈ R2. Using simple methods of analytic geometry, we can easily verify that

x =
x

z
, y =

y

z
, x =

x
1 + x2 + y2

, y =
y

1 + x2 + y2
, z =

1
1 + x2 + y2

.

(326)

We can employ the last three of these relations to compute the line element over the
sphere in the (x,y)-coordinates. A rather lengthy but straightforward calculation
yields

ds2 = dx2 + dy2 + dz2 =
dx2 + dy2

(1 + x2 + y2)2
. (327)

This relation together with ds2 =
∑2
i,j=1 g

(FS)
ij dxidxj , where x1 := x and

x2 := y, gives the following local coordinate expression for the Fubini-Study metric
tensor [82],

g
(FS)
ij =

δij

[1 + (x1)2 + (x2)2]2
. (328)

Expressing x and y in terms of the spherical coordinates,

ϕ := tan−1
( y
x

)
, θ := cos−1(2z − 1), (329)
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of S2, we find

x = tan
(
θ

2

)
cosϕ, y = tan

(
θ

2

)
sinϕ. (330)

Substituting these in (327) leads to the following familiar relation for the line ele-
ment of a sphere of unit diameter.

ds2 =
1
4
(dθ2 + sin2 θdϕ2). (331)

In order to make the relationship between (319) and (327) more transparent,
we recall that the south pole S of S2 corresponds to the projection operator Λe2
represented by

Λe2 =
(

0 0
0 1

)
(332)

and the state λe2 := {ce2 | c ∈ C}, where e2 :=
(0
1

)
. The coordinates (x,y)

parametrize all the states except λe2 . These are represented by the state-vectors

ψ =
(

z1
z2

)
with z1 	= 0. (333)

Introducing z := z2
z1

, we can simplify the expression (322) for the corresponding
projection operator. In terms of z, the coordinates x, y, z appearing in (324) take
the form x = �(z)

1+|z|2 , y = 	(z)
1+|z|2 , z = 1

1+|z|2 . Comparing these with (326) reveals

x = �(z), y = �(z). (334)

Now, we are in a position to compute the line element (319). Inserting (333) in
(319), setting z2 = z1z, and using (334) and (330), we find

ds2 =
dz∗dz

(1 + |z|2)2 =
dx2 + dy2

(1 + x2 + y2)2
=

1
4
(dθ2 + sin2 θdϕ2). (335)

Therefore, as a Riemannian manifold the state-space P(H) is identical to a two-
dimensional (round) sphere of unit diameter.xxx

8.2. State-space and its geometry in pseudo-Hermitian QM

The construction of the space of states in pseudo-Hermitian quantum mechanics is
similar to that in conventional quantum mechanics. Again, the states are rays in
the (reference) Hilbert space H which are identical with the rays in the physical
Hilbert space Hphys. The only difference is in the way one associates projection

xxxThe above calculation of the metric tensor on S2 makes use of the stereographic projection of
S2 −{S} onto the plane ΠN which is a copy of R2 = C. We could also consider the stereographic
projection of S2 − {N} onto the tangent plane ΠS at S. Using both the projections we are able
to describe all the points on S2. This is a manifestation of the manifold structure of S2.
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operators to states and defines an appropriate notion of distance (metric tensor)
on the state-space.

In the following we shall use P(Hphys) to denote the state-space of a pseudo-
Hermitian quantum system with physical Hilbert space Hphys. The latter is obtained
by endowing the underlying vector space of H with the inner product 〈· | ·〉η+ ,
where η+ : H → H is a given metric operator rendering the Hamiltonian of the
system η+ -pseudo-Hermitian. We shall also introduce the following notation that
will simplify some of the calculations: For all ξ, ζ ∈ H, |ζ� := |ζ〉 = ζ, ≺ζ| := 〈ζ|η+ ,
≺ξ | ζ� := 〈ξ|η+ | ζ〉 = 〈ξ | η+ζ〉 = 〈ξ | ζ〉η+ .

First we define, for each pair of linear operators L, J : H → H,

(L | J)η+ := trη+(L�J) = tr(L�J), (336)

where L� stands for the η+ -pseudo-adjoint of L:

L� := η+
−1L†η+ , (337)

trη+ is defined by (309), and we have used (310). The linear operators A : Hphys →
Hphys for which (A |A)η+ is finite together with (336) form the inner product space
B2(Hphys) of Hilbert–Schmidt operators acting in Hphys. Substituting (337) in (336)
and using ρ2 = η+ and ρ† = ρ, we also have

(L | J)η+ = tr(η+
−1L†η+J) = tr(ρ−1L†ρ2Jρ−1)

= tr((ρLρ−1)†ρJρ−1) = (ρLρ−1 | ρJρ−1). (338)

These calculations show that ρ : Hphys → H induces a unitary operator Uρ :
B2(Hphys) → B2(H) defined by

Uρ(L) := ρLρ−1, for all L ∈ B2(Hphys). (339)

Now, consider a state λψ := {cψ | c ∈ C} for some ψ ∈ Hphys − {0}. Because
≺ · | · � is the inner product of Hphys, the orthogonal projection operator onto λψ
is given by

Λ(η+)
ψ :=

|ψ�≺ψ|
≺ψ |ψ� =

|ψ〉〈ψ | η+

〈ψ | η+ψ〉
=

〈ψ |ψ〉Λψη+

〈ψ | η+ψ〉
. (340)

A quick calculation shows that Λ
(η+ )

ψ

2

= Λ
(η+)

ψ . Furthermore, using the arguments
leading to (316), we have

trη+(Λ
(η+ )�

ψ Λ
(η+ )

ψ ) = trη+(Λ
(η+ )

ψ )

=

N∑
n=1

≺ψn |ψ�≺ψ |ψn�

≺ψ |ψ� =

N∑
n=1

|≺ψn |ψ�|2

≺ψ |ψ� = 1.

This shows that Λ
(η+ )

ψ ∈ B
(η+)
2 , and also, because trη+ = tr,

tr(Λ
(η+ )

ψ ) = 1. (341)
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Another direct implication of (340) is Λ
(η+ )†
ψ = η+Λ

(η+ )

ψ η+
−1. Hence Λ

(η+ )

ψ

belongs to the subset H2(Hphys) of η+ -pseudo-Hermitian elements of B2(Hphys).
We can view this as a real vector space. Equation (336) defines a real inner product
on this space, and the restriction of (339) onto H2(Hphys) that we also denote by Uρ
yields a unitary operator that maps H2(Hphys) onto H2(H). In fact H2(Hphys) and
H2(H) are real separable Hilbert spaces and the existence of the unitary operator
Uρ : H2(Hphys) → H2(H) is a manifestation of the fact that real separable Hilbert
spaces of the same dimension are unitary-equivalent.

