Single Carrier Frequency Domain Compressed Training Adaptive Equalization

Baki Berkay Yilmaz
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332-0250, US
Email:b.berkayyilmaz@gatech.edu

Alper Tunga Erdogan
Department of Electrical and Electronics Engineering
Koc University
Istanbul, 34450, Turkey
Email:alper@stanfordalumni.org

Abstract—Compressed training approach offers to improve the spectral efficiency by significantly reducing the required training length. It is based on a convex optimization setting (SCFDE-CoTA) which combines two cost functions: 1) Least squares based training reconstruction performance, and 2) Infinity norm of equalizer outputs, which exploits magnitude boundedness assumption of digital communication symbols. In this article, we provide an extension of this framework to single carrier frequency domain equalizer based transceivers, where we show that the compressed training algorithms can be effectively implemented for training frequency domain equalizers. We provide examples to demonstrate the potential gain of the algorithm in terms of training length reduction and performance improvement.

Index Terms—Single Carrier; Frequency Domain Equalizers; Adaptive Equalizers; Adaptive Signal Processing

I. INTRODUCTION

The use of linear equalization scheme is a low complexity approach to counteract against the Inter-Symbol-Interference (ISI) effects caused by the multipath propagation environment [1]. The main challenge in this scheme is to adapt the coefficients of the equalizer filter for the unknown/changing propagation channel.

In the conventional communication systems, the adaptation is achieved by employing training/pilot symbols in the transmit packets which are also known by the receiver. These training symbols are utilized to adjust equalizer coefficients. Unfortunately, embedding training symbols into communication packets reduces the precious bandwidth available for the information symbols, especially for the channels with short coherence time. In this respect, blind algorithms are proposed to eliminate the training phase. The most conventional method, which completely removes the training symbol concept, is known as Constant Modulus Algorithm (CMA) [2], [3]. Despite the success of CMA on removing training symbols, its cost function is non-convex and has some ill/mis-convergence issues. Some papers [4]–[7] propose convex blind frameworks to remove these drawbacks. Even though these algorithms solve ill/mis-convergence behaviour of CMA, they require relatively large number of data, therefore, their performance in a highly mobile environment could not be satisfying. Furthermore, these algorithms could not handle the unresolved ambiguity on the delay and the phase of the equalizer outputs.

To overcome these problems, semi-blind algorithms, which get benefit from a small number of training symbols embedded into data blocks, are proposed in [8]–[10]. These algorithms exploit both training symbols and a prior knowledge about the information symbols.

As an alternative to the time domain equalization (TDE) approaches, frequency domain equalization (FDE) based schemes have received more attention due to their low complexity structures enabling the real-time applications for high data rates. Moreover, the adaptive FDE algorithms were reported to converge faster than TDE algorithms [11].

A time domain equalization technique which utilizes the infinity norm of receiver outputs was proposed in [12]. It utilizes the infinity norm of the equalizer outputs for the whole packet as the regularizer to reduce the amount of training data required for training. This regularization cost function reflects the sparsity of the combined equalizer-channel impulse response where its minimization together with training reconstruction error leads to the reduction of the ISI. In this article, we propose the extension of this framework for single carrier FDE based transceivers, which we refer as Single Carrier Frequency Domain Equalization - Compressed Training Adaptive method (SCFDE-CoTA). The framework is a combination of two convex optimization settings:

- Minimization of training symbol reconstruction error by employing least-squares cost function,
- Minimization of maximum magnitude of equalizer outputs by employing infinity norm cost function based on the pre-knowledge about the boundedness of communication symbols

whose goal is to reduce the number of training symbols to increase the efficiency of the available bandwidth and decreasing the complexity of the equalization process.

Fig. 1. Transmitted Data Block to Eliminate Inter-Block Interference

II. ADAPTIVE EQUALIZATION SETTING

In this section, we introduce the set-up for the single carrier FDE receiver with multiple diversity branches [13], [14]. The
baseband equivalent communication system is provided in Fig. 2 and can be described as follows:

- Mapping of the binary input sequence \{b_n\} to transmit symbols \{s_n\} is performed by constellation mapper where the transmitter uses PAM or QAM constellation schemes.

- A sequence, generated by a known Unique Word (UW), \{x_n | n \in \{1, \ldots, L_T\}\}, followed by data symbols, \{d_n | n \in \{1, \ldots, L_D\}\}, is fed to serial-to-parallel (S/P) converter to produce data block of length \(L_P = L_D + L_T\).

