PROBLEM 1 (20 points): Prove or disprove: A continuous function \(f : (0, 1) \rightarrow \mathbb{R} \) is bounded.

ANSWER: False.
The function \(f : (0, 1) \rightarrow \mathbb{R}, \ f(x) = \frac{1}{x} \) which is continuous, but not bounded.

PROBLEM 2 (20 points): Prove or disprove: A **uniformly** continuous function \(f : (0, 1) \rightarrow \mathbb{R} \) is bounded.

ANSWER: True.
Take \(\epsilon = 1 \), then as \(f \) is uniformly continuous, \(\exists \delta > 0 \) such that \(\forall x, y \in (0, 1) \ |x - y| < \delta \) implies \(|f(x) - f(y)| < 1 \). Now take some distinct points in (0, 1) such that the distance between any two consecutive points is less than \(\delta \). For example, take \(n \in \mathbb{N} \) such that \(1/n < \delta \), and let \(a_i = i/n, 0 < i < n \). Then for an arbitrary \(x \in (0, 1) \), we have \(|x - a_k| < \delta \) for some \(k \). This implies that \(|f(x) - f(a_k)| < 1 \) by uniform continuity. Let \(M = \max\{|f(a_i)|, 0 < i < n\} \). Thus we get \(|f(x)| < 1 + M \) which certainly implies that \(f \) is bounded.

PROBLEM 3 (20 points): If \(f : [-1, 1] \rightarrow \mathbb{R} \) is continuous, \(f(-1) > -1 \) and \(f(1) < 1 \), show that there exists a point \(c \in (-1, 1) \) such that \(f(c) = c \).

ANSWER:
Let \(h : [-1, 1] \rightarrow \mathbb{R} \) be a function defined as \(h(x) = f(x) - x \) \(\Rightarrow \) \(h \) is continuous, \(h(-1) = f(-1) - (-1) > 0 \), \(h(1) = f(1) - 1 < 0 \). So by the Intermediate Value Theorem, \(\exists c \in (-1, 1) \) such that \(h(c) = f(c) - c = 0 \).

PROBLEM 4 (20 points): For a function \(f : D \rightarrow \mathbb{R} \) and \(x_0 \) in \(D \), define \(A = \{ x \in D | x \geq x_0 \} \) and \(B = \{ x \in D | x \leq x_0 \} \). Prove that if \(f : A \rightarrow \mathbb{R} \) and \(f : B \rightarrow \mathbb{R} \) are continuous at \(x_0 \), then \(f : D \rightarrow \mathbb{R} \) is continuous at \(x_0 \).

ANSWER:
Let \(\epsilon > 0 \) be given. Then \(\exists \delta_1 > 0 \) such that \(|x - x_0| < \delta_1 \Rightarrow |f(x) - f(x_0)| < \epsilon \), for all \(x \in A \) and \(\exists \delta_2 > 0 \) such that \(|x - x_0| < \delta_2 \Rightarrow |f(x) - f(x_0)| < \epsilon \), for all \(x \in B \). Setting \(\delta = \min\{\delta_1, \delta_2\} \) we get \(|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon \) for all \(x \in D \), i.e., \(f \) is continuous at \(x_0 \).

PROBLEM 5 (20 points): Prove or disprove: The set of irrationals is closed in \(\mathbb{R} \).

ANSWER: False.
We know that \(\mathbb{R} \setminus \mathbb{Q} \) is dense in \(\mathbb{R} \). This means that every number is limit of a sequence in \(\mathbb{R} \setminus \mathbb{Q} \). Therefore, for \(q \in \mathbb{Q}, \exists \{x_n\} \in \mathbb{R} \setminus \mathbb{Q} \) such that \(\lim_{n \to \infty} x_n = q \) and thus \(\mathbb{R} \setminus \mathbb{Q} \) is not closed.

PROBLEM 6 (20 points): Suppose that the function \(g : \mathbb{R} \rightarrow \mathbb{R} \) is continuous and that \(g(x) = \sqrt{e} \) for every rational number \(x \). What is \(g(\sqrt{2}) \)? Prove your answer.

ANSWER: \(g(\sqrt{2}) = \sqrt{e} \)
We know that there exists a rational sequence \(\{x_n\} \) converging to \(\sqrt{2} \), and \(g \) is continuous. So \(g(\sqrt{2}) = \lim_{n \to \infty} g(x_n) = \lim_{n \to \infty} \sqrt{e} = \sqrt{e} \).