The set of the projection operators (340) that is in one-to-one correspondence
with the projective Hilbert space P(Hphys) is a proper subset of H2(Hphys). Simi-
larly to the case of conventional quantum mechanics, we can define a natural metric
on this space whose line element has the form

ds2η+(Λψ) :=
1
2
(dΛ

(η+ )

ψ | dΛ(η+ )

ψ )η+ =
≺ψ |ψ�≺dψ | dψ� −|≺ψ | dψ�|2

≺ψ |ψ�2

=
〈ψ | η+ψ〉〈dψ | η+dψ〉 − |〈ψ | η+dψ〉|2

〈ψ | η+ψ〉2
. (342)

It is important to note that as smooth manifolds P(H) and P(Hphys) are the
same, but as Riemannian manifolds they are different. While P(H) is endowed
with the Fubini-Study metric, P(Hphys) is endowed with the metric corresponding
to (342). For N <∞ we can obtain a global expression for the latter in terms of the
coordinates z1, z2, . . . , zN of the state-vectors ψ =�z ∈ CN . This yields the following
generalization of (320) that satisfies ds2η+ =

∑N
a,b=1 g

(η+ )

ab∗ dzaz
∗
b .

g
(η+)

ab∗ :=

N∑
c,d=1

(η+cdη+ba − η+caη+bd)z
∗
czd

(
N∑

r,s=1

η+rsz
∗
rzs

)2 . (343)

Here η+ab are the entries of the standard representation η+ of η+ [168].
For two-level systems where N = 2, we can easily obtain an explicit expression

for the line element (342). In general, the metric operator η+ is represented by

η+ =
(

a b1 − ib2
b1 + ib2 c

)
, (344)

where a, b1, b2, c ∈ R are such that

a+ c = tr(η+) > 0, d := ac− (b21 + b22) = det(η+) > 0. (345)

In view of (340) we can again parametrize Λ
(η+ )

ψ using the Cartesian coordinates

x, y, z of the sphere S2 defined by (325). For the states differing from λe2 , we can
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alternatively choose the coordinates x and y of (334) and show using (333), (340),
and (344) that

ds2η+
=

d(dx2 + dy2)
[a+ 2(b1x+ b2y) + c(x2 + y2)]2

. (346)

It is easy to see that for η+ = I where a = c = 1 and b1 = b2 = 0, (346)
reproduces (335).

To gain a more intuitive understanding of (346), we next express its right-hand
side in terms of the spherical coordinates (329). Inserting (330) in (346) and carrying
out the necessary calculations, we find

ds2η+
=

k1(dθ2 + sin2 θdϕ2)
[1 + k2 cos θ + g(ϕ) sin θ]2

=
k1(dθ2 + sin2 θdϕ̃2)

[1 + k2 cos θ + k3 cos ϕ̃ sin θ]2
(347)

where we have introduced

k1 :=
d

(a+ c)2
=

det(η+)

tr(η+)2
, k2 :=

a− c

a+ c
, k3 :=

2
√
b21 + b22
a+ c

, (348)

g(ϕ) :=
2(b1 cosϕ+ b2 sinϕ)

a+ c
, ϕ̃ := ϕ− β, β := tan−1

(
b2
b1

)
. (349)

Note that the change of coordinate ϕ→ ϕ̃ corresponds to a constant rotation about
the z-axis, and because of (345) we have k1 > 0, −1 < k2 < 1 and 0 ≤ k3 < 1.

The projective Hilbert space P(Hphys) is the Riemannian manifold obtained
by endowing the sphere S2 with the metric g(η+ ) corresponding to the line ele-
ment (347).

Next, consider the general case whereN need not be two. In order to compare the
geometric structure of P(Hphys) and P(H), we recall that P(Hphys) ⊂ B2(Hphys),
P(H) ⊂ B2(H), and that the linear operator Uρ of Eq. (339) maps B2(Hphys) onto
B2(H). It is easy to check that the restriction of Uρ on P(Hphys), i.e. the function
uρ : P(Hphys) → P(H) defined by

uρ(Λ
(η+ )

ψ ) := ρΛ
(η+ )

ψ ρ−1, for all Λ
(η+)

ψ ∈ P(Hphys), (350)

is a diffeomorphism. Furthermore, in view of (313), (340), and ρ† = ρ = √
η+ , we

have

uρ(Λ
(η+ )

ψ ) =
ρ |ψ〉〈ψ | η+ρ

−1

〈ψ | ρ2ψ〉 =
ρ |ψ〉〈ψ | ρ
〈ρψ | ρψ〉 =

|Ψ〉〈Ψ|
〈Ψ |Ψ〉 = ΛΨ, (351)

where Ψ := ρψ ∈ H. A straightforward consequence of (319), (318), (338), (342),
(350) and (351) is

ds2(uρ(Λ
(η+ )

ψ )) = ds2(ΛΨ) =
1
2
(dΛΨ | dΛΨ) =

1
2
(ρdΛ

(η+ )

ψ ρ−1 | ρdΛ(η+ )

ψ ρ−1)

=
1
2
(dΛ

(η+ )

ψ | dΛ(η+ )

ψ )η+ = ds2η+
(Λ

(η+ )

ψ ). (352)

This shows that uρ : P(Hphys) → P(H) is an isometry, i.e. it leaves the distances
invariant. Therefore, P(Hphys) and P(H) have the same geometric structure. In
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particular, for N = 2, we can identify P(Hphys) with a sphere of unit diameter
embedded in R

3 with its standard geometry.
This result is another manifestation of the fact that pseudo-Hermitian quan-

tum mechanics is merely an alternative representation of the conventional quan-
tum mechanics. Because the geometry of the state space may be related to physical
quantities such as geometric phases, we should not have expected to obtain different
geometric structures for P(Hphys) and P(H).

8.3. Optimal-speed evolutions

Let H : H → H be a possibly time-dependent Hermitian Hamiltonian with a
discrete spectrum. Suppose that we wish to use H to evolve an initial state λψI ∈
P(H) into a final state λψF ∈ P(H) in some time τ . Then the evolving state-vector
ψ(t) ∈ H satisfies

Hψ(t) = i�ψ̇(t), ψ(0) = ψI , ψ(τ) = ψF , (353)

and the corresponding state λψ(t) traverses a curve in the projective Hilbert space
P(H).

The instantaneous speed for the motion of λψ(t) in P(H) is

vψ :=
ds

dt
, (354)

where ds is the line element given by (319). In view of this equation,

v2
ψ =

〈ψ(t) |ψ(t)〉〈ψ̇(t) | ψ̇(t)〉 − |〈ψ(t) | ψ̇(t)〉|2
〈ψ(t) |ψ(t)〉2 =

∆Eψ(t)2

�2
, (355)

where

∆Eψ(t)2 :=
〈ψ(t) |H2ψ(t)〉
〈ψ(t) |ψ(t)〉 − |〈ψ(t) |Hψ(t)〉|2

〈ψ(t) |ψ(t)〉2 , (356)

is the square of the energy uncertainty, and we have used (353) and the Hermiticity
of H . We can employ (354) and (355) to express the length of the curve traced by
λψ(t) in P(H) in the form [9]:

s =
1
�

∫ τ

0

∆Eψ(t)dt. (357)

Because ∆Eψ is non-negative, s is a monotonically increasing function of τ . This
makes τ a monotonically increasing function of s. Therefore, the shortest travel
time is achieved for the paths of the shortest length, i.e. the geodesics of P(H).