- To create a circular convolution channel and eliminate inter-block interference (IBI), UW is also placed at the end of the data block as illustrated in Fig. 1.

- The size of UW is selected to be greater than the presumed channel spread because it serves as the cyclic-prefix removal operation.

- The channel is assumed to be finite and time invariant (FIR) whose output is corrupted by noise.

- A receiver with \(r\) diversity branches is assumed (i.e. separate antennas and/or an oversampling phase).

- To minimize self ISI, the front-end receiver contains a matched filter with impulse response \(p^*(t)\) (i.e. \(p(t)\) is the transmit pulse shape filter).

- The discrete time equivalent channel model under symbol-space sampling for the \(k^{th}\) receiver branch is

\[
y_n^{(k)} = \sum_{l=0}^{L_C-1} h_l^{(k)} s_{n-l} + v_{n-l}^{(k)}, \quad k = 1, \ldots, r
\]

where \(\{y_n^{(k)}\}\) is the sampled receiver sequence, \(\{h_l^{(k)} | n \in \{0, \ldots, L_C - 1\}\}\) represent the discrete-time equivalent FIR channel coefficients, which include the communication channel and transmit-receiver filters and \(v_{n}^{(k)}\) represents zero-mean complex Gaussian noise samples with variance \(\sigma_v^2\).

- We do not assume that \(\{h_l^{(k)}\}\) is sparse. On the contrary, we remove all constraints which impose sparse structure to channels.

- The pulse shape \(p(t)\) is chosen to have zero autocorrelation at lag, therefore, \(\{v_{n}^{(k)}\}\) is assumed to be an independent and identically distributed (i.i.d.) sequence.

- The received data block at the \(k^{th}\) antenna can be written as

\[
y_n^{(k)} = \begin{bmatrix} y_n^{(k)} & y_{n-1}^{(k)} & \cdots & y_{n-L_P-L_T+1}^{(k)} \end{bmatrix}^T
\]

for \(k = 1, \ldots, r\).

- After prefix removal, time domain receiver samples can be written as

\[
y_n^{(k)} = \text{CPR} \{y_n^{(k)}\} = \begin{bmatrix} y_n^{(k)} & y_{n-1}^{(k)} & \cdots & y_{n-L_P+1}^{(k)} \end{bmatrix}^T
\]

for \(k = 1, \ldots, r\) where CPR\{\} stands for the cyclic-prefix removal operation.

- \(Y^{(k)}\) is converted to frequency domain vector \(\tilde{Y}^{(k)}\) through \(L_P\)-point FFT operation such that \(\tilde{Y}^{(k)} = F^H Y^{(k)}\). Here, \(F\) is the normalized DFT basis matrix with

\[
F_{lm} = e^{j(\pi(l-1)(m-1))/L_P}/\sqrt{L_P}.
\]

- The frequency domain equalizer coefficient vector for the \(k^{th}\) branch is \(W^{(k)}\) where \(k = 1, \ldots, r\).

- Elementwise-multiplied frequency domain vectors corresponding to the equalizing operation is defined as

\[
Z = \sum_{k=1}^r W^{(k)} \odot Y^{(k)}
\]

where \(\odot\) is the elementwise multiplication operator. The equalizer output converted to the time domain is given by \(z = FZ\).

III. Adaptive Single-Carrier Frequency-Domain Equalization

In this section, we introduce the SCFDE-CoTA as an approach for adaptively training the the frequency domain equalizers described in the previous section. As the first step, a circulant convolution channel is obtained by embedding cyclic-prefix. As illustrated by Fig. 1, a predetermined Unique-Word (UW) sequence \(\{x_n\}\) is placed to the beginning and to the end of the data sequence \(\{d_n\}\) to form the transmit block.

