Taha Koohrokhi (Golestan University, Gorgan, Iran)

Title: \mathcal{APT} conjugation in a non-Hermitian \mathcal{PT} -supersymmetric quantum mechanical system

Abstract: We present a new formalism to beget a complex parity-time (\mathcal{PT})-symmetric potential by supersymmetric quantum mechanics [1]. As a matter of fact, \mathcal{PT} -symmetric quantum mechanics provides a deeper insight into a quantum mechanical system by introducing the less restrictive and physical requirement, namely \mathcal{PT} symmetry instead of the mathematical requirement, i.e., Hermiticity [2]. Despite all its theoretical and experimental successes, some underlying issues related to the probabilistic interpretation of quantum mechanics, such as the inner product, the normalization, orthogonality, etc, are still controversial [3-7]. Our study focuses on specifying a new inner product that implies the complex conjugation has to be replaced by the anti- \mathcal{PT} (\mathcal{APT}) conjugation in a non-Hermitian \mathcal{PT} -supersymmetric quantum mechanical system.

References:

1. T. Koohrokhi, S. Kartal, and A. Mohammadi, Anti- \mathcal{PT} Transformations and Complex \mathcal{PT} -Symmetric Superpartners, arXiv: 2108.12834.

2. C. M. Bender, "PT Symmetry: In Quantum And Classical Physics", 1st Edition, WSPC (EUROPE); (November 22, 2018).

- 3. G. Lévai, F. Cannata, A. Ventura, Phys. Lett. A 300, 271 (2002).
- 4. G. Lévai, J. Phys. A: Math. Gen. 39, 10161 (2006).
- 5. G. Lévai, Phys. Lett. A 372, 6484 (2008).
- 6. G. Lévai, E. Magyari, J. Phys. A: Math. Theor 42, 195302 (2009).
- R. Roychoudhury, P. Roy, J. Phys. A 40, F617 (2007).