For a time-independent Hamiltonian H we have ψ(t) = e−
itH

� ψI and as seen
from (356), ∆Eψ is also time-independent. In this case, (357) yields

τ =
�s

∆Eψ
, (358)

and the minimum possible travel time is achieved when s is identified with the
geodesic distance between ψI and ψF .
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Because of the particular structure of P(H), the geodesic(s) connecting any
two states λψI and λψF lie entirely on a two-dimensional submanifold of P(H)
that is actually the projective Hilbert space P(HI,F ) for the subspace HI,F of
H spanned by ψI and ψF . If the time evolution generated by the Hamiltonian
minimizes the travel time, the evolving state λψI should stay in P(HI,F ) during
the evolution. This means that the problem of determining minimum-travel-time
evolutions [90, 227, 135, 55, 64] reduces to the case that H is two-dimensional [56].
As we saw in Subsec. 8.1, in this case P(H) is a round sphere of unit diameter and
the geodesics are the large circles on this sphere.

Next, we study, without loss of generality, the case N = 2. It is easy to show
the existence of a time-independent Hamiltonian that evolves λψI to λψF along a
geodesic. We will next construct such a Hamiltonian.

Consider a time-independent HamiltonianH acting in a two-dimensional Hilbert
space. We can always assume that H has a vanishing trace so that its eigenvalues
have opposite sign, E2 = −E1 =: E.yyy Because ∆Eψ is time-independent we
can compute it at t = 0. Expanding ψ(0) = ψI in an orthonormal basis {ψ1, ψ2}
consisting of a pair of eigenvectors of H , i.e. writing it in the form

ψI = c1ψ1 + c2ψ2, c1, c2 ∈ C, (359)

we find [171]

∆Eψ = E

√
1 −
(
|c1|2 − |c2|2
|c1|2 + |c2|2

)2

≤ E. (360)

Therefore, the travel time τ satisfies

τ ≥ τmin :=
�s

E
, (361)

where s is the geodesic distance between λψI and λψF in P(H). Equation (361)
identifies τmin with a lower bound on the travel time. Next, we shall construct a
Hamiltonian H� with eigenvalues ±E for which τ = τmin. This will, in particular,
identify τmin with the minimum travel time.

In order to determine H� we only need to construct a pair of its linearly inde-
pendent eigenvectors ψ1 and ψ2 and use its spectral resolution:

H� = E(−|ψ1〉〈ψ1| + |ψ2〉〈ψ2|). (362)

As seen from (360), to saturate the lower bound on τ , we must have |c1| = |c2|. In
view of time-independence of ∆Eψ we could also use ψF to compute this quantity.

yyyThis is true for general possibly time-dependent Hamiltonians H(t). Under the gauge trans-

formation ψ(t) → ψ′(t) → e
iα(t)

� ψ(t) with α(t) = N−1
R t
0

tr[H(s)]ds, the Hamiltonian H(t)
transforms into the traceless Hamiltonian H′(t) := H(t) −N−1tr[H(t)]I.
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If we expand the latter as

ψF = d1ψ1 + d2ψ2, d1, d2 ∈ C, (363)

we find that ∆Eψ satisfies (360) with (c1, c2) replaced by (d1, d2). Therefore, by
the same argument we find |d1| = |d2|. This in turn means that there must exist
βI , βF ∈ R such that

c2 = eβI c1, d2 = eβF d1. (364)

Inserting these relations in (359) and (363) gives

ψ1 + eiβIψ2 = c−1
1 ψI , ψ1 + eiβFψ2 = d−1

1 ψF . (365)

Solving these for ψ1 and ψ2, we obtain

ψ1 =
√

2(ψ̂I − e
iϑ
2 ψ̂F )

1 − eiϑ
, ψ2 =

√
2e−iβF (−ψ̂I + e

−iϑ
2 ψ̂F )

1 − eiϑ
, (366)

where we have introduced

ϑ := βI − βF , ψ̂I :=
ψI√
2c1

, ψ̂F :=
e

iϑ
2 ψF√
2d1

. (367)

Clearly ψ̂n determines the same state as ψn for n ∈ {1, 2}. Also in view of
(362), the presence of βF in (366) does not affect the expression for H�. The only
parameter that has physical significance is the angle ϑ. The orthonormality of ψ1

and ψ2 implies that ψ̂I and ψ̂F have unit norm, and more importantly, that ϑ fulfils

〈ψ̂I | ψ̂F 〉 = cos
(
ϑ

2

)
. (368)

In terms of ψI and ψF this equation takes the form

〈ψI |ψF 〉 = c∗1d1(1 + e−iϑ). (369)

Note that because ψ̂I and ψ̂F have unit norm, according to (367), 〈ψI |ψI〉 = 2|c1|2
and 〈ψF |ψF 〉 = 2|d1|2. These relations together with (367) and (368) imply

cos2
(
ϑ

2

)
=

|〈ψI |ψF 〉|2
〈ψI |ψI〉〈ψF |ψF 〉

. (370)

Therefore whenever ψI and ψF are orthogonal, ϑ = π. Furthermore, as discussed
in [9], (370) shows that ϑ is related to the geodesic distance s between λψI and λψF

according tozzz

ϑ = 2s. (371)

In the case that ψI and ψF are orthogonal, λψI and λψF are antipodal points on
P(H). Therefore their geodesic distance s is half of the perimeter of a large circle.
Because P(H) is a round sphere of unit diameter, we have s = π

2 , which is consistent
with (371).

zzzNote that the metric on P(H) that is used in [9] differs from our metric by a factor of
√

2.
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Having calculated the eigenvectors ψ1 and ψ2, we can use (362) to obtain an
explicit expression for the Hamiltonian H� that evolves λψI into λψF in time τmin.
Substituting (366) in (362) and using (367), (368) and (371), we find [64, 56, 171]

H� =
iE(|ψ̂F 〉〈ψ̂I | − |ψ̂I〉〈ψ̂F |)

4 sin(ϑ2 )
=
iE cot(s)

4

(
|ψF 〉〈ψI |
〈ψI |ψF 〉

− |ψI〉〈ψF |
〈ψF |ψI〉

)
. (372)

The last equation shows that H� depends only on the states λψI and λψF and not
on the particular state-vectors one uses to represent these states. Note also that
this equation is valid generally; it applies for quantum systems with an arbitrary
finite- or infinite-dimensional H.