The main goal of our discussion is to survive in highly mobile environment with shorter channel coherence time, in other words, the adaptive setting is constraint to be trained
using only one single block. Actually, this is a desired property which is compelled by the wireless systems. In this respect, our framework is a very favourable candidate because the framework aims to adapt equalizer coefficients with relatively small number of training symbols to provide more space for data symbols. This phenomena attracts more attention as shorter data packets are mandated due to the shorter channel coherence time (the presented approach can be easily extended to multi-block-based training). For the adaptive compressed training-based SCFDE, we propose the following optimization setting:

Setting-I:
\[
\text{minimize}_{W} \|E_d z - x\|_2
\]
subject to
\[
W \in \mathcal{F}_{LE}
\]
\[
\|z\|_\infty \leq \delta
\]
\[
z = F \sum_{k=1}^{r} W^{(k)} \odot Y^{(k)}
\]
where
- The vector containing the UW (training) symbols is \(x = [x_1 \ x_2 \ldots \ x_{L_T}] \).
- \(z = [\Re(z)^T \ \Im(z)^T]^T \) where \(\Re(\cdot) \) and \(\Im(\cdot) \) give the real and imaginary part of their arguments respectively.
- \(\delta \) is the target equalization delay.
- \(E_d \) extracts the parts of the \(z \) vector corresponding the UW based on the selected choice of delay as
\[
E_d = \begin{bmatrix} 0 & 1_{L_T} \end{bmatrix} A_d
\]

where multiplication of \(z \) with \(A_d \) is equivalent to applying the circular \(d \)-advance operation on \(z \) to position the elements of \(z \), which corresponds to UW, to the last \(L_T \) rows, i.e., the compensation of the equalization delay. Multiplying by \(\begin{bmatrix} 0 & 1_{L_T} \end{bmatrix} \) extracts the UW region from the circularly shifted \(z \).

\(\mathcal{F}_{LE} \) is the set of frequency domain equalizers whose impulse response length less than or equal to \(L_E \), which can be written as
\[
\mathcal{F}_{LE} = \left\{ W \in C^{L_F} : 0_{L_P-L_E \times L_E} 1_{L_P-L_E} \right\} F W = 0 \}.
\]
- \(\delta \) is chosen based on the prior information about the input constellation.

Setting-I minimizes the reconstruction error of training symbols. On the other hand, the optimization setting can be modified by replacing the objective function and the second constraint of Setting-I to obtain the minimum size hypercube that contains all outputs as follows:

Setting-II:
\[
\text{minimize}_{W} \|z\|_\infty
\]
subject to
\[
W \in \mathcal{F}_{LE}
\]
\[
\|E_d z - x\|_2 \leq \epsilon
\]
\[
z = F \sum_{k=1}^{r} W^{(k)} \odot Y^{(k)}
\]

Algorithm 1 Compressed Training-Based Adaptive SCFDE Algorithm Update

1. \(\text{while} (\sum_{k} \|U(0)[k-1] - U(0)[k-2]\|_2 \geq \epsilon) \) {
2. // Equalizer output in frequency domain
3. \(Z[k] \leftarrow \sum_{l=1}^{L_F} W^{(l)}[k] \odot Y^{(l)} \)
4. // Equalizer output in time domain
5. \(z[k] \leftarrow \text{ifft}_{LP}(Z[k]) \)
6. // TD training symbols reconstruction error
7. \(e[k] \leftarrow E_d z[k] - x \)
8. // TD training symbols reconstruction error
9. \(E[1] = \text{fft}_{LP}(\left\{ 0_{L_P} z[k] \right\}) \)
10. // Real peak outputs in time domain
11. \(p_{re}[k] \leftarrow \sum_{l=1}^{L_F} 1_{|z[k]|==\|e[k]\|_{\infty}} \text{sign}(z[k]) e_{l} \)
12. // Imaginary peak outputs in time domain
13. \(p_{im}[k] \leftarrow \sum_{l=1}^{L_F} 1_{|z[k]|==\|e[k]\|_{\infty}} \text{sign}(z[k]) e_{l} \)
14. // Transform peaks into frequency domain
15. \(P^{(l)}[k] = \text{fft}_{LP}(p^{(l)}_{re}[k] + p^{(l)}_{im}[k]) \)
16. // Subgradient projection
17. \(G^{(l)}[k] \leftarrow P_{FL} - \frac{\lambda}{\|P^{(l)}[k]\|_1} \{e[k] \} \odot Y^{(l)} \)
18. // Subgradient update of the equalizer
19. \(U^{(l)}[k] \leftarrow U^{(l)}[k] - \mu \|G^{(l)}[k]\|_1 \)
20. // Nesterov Step
21. \(W^{(l+1)}[k] = U^{(l)}[k] + \frac{\mu}{\mu+\lambda} (U^{(l)}[k] - U^{(l)}[k-1]) \)
22. // Increase the number of iteration
23. \(k = k + 1 \)
24. }

Another setting can be obtained by combining the objective function and the second constraint of Setting-I to form a Lagrangian function. Hence, we can propose the following optimization setting:

SCFDE CoTA:
\[
\text{minimize}_{W} \|E_d z - x\|_2 + \lambda \|z\|_\infty
\]
subject to
\[
W \in \mathcal{F}_{LE}
\]
\[
z = F \sum_{k=1}^{r} W^{(k)} \odot Y^{(k)}
\]

where \(\lambda \) is the regularization constant.