This completes our discussion of the quantum Brachistochrone problem in con-
ventional quantum mechanics. We can use the same approach to address this prob-
lem within the framework of pseudo-Hermitian quantum mechanics [168]. This
amounts to making the following substitutions in the above analysis: |ψn〉 → |ψn�,
〈ψn| →≺ψn|, and s→ sη+. In particular, the minimum travel time is given by

τ
(η+ )

min =
�sη+
E

, (373)

and the η+ -pseudo-Hermitian Hamiltonian that generates minimal-travel-time evo-
lution between λψI and λψF has the form

H
(η+ )
� =

iE cot(sη+ )

4

(
|ψF �≺ψI |
≺ψI |ψF � − |ψI�≺ψF |

≺ψF |ψI�

)
, (374)

where

cos2(sη+ ) =
|≺ψI |ψF �|2

≺ψI |ψI�≺ψF |ψF � . (375)

Equation (374) gives the expression for the most general time-independent optimal-
speed quasi-Hermitian Hamiltonian operator that evolves ψI into ψF . Similar to its
Hermitian counterpart, it applies irrespective of the dimensionality of the Hilbert
space.

In [41], the authors show, using a class of quasi-Hermitian Hamiltonians, that
one can evolve an initial state λψI into a final state λψF in a time τ that violates
the condition τ ≥ τmin. They actually show that by appropriately choosing the
form of the quasi-Hermitian Hamiltonian one can make τ arbitrarily small. This
phenomenon can be easily explained using the above treatment of the problem. The
minimum travel time for an η+ -pseudo-Hermitian Hamiltonian is given by (373). In
view of (347), depending on the value of k1 = det(η+)/tr(η+)2 one can make sη+
and consequently τ

(η+ )

min as small as one wishes. This observation does not, however,
seem to have any physically significant implications, because a physical process
that involves evolving λψI into λψF using an η+ -pseudo-Hermitian Hamiltonian H
can be described equally well by considering the evolution of λρψI into λρψF using
the Hermitian Hamiltonian h := ρHρ−1. In light of the existence of the isometry
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uρ : P(Hphys) → P(H), the distance between λψI and λψF in P(Hphys) is equal to
the distance between λρψI and λρψF in P(H). It is also easy to show that the travel
time for both the evolutions are identical. Therefore as far as the evolution speed
is concerned, there is no advantage of using the η+ -pseudo-Hermitian Hamiltonian
H over the equivalent Hermitian Hamiltonian h [168].

We wish to emphasize that the existence of a lower bound on travel time
is significant, because it limits the speed with which one can perform unitary
transformations dynamically. Such transformations play a central role in quan-
tum computation. For example, the construction of efficient NOT-gates involves
unitary transformations that map a state into its antipodal state. The distance
between antipodal states in P(Hphys) is the same as in P(H). Hence, for such

states τ
(η+ )

min = τmin.
The situation is quite different if we consider the evolution generated by the

η+ -pseudo-Hermitian Hamiltonian H
(η+ )
� in the standard projective Hilbert space

P(H). In this case, we can indeed obtain arbitrarily fast evolutions, but they will
not be unitary [16]. The possibility of infinitely fast non-unitary evolutions is actu-
ally not surprising. What is rather surprising is that one can achieve such evolu-
tions using quasi-Hermitian Hamiltonians; there are arbitrarily fast quasi-unitary
evolutions [171].

A scenario that is also considered in [41] is to use both Hermitian and quasi-
Hermitian Hamiltonians to produce an arbitrarily fast evolution of λψI into λψF .
This is done in three stages. First, one evolves the initial state λψI into an auxiliary
state λψ′I using a Hermitian Hamiltonian h1 in time τ1, then one evolves λψ′I into
another auxiliary state λψ′F using a quasi-Hermitian Hamiltonian H in time τ ′,
and finally one evolves λψ′F into the desired final state λψF using another Hermi-
tian Hamiltonian h2 in time τ2. By choosing the intermediate states λψ′I and λψ′F
appropriately, one can make τ1 and τ2 as small as one wishes. By choosing H to
be an η+ -pseudo-Hermitian operator of the form (374) with the parameter k1 of
η+ sufficiently small, one can make the total travel time τ := τ1 + τ ′ + τ2 smaller
than τmin. In this scenario, both the initial and final states belong to P(H), but
to maintain unitarity of the evolution one is bound to switch (the defining metric
of) the physical Hilbert space at t = τ1 and t = τ1 + τ ′. Therefore, this scheme
involves a physical Hilbert space with a time-dependent inner product. As discussed
in Subsec. 7.1, the latter violates the condition that the Hamiltonian is an observ-
able. Therefore, there seems to be no legitimate way of lowering the bound on travel
time between two states of a given distance except allowing for non-unitary (possibly
quasi-unitary) evolutions.

9. Physical Applications

Since its inception in the form of PT -symmetric models in the late 1990’s and later
as a consistent quantum mechanical scheme [175], pseudo-Hermitian QM has been
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the subject of extensive research. The vast majority of the publications on the sub-
ject deal with issues related to formalism or various (quantum mechanical as well
as field theoretical) toy models with mostly obscure physical meaning. There are
however, a number of exceptions to this general situation where concrete problems
are solved using the methods developed within the framework of pseudo-Hermitian
QM. In this section, we outline the basic ideas upon which these recent develop-
ments rest. Before engaging into a discussion of these, however, we wish to list some
of the applications that predate the recent activities in the field.

9.1. Earlier applications

9.1.1. Dyson–Boson mapping

Among the earliest manifestations of pseudo-Hermitian operators is the one appear-
ing in the context of the Dyson mapping of Hermitian Fermionic Hamiltonians to
equivalent quasi-Hermitian bosonic Hamiltonians [81]. Dyson mapping has subse-
quently found applications in nuclear physics [115] and provided the basic idea
for the formulation of quasi-Hermitian QM [207]. For a brief review of the Dyson
mapping method, see [92].

9.1.2. Complex scaling and resonances

Consider the one-parameter family of operators: ruα = exp( iα2�
{x, p}) with α ∈ C,

that act in the Hilbert space L2(R). We can easily use the Backer–Campbell–
Hausdorff identity (150) together with the canonical computation relation [x, p] =
i� to show that uα induces a scaling of the position and momentum operators:
x → uαxu−1

α = eαx and p → uαpu−1
α = e−αp. For α ∈ R, uα is a unitary

transformation, and one can use the latter property to show that (uαψ)(x) =
e−

α
2 ψ(eαx) for all ψ ∈ L2(R).
For α ∈ C − R, the transformation ψ → uαψ is called a complex scaling trans-

formation. In this case, uα is no longer a unitary operator. In fact, neither uα nor
its inverse is bounded. This implies that its action on a Hermitian Hamiltonian
H , namely H → H ′ = uαHu−1

α , that (neglecting the unboundedness of uα and
u−1
α ) maps H into a quasi-Hermitian Hamiltonian H ′, can have dramatic effects

on the nature of its continuous spectrum. This observation has applications in the
treatment of resonances (where one replaces x with the radial spherical coordinate
in R3). The main idea is to perform an appropriate complex scaling transformation
so that the non-square-integrable wave functions representing resonant states of H
are mapped to square-integrable eigenfunctions of H ′. For details, see [214, 133, 12]
and references therein.

9.1.3. Vortex pinning in superconductors

Consider the Hamiltonian: Hg = (p+ig)2

2m + v(x), where g is a real constant and
v is a real-valued potential. This Hamiltonian can be mapped to the Hermitian
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Hamiltonian H0 by the similarity transformation:

Hg → e−
gx
� Hge

gx
� = H0. (376)

This in turn implies that Hg is η+ -pseudo-Hermitian for the metric operator
η+ := e−

2gx
� . This is to be expected, because (376) is an example of the quasi-

Hermitian Hamiltonians of the form (200) that admit x-dependent metric operators.
In [101, 102] the Hamiltonian Hg (with random potential v) is used in modeling a
delocalization phenomenon relevant for the vortex pinning in superconductors. A
review of the ensuing developments is provided in [100].

9.2. Relativistic QM, quantum cosmology, and QFT

The issue of constructing an appropriate inner product for the defining Hilbert
space of a quantum mechanical system, which we shall refer to as the Hilbert-space
problem, is almost as old as quantum mechanics itself. Probably the first serious
encounter with this problem is Dirac’s attempts to obtain a probabilistic inter-
pretation of the (first-quantized) Klein–Gordon fields in the late 1920’s. The same
problem arises in the study of other bosonic fields and particularly in the appli-
cation of Dirac’s method of constrained quantization for systems with first class
constraints [78]. This method defines the “physical space” V of the state-vectors
as the common null space (kernel) of the constraints, but it does not specify the
inner product necessary to make V into a Hilbert space. Often the inner prod-
uct induced from the auxiliary Hilbert space of the unconstrained system is not
physically admissible, and one must find an alternative method of constructing an
appropriate inner.

In trying to deal with the Hilbert-space problem for Klein–Gordon fields, Dirac
was led to the discovery of the wave equation for massive spin-half particles and the
antimatter that earned him the 1933 Nobel prize in physics. Another major histori-
cal development that has its root in attempts to address the Hilbert-space problem
is the discovery of the method of second quantization and eventually relativistic
quantum field theories. These developments did not bring a definitive resolution for
the original problem, but diminished the interest in its solution considerably.

In the 1960’s the discovery of the Hamiltonian formulation of the General The-
ory of Relativity [14] provided the necessary means to apply Dirac’s method of con-
strained quantization to gravity. This led to the formulation of canonical quantum
gravity and quantum cosmology [74, 232] and brought the Hilbert-space problem
to forefront of research in fundamental theoretical physics for the second time. In
this context, it emerges as the problem of finding an appropriate inner product
on the space of solutions of the Wheeler–DeWitt equation. Without such an inner
product, these solutions, that are often called the “wave functions of the universe”,
are void of a physical meaning. The lack of a satisfactory solution to this problem
has been one of the major obstacles in transforming canonical quantum gravity and
quantum cosmology into genuine physical theories [130, 107].
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A widely used approach in dealing with the Hilbert-space problem for Klein–
Gordon and Proca fields is to use the ideas of indefinite-metric quantum theories.
These fields admit a conserved current density whose integral over space-like hyper-
surfaces yields a conserved scalar charge. This is however not positive-definite, and
as a result, cannot be used to define a positive-definite inner product and make the
space of all fields V into a genuine Hilbert space directly. This makes one pursue the
following well-known scheme [230]. First, one uses the conserved charge to define
an indefinite inner product on V , and then restricts this indefinite inner product to
the (so-called positive-energy) subspace of V where the inner product is positive-
definite. The common practice is to label this subspace as “physical” and define
the Hilbert space using the fields belonging to this “physical space”.

This approach is not quite satisfactory, because even for physical fields the
above-mentioned conserved current density can take negative values [23]. Therefore
it cannot be identified with a probability density. There are also other problems
related with the observables that mix “physical fields” with “unphysical fields” or
“ghosts”.

The application of pseudo-Hermitian QM in dealing with the Hilbert space
problem in relativistic QM and quantum cosmology [150, 151, 161, 179, 114, 238],
and the removal of ghosts in certain quantum field theories [35, 119] relies on the
construction of an appropriate (positive-definite) inner product on the space of
solutions of the relevant field equation.aaaa

The basic idea behind the application of pseudo-Hermitian QM in dealing with
the Hilbert-space problem in relativistic QM and quantum cosmology is that the
relevant field equations whose solutions constitute the state-vectors of the desired
quantum theory are second-order differential equations in a “time” variable.bbbb

These equations have the following general form.

d2

dt2
ψ(t) +Dψ(t) = 0, (377)

where t denotes a dimensionless time variable, ψ : R → L is a function taking values
in some separable Hilbert space L, and D : L → L is a positive-definite operator
that may depend on t.

We can express (377) as a two-component Schrödinger equation [87],

i
d

dt
Ψ(t) = Hψ(t), (378)

where Ψ : R → L2 and H : L2 → L2 are defined by [140, 141]

Ψ(t) :=

(
ψ(t) + iψ̇(t)

ψ(t) − iψ̇(t)

)
, H :=

1
2

(
D + 1 D − 1

−D + 1 −D − 1

)
, (379)

aaaaThis should be distinguished with the treatment of the Pais–Uhlenbeck oscillator proposed in
[49], because the latter involves changing the boundary conditions on the field equation which in
turn changes the vector space of fields.
bbbbThis is the physical time variable in an inertial frame in relativistic QM or a fictitious evolution
parameter in quantum cosmology which may not be physically admissible [151].



December 16, 2010 9:36 WSPC/S0219-8878 IJGMMP-J043
S0219887810004816

Pseudo-Hermitian Representation of Quantum Mechanics 1293

L2 stands for the Hilbert space L⊕L, and a dot denotes a t-derivative. The Hamil-
tonian (379) can be easily shown to be quasi-Hermitian [150].

In Subsec. 3.5, we examined in detail the quantum system defined by the Hamil-
tonian (379) for the case that L is C with the usual Euclidean inner product and D
is multiplication by a positive number. In this case, the field equation (377) is the
classical equation of motion for a (complex) harmonic oscillator with frequency

√
D.

It turns out that most of the practical and conceptual difficulties of addressing the
Hilbert-space problem for Klein–Gordon, Proca, and Wheeler–DeWitt fields can be
reduced to and dealt with in the context of this simple oscillator.cccc In particular,
the cases in which D is t-dependent (that arises in quantum cosmological models)
require a more careful examination. We will not deal with these cases here. Instead,
we refer the interested reader to [151] where a comprehensive discussion of these
issues and their ramifications is provided.