The iterative algorithm to solve the optimization problem SCFDE-CoTA is given in the Algorithm 1:

- Lines 2 through 5 construct the equalizer outputs. Equalizer outputs are first generated in frequency domain, then, transformed into time domain.
- In lines 6 through 9, reconstruction error vector of training symbols is created at each iteration and converted to its frequency domain counterpart.
- Lines 10 through 13 contain the operations which are required to determine the potential peaks of the equalizer outputs. These operations are very crucial to generate the
Although the complexity of the proposed algorithm is low, the scheme requires on the order of $O(L_T)$ operations to dominate the algorithm’s complexity. Therefore, the proposed algorithm offers robust convergence behaviour. In terms of complexity of Algorithm 1, $O(L_T \log(L_T))$ operations dominate the algorithm’s complexity. Therefore, the proposed scheme requires on the order of $L_P \log(L_P)$ operations. Although the complexity of the proposed algorithm is low, with the improvement in machine learning and big data based large-scale sparsity driven optimization settings, it is possible to increase the convergence speed or decrease the complexity of the algorithm further [17].

IV. NUMERICAL EXPERIMENTS

In this section, we provide examples to demonstrate the strength of the proposed algorithm to decrease the required number of training symbols as well as its fast convergence feature. The setup for the experiment:

- 4-QAM input constellation scheme is selected.
- The scenario with packet length $L_P = 256$ is considered.
- The performance of the proposed algorithm is compared with the one given in [18] and Minimum Mean Square Error (MMSE) equalizer. Furthermore, to clarify the effect of packet length, we also provide the performance of the algorithm when $L_P = 512$.
- α is set to 0.8 and decision directed mode is activated after 30th iteration.
- We consider discrete time equivalent channel whose length is 16 and the taps of the channel are assumed to be identical and independent complex (circular) Gaussian.

Fig. 3 provides the performance of the SCFDE-CoTA for varying training length, packet length and SNR. We also plot the performance of adaptive RLS-FDE [18] which exploits the entire first packet as training. Hence, to be able to calculate the Symbol Error Rate (SER) performance of RLS-FDE, we assume coherence time of the channel allows to send two data packets where the first packet is filled with training symbols while the second packet is full of information symbols. Therefore, we can conclude that RLS-FDE algorithm uses 256 training symbol. On the other hand, for the proposed scheme, we assume the coherence time of the channel allows to send only one data packet for the purpose of clarifying the strength of the proposed algorithm for a highly mobile environment. We observe that even with $L_T = 20$, we can achieve better results than RLS-FDE. When we increase the
The significant reduction achieved in training length through the proposed framework has three major implications:

- Increase in efficiency of bandwidth utilization by decreasing the required number of training symbols, in other words, providing more space for information symbols.
- Increasing the effective data rates on a highly mobile environment with lesser training symbols.
- Single packet adaptation to support applications with low latency requirements.

References

[11] M. Morelli, L. Sanguinetti, and U. Mengali, “Channel estimation for training symbols and the magnitude boundedness of digital communication symbols,” The framework also exploits training symbols to overcome the dispersion caused by the multipath propagation environment. Because it combines the least square cost function to exploit reconstruction error of training symbols, and infinity norm cost function to use the prior information about the input constellation structure, the framework can be categorized in semi-blind algorithms.

The algorithm is proposed to decrease the required number of training symbols to open the eye and decrease the complexity by performing in frequency domain. Since the framework is based on convex optimization setting, and the connection with sparse optimization literature [16] is also available, further improvement in computational complexity can be done by merging the ideas in big data or machine learning.

The numerical examples provided in the article demonstrate the remarkable performance of the proposed framework in terms of reduction in the number of training samples required to achieve a given target SNR level for the noisy scenarios.

![Figure 4](image-url)