Following the approach taken in Subsec. 3.5, one can construct a metric operator
η+ : L2 → L2 and a new inner product 〈· | ·〉η+ on L2 that renders H Hermitian.
This defines a physical Hilbert space K of two-component fields Ψ(t). Because
H : K → K is Hermitian, it generates a unitary time-evolution in K. In particular,
for every initial time t0 ∈ R, every pair Ψ1 and Ψ2 of solutions of the Schrödinger
equation (378), and all t ∈ R,

〈Ψ1(t) |Ψ2(t)〉η+ = 〈Ψ1(t0) |Ψ2(t0)〉η+. (380)

As a vector space K (and L2) are isomorphic to the space of solutions of the
single-component field equation (377), i.e. V := {ψ : R → L | ψ̈(t) + Dψ(t) =
0 for all t ∈ R}. We can obtain an explicit realization of this isomorphism as
follows. Let t0 be an initial time and Ut0 : V → K be defined by

Ut0(ψ) := Ψ(t0). (381)

According to (379) and (381), the effect of Ut0 on solutions ψ of the field equa-
tion (377) is to map them to the corresponding initial conditions ψ(t0) and ψ̇(t0).
Because the field equation is linear and second order, this mapping is a linear bijec-
tion. Therefore, Ut0 is a vector space isomorphism. This is an important observation,
because it allows us to use Ut0 to induce a positive-definite inner product (·, ·)η+ on
V form the inner product 〈· | ·〉η+ on K. The induced inner product is defined by

(ψ1, ψ2)η+ := 〈Ut0(ψ1) | Ut0(ψ2)〉η+ , for all ψ1, ψ2 ∈ V . (382)

Note that in view of (381) and (380), the right-hand side of (382) is independent of
the value of t0. This makes (·, ·)η+ into a well-defined inner product on V and gives
it the structure of a Hilbert space.dddd

ccccFor a discussion of this particular quantization of the classical harmonic oscillator, see [159].
ddddStrictly speaking, one must also perform a Cauchy completion of the inner product space
obtained by endowing V with (·, ·)η+

.
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In principle different choices for η+ give rise to different inner products (·, ·)η+ ,
but the resulting Hilbert spaces Hη+

:= (V , (·, ·)η+ ) are unitary-equivalent. The
arbitrariness in the choice of η+ can be restricted by imposing additional physical
conditions. For example in the case of Klein–Gordon and Proca fields, the require-
ment that (·, ·)η+ be Lorentz-invariant reduces the enormous freedom in the choice
of η+ to a finite number of free numerical parameters [150, 238].

The most general Lorentz-invariant and positive-definite inner product on the
space of (real or complex) Klein–Gordon fields has the following form [179]

(ψ1, ψ2)η+ := − i�κ

2mc

∫
Σ

dσµ
[
ψ1(x)∗

↔
∂µ Cψ2(x) + aψ1(x)∗

↔
∂µ ψ2(x)

]
, (383)

where Σ is a space-like Cauchy hypersurface in the Minkowski spacetime, x :=
(x0, x1, x2, x3) are the spacetime coordinates in an inertial frame, ψ1 and ψ2 are
a pair of solutions of the Klein–Gordon equation: �2[−∂2

0 + ∇2]ψ(x) = m2c2ψ(x),
such that for all x0 ∈ R, ψ(x0, �x) and ∂0ψ(x0, �x) define square-integrable functions
of �x := (x1, x2, x3), ∂µ := ∂

∂xµ , ∇2 := ∂2
1 + ∂2

2 + ∂2
3 , for any pair of differentiable

functions f and g, f
↔
∂µ g := f∂µg − g∂µf , κ ∈ R+ and a ∈ (−1, 1) are arbitrary

dimensionless free parameters demonstrating the arbitrariness in the choice of η+ ,
and C is the grading operator defined by

(Cψ)(x) := i

(
−∇2 +

m2c2

�2

)− 1
2

ψ(x) =
∫

R3

∫
R3
dk3dy3 e

i�k·(�x−�y)ψ(x0, �y )√
�k2 + m2c2

�2

.

(384)

Note that −∇2 + �
2

m2c2 is a positive operator acting in L = L2(R3) and that C is
Lorentz-invariant [179].

According to (382), as a linear operator mapping Hη+
to K, Ut0 is a unitary

operator. Similarly, ρ := √
η+ is a unitary operator mapping K to L2. Therefore

ρUη+ :Hη+
→ L2 is also unitary. Usually L is an L2-space with well-known self-

adjoint operators. This allows for a simple characterization of the self-adjoint oper-
ators o acting in L2. We can use these operators and the unitary operator ρUη+ to
construct the self-adjoint operators O : Hη+

→ Hη+
that serve as the observables

of the desired quantum theory. This is done using

O = (ρUη+ )−1oρUη+ . (385)

The application of this construction for Klein–Gordon [161, 179] and Proca [238]
fields yields explicit expressions for the corresponding relativistic position operators
and localized states, a problem that has been a subject of ongoing research since the
1940’s [193, 188]. A natural consequence of these developments is the construction
of a set of genuine relativistic coherent states for Klein–Gordon fields interacting
with a constant magnetic field [180].
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9.3. Electromagnetic wave propagation

An interesting application of pseudo-Hermitian QM is its role in dealing with a
more than a century-old problem of the propagation of electromagnetic waves in
linear dielectric media [176]. Unlike the applications we discussed in the preceding
section, here it is the spectral properties of quasi-Hermitian operators and their
similarity to Hermitian operators that plays a key role.

Consider the propagation of the electromagnetic waves inside a source-free
dispersionless (linear) dielectric medium with dielectric and permeability tensors
↔ε = ↔ε (�x) and ↔µ = ↔µ (�x) that may depend on space �x ∈ R3 but not on time
t ∈ R. Maxwell’s equations in such a medium read [111]

�∇ · �D = 0, �∇ · �B = 0, (386)

�̇B + �∇× �E = 0, �̇D − �∇× �H = 0, (387)

where �E and �B are the electric and magnetic fields, a dot means a time-derivative,
and

�D := ↔ε �E, �H := ↔µ −1 �B. (388)

Equations (386) and (387) are respectively called the constraint and dynamical
equations. The former may be viewed as conditions on the initial values of the
electromagnetic field, because once they are satisfied for some initial time, the
dynamical equations ensure their validity for all time.

Similarly to Klein–Gordon equation, we can express the dynamical Maxwell
equations (387) as first-order ordinary differential equations for state-vectors
belonging to a separable Hilbert space. To achieve this, we introduce the complex
vector space V of vector fields �F : R

3 → C3 and endow it with the inner product
〈�F1 | �F2〉 :=

∫
R3 d

3x�F1(�x)∗ · �F2(�x), for all �F1, �F2 ∈ V , to define the Hilbert space of
square-integrable vector fields: H := { �F : R3 → C3 | 〈�F | �F 〉 <∞}. The operation of
computing the curl of the (differentiable) elements of this Hilbert space turns out to
define a linear Hermitian operator D : H → H according to (D�F )(�x) := �∇× �F (�x).

We can use D to write (387) in the form: �̇B(t)+D �E(t) = 0 and �̇D(t)−D �H(t) = 0.
Evaluating the time-derivative of both sides of the second of these equations and
using the first of these equations and (388), we find

�̈E(t) + Ω2 �E(t) = 0, (389)

where Ω2 : H → H is defined by Ω2 := ↔ε −1
D
↔µ −1

D.
In view of the fact that ↔ε , ↔µ , and consequently Ω2 are time-independent, we

can integrate (389) to obtain the following formal solution

�E(t) = cos(Ωt) �E0 + Ω−1 sin(Ωt) �̇E0, (390)

where �E0 := �E(0), �̇E0 := �̇E(0) = ↔ε −1
D
↔µ −1 �B(0), and

cos(Ωt) :=
∞∑
n=0

(−1)n

(2n)!
(t2Ω2)n, Ω−1 sin(Ωt) := t

∞∑
n=0

(−1)n

(2n+ 1)!
(t2Ω2)n. (391)
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Given initial values of the electric and magnetic fields �E(0) and �B(0), we can use
(390) and (391) to obtain a series expansion for the evolving electric field. One can
select specific initial fields so that this expansion involves a finite number of nonzero
terms, but these are of little physical significance. In general, the resulting solution
is an infinite derivative series expansion that is extremely difficult to sum or provide
reliable estimates for. A crucial observation which nonetheless makes this expansion
useful is that, for the cases that ↔ε and ↔µ are Hermitian, the operator Ω2 : H →
H is ↔ε -pseudo-Hermitian: Ω2† = ↔ε Ω2 ↔ε −1. In particular, for lossless material
where ↔ε is a positive �x-dependent matrix, Ω2 is a quasi-Hermitian operatoreeee

that can be mapped to a Hermitian operator h by a similarity transformation,
namely h = ρΩ2ρ−1 where ρ := ↔ε 1

2 .
In terms of h the solution (390) takes the form: �E(t) = ρ−1[cos(h

1
2 t)ρ �E0 +

h−
1
2 sin(h

1
2 t)ρ �̇E0]. Therefore,

�E(�x, t) = 〈�x | �E(t)〉

= ρ−1(�x)
∫

R3
d3y
[↔
C(�x, �y; t)ρ(�y ) �E0(�y )+

↔
S(�x, �y; t)ρ(�y ) �̇E0(�y )

]
, (392)

where
↔
C(�x, �y; t) := 〈�x|cos(h

1
2 t)|�y 〉,

↔
S(�x, �y; t) := 〈�x|h− 1

2 sin(h
1
2 t)|�y 〉. (393)

The fact that h is a Hermitian operator acting in H makes it possible to compute
the kernels

↔
C(�x, �y; t) and

↔
S(�x, �y; t) of the operators cos(h

1
2 t) and h−

1
2 sin(h

1
2 t) using

the spectral representation of h:

h =
N∑
n=1

∑
a

En|ψn,a〉〈ψn,a|, (394)

where the sum over the spectral label n should be identified with an integral or a
sum together with an integral whenever the spectrum of h has a continuous part,
En and |ψn,a〉 denote the eigenvalues and eigenvectors of h respectively, and a

is a degeneracy label. In view of (394), for every analytic function F of h, such as
cos(h

1
2 t) and h−

1
2 sin(h

1
2 t), we have 〈�x|F (h)|�y 〉 =

∑N
n=1

∑
a F (En)ψn,a(�x)ψn,a(�y)∗.

In the scattering setups where ↔ε and ↔µ tend to constant values as |�x| → ∞, h
has a continuous spectrum and one finds integral representations for the kernels
(393) that reduce the solution (392) of Maxwell’s equations into performing certain
integrals (after solving the eigenvalue problem for h).

Reference 176 outlines the application of this method for the cases that the
medium is isotropic, the initial fields as well as the dielectric and permeability con-
stants change only along the z-direction, and the WKB approximation is applicable

eeeeAs an operator acting in H, the dielectric tensor
↔
ε plays the role of a metric operator. This

is one of the rare occasions where a metric operator has a concrete physical meaning.
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in dealing with the eigenvalue problem for h. Under these conditions, one can com-
pute the kernels (393) analytically. This allows for the derivation of the following
closed form expression for the propagating electromagnetic field in terms of the
initial fields �E0, �̇E0, and the z-dependent dielectric and permeability constants ε(z)
and µ(z).

�E(z, t) =
1
2

[
µ(z)
ε(z)

] 1
4
{[

ε(w−(z, t))
µ(w−(z, t))

] 1
4
�E0(w−(z, t)) +

[
ε(w+(z, t))
µ(w+(z, t))

] 1
4
�E0(w+(z, t))

+
∫ w+(z,t)

w−(z,t)

dwµ(w)
1
4 ε(w)

3
4 �̇E0(w)

}
,

where w±(z, t) := u−1(u(z) ± t), u(z) :=
∫ z
0 dz
√
ε(z)µ(z), and u−1 stands for the

inverse function for u [176].
The possibility of the inclusion of dispersion effects in the above approach of

solving Maxwell’s equations is considered in [174].

9.4. Other applications and physical manifestations

The following are some other areas where pseudo-Hermitian operators arise and/or
the methods of pseudo-Hermitian QM are used in dealing with specific physics
problems.

9.4.1. Atomic physics and quantum optics

Effective quasi-Hermitian scattering Hamiltonians arise in the study of the bound-
state scattering from spherically symmetric short-range potentials. As shown by
Matzkin in [136], the use of the machinery of pseudo-Hermitian QM in the study of
these Hamiltonians leads to a more reliable quantitative description of the scattering
problem. It also provides a better understanding of the approximation schemes used
in this context in the past and allows for their improvement.

The relevance of pseudo-Hermitian operators to two-level atomic and optical sys-
tems has been noted in [27, 26, 204], and their application in describing squeezed
states is elucidated in [73, 25]. The optical systems provide an important arena for
manufacturing non-Hermitian and in particular pseudo- and quasi-Hermitian effec-
tive Hamiltonians. Recent experimental studies of PT -symmetric periodic poten-
tials that make use of PT -symmetric optical lattices is based on this observation
[134]. See also [52].

9.4.2. Open quantum systems

The emergence of non-Hermitian effective Hamiltonians in the description of the
resonant states, that is based on Feshbach’s projection scheme [86] is a very well-
known phenomenon [181]. The application of a similar idea, that replaces the pro-
jection scheme with an averaging scheme, for open quantum systems also leads to
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a class of non-Hermitian effective Hamiltonians (usually called Liouvillian or Liou-
ville’s super operator) [57]. These Hamiltonians that determine the dynamics of the
reduced density operators can, under certain conditions, be pseudo-Hermitian or
even quasi-Hermitian. In [220, 112, 221], Stenholm and Jakob explore the applica-
tion of the properties of pseudo- and quasi-Hermitian operators in the study of open
quantum systems. The key development reported in these articles is the construc-
tion of a metric operator, that uses the spectral method we discussed in Subsec. 4.1,
and the identification of the corresponding norm with a viable candidate for a gen-
eralized notion of entropy.

9.4.3. Magnetohydrodynamics

Pseudo-Hermitian effective Hamiltonians arise in the study of the dynamo effect
in magnetohydrodynamics [96, 97]. These Hamiltonians are typically non-quasi-
Hermitian and involve exceptional points. Therefore, they can only be treated in the
framework of indefinite-metric theories and using the properties of Krein spaces [18].

9.4.4. Quantum chaos and statistical mechanics

In [71], Date et al. study the spectrum of the Hamiltonian operator: H = 1
2 (px +

αy
r2 )2 + 1

2 (py − αy
r2 )2, where α is a real coupling constant and r :=

√
x2 + y2.

This Hamiltonian that is Hermitian and PT -symmetric describes a rectangular
Aharonov–Bohm billiard. Here, note that the spectrum is obtained by imposing
Dirichlet boundary condition on the boundary of the rectangular configuration
space, that is defined by |x| ≤ a and |y| ≤ b for some a, b ∈ R+, and also at the
location of the flux line, namely x = y = 0. The main result of [71] is that the near-
est neighbor spacing distribution for this system has a transition that interpolates
between the Poisson (level clustering) and Wigner (level repulsion) distributions.
In an attempt to obtain a random matrix model with this kind of behavior, Ahmed
and Jain constructed and studied certain pseudo-Hermitian random matrix models
in [4, 5].

9.4.5. Biophysics

In [84], Eslami–Moossallam and Ejtehadi have introduced the following effective
Hamiltonian for the description of the dynamics of an anisotropic DNA molecule.

H :=
J2

1

2A1
+

J2
2

2A2
+
J2

3

2C
+ iω0J3 − f̃ cosβ, (395)

where A1, A2, C, ω0, and f̃ are real coupling constants, α, β, γ are Euler angles, and
J1, J2, J3, that satisfy the commutation relations for angular momentum operators,
are defined by J1 := −i(− cos γ

sin β
∂
∂α + sin γ ∂

∂β + cotβ cos γ ∂
∂γ ), J2 := −i( sin γ

sin β
∂
∂α +

cos γ ∂
∂β − cotβ sin γ ∂

∂γ ), and J3 := −i ∂∂γ . Clearly, the Hamiltonian (395) is non-
Hermitian, but it is at the same time real, i.e. it commutes with the time-reversal
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operator T . In light of the fact that T is an antilinear operator, this implies thatH is
a pseudo-Hermitian operator [145]. It would be interesting to see if this observation
has any physically interesting implications, besides the restriction it puts on the
spectrum of H .

10. Summary and Conclusions

In this article, we addressed various basic problems related to what we call pseudo-
Hermitian quantum mechanics. Our starting point was the observation that a given
quantum system admits an infinity of unitary-equivalent representations in terms
of Hilbert space-Hamiltonian operator pairs. This freedom in the choice of repre-
sentation can be as useful as gauge symmetries of elementary particle physics.

We have surveyed a variety of mathematical concepts and tools to establish
the foundations of pseudo-Hermitian quantum on a solid ground and to clarify the
shortcomings of the treatment of the subject that is based on the so-called charge
operator C. We showed that it is the metric operator η+ that plays the central role
in pseudo-Hermitian quantum mechanics. Although one can in general introduce a
C operator and express η+ in terms of C, the very construction of observables of the
theory and the calculations of the physical quantities requires the knowledge of η+ .
This motivates addressing the problem of the computation of a metric operator for
a given quasi-Hermitian operator. We have described different approaches to this
problem.

We have discussed a number of basic issues related to the classical-to-quantum
correspondence to elucidate the status of the classical limit of pseudo-Hermitian
quantum mechanics. We have also elaborated on the surprising limitation on the
choice of time-dependent quasi-Hermitian Hamiltonians, the role of the metric oper-
ator in path-integral formulation of the theory, a treatment of the systems defined
on complex contours, and a careful study of the geometry of the space of states that
seems to be indispensable for clarifying the potential application of quasi-Hermitian
Hamiltonians in generating fast quantum evolutions.

Finally, we provided a discussion of various known applications and manifesta-
tions of pseudo-Hermitian quantum mechanics.

Among the subjects that we did not cover and suffice to provide a few references
for are pseudo-supersymmetry and its extensions [146, 215, 203, 216], weak pseudo-
Hermiticity [219, 20, 242, 164], and the generalizations of PT -symmetry [31, 170].
This omission was particularly because of our intention not to treat the results or
methods with no direct or concrete implications for the development of pseudo-
Hermitian quantum mechanics. We particularly avoided discussing purely formal
results and speculative ideas.

Appendix. Reality of Expectation Values Implies
Hermiticity of the Observables

Theorem 3. Let H be a Hilbert space with inner product 〈· | ·〉 and A : H → H
be a (densely-defined, closed) linear operator satisfying D(A) = D(A†), i.e. A and
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its adjoint A† have the same domain D(A). Then A is a Hermitian operator if and
only if 〈ψ |Aψ〉 is real for all ψ ∈ D(A).

Proof. If A is Hermitian, we have 〈φ |Aψ〉 = 〈Aφ |ψ〉 for all ψ, φ ∈ D(A). Then
according to property (ii) of Subsec. 2.1, 〈ψ |Aψ〉 ∈ R for all ψ ∈ D(A). Next,
suppose that for all ψ ∈ D(A), 〈ψ |Aψ〉 ∈ R. We will show that this condition
implies the Hermiticity of A in two steps.

Step 1: Let A+ := 1
2 (A + A†) and A− := 1

2i(A − A†). Then A = A+ + iA−,
D(A±) = D(A), and A± are Hermitian operators. In view of the first part of the
theorem, this implies that

〈ψ |A±ψ〉 ∈ R, for all ψ ∈ D(A). (396)

Furthermore, according to A = A+ + iA− and the hypothesis of the second part of
the theorem, 〈ψ |A+ψ〉 + i〈ψ |A−ψ〉 = 〈ψ |Aψ〉 ∈ R. This relation and (396) show
that

〈ψ |A−ψ〉 = 0 for all ψ ∈ D(A). (397)

Step 2: Let φ, ψ be arbitrary elements of D(A), ξ± := φ ± ψ, and ζ± = φ ± iψ.
Then a direct calculation, using the property (iii) of Subsec. 2.1, shows that
〈φ |A−ψ〉 = 1

4 (〈ξ+ |A−ξ+〉 − 〈ξ− |A−ξ−〉 − i〈ζ+ |A−ζ+〉+ i〈ζ− |A−ζ−〉) = 0, where
the last equality follows from (397) and the fact that ξ±, ζ± ∈ D(A). This estab-
lishes φ |A−ψ〉 = 0 for all φ, ψ ∈ D(A). In particular, setting φ = A−ψ, we find
〈A−ψ |A−ψ〉 = 0 which in view of the property (i) of Subsec. 2.1 implies A−ψ = 0
for all ψ ∈ D(A). Hence A− = 0, and according to A = A+ + iA−, we finally have
A = A+. But A+ is Hermitian.
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