PROBLEM 1 (15 points): A real number of the form \(\frac{m}{2^n} \), where \(m, n \in \mathbb{Z} \), is called a dyadic rational. Prove that the set of dyadic rationals is dense in \(\mathbb{R} \).

ANSWER:
We take \(a < b \in \mathbb{R} \). By Archimedean Property \(\exists n \in \mathbb{N} \) such that
\[
0 < \frac{1}{n} < b - a,
\]
which implies \(0 < \frac{1}{2^n} < \frac{1}{n} < b - a \).

Thus we have \(1 < 2^n \cdot b - 2^n \cdot a \). As the distance between \(2^n \cdot b \) and \(2^n \cdot a \) is greater than 1, there is an integer \(m \) such that \(2^n \cdot a < m < 2^n \cdot b \Rightarrow a < \frac{m}{2^n} < b \), \((2^n \neq 0) \). So the set of dyadic rationals is dense in \(\mathbb{R} \).

PROBLEM 2 (15 points): Show that a monotone sequence which has a bounded subsequence is bounded.

ANSWER:
Assume that \(\{x_n\} \) is an increasing sequence which has a bounded subsequence \(\{x_{n_k}\} \). Now, as \(\{x_{n_k}\} \) is bounded \(\exists M \in \mathbb{R} \) such that \(x_{n_k} \leq M \) for every element \(x_{n_k} \) of the sequence. But then for an element \(x_n \), \(\exists k \in \mathbb{N} \) such that \(n_k > n \) implying that \(x_n \leq x_{n_k} \leq M \), as \(\{x_n\} \) is increasing. Since \(n \) is arbitrary we have shown that \(x_n \leq M \), \(\forall n \in \mathbb{N} \). Therefore the sequence \(\{x_n\} \) is also bounded.

PROBLEM 3 (20 points): Consider the quadratic equation \(x^2 - x - 1 = 0 \), \(x > 0 \). Define the sequence \(\{x_n\} \) recursively by fixing \(x_1 \) and then defining \(x_{n+1} = \sqrt{1 + x_n} \) for \(n \in \mathbb{N} \). Prove that the sequence \(\{x_n\} \) converges monotonically to the solution of the above equation.

ANSWER:
Let \(x_1 > 0 \). We claim that if \(x_1^2 - x_1 - 1 < 0 \), then \(\{x_n\} \) is monotonically increasing sequence converging to \(\frac{1 + \sqrt{5}}{2} \): \(x_2 > x_1 \) since \(x_2^2 = (\sqrt{1 + x_1})^2 = 1 + x_1 > x_1^2 \) by assumption. By induction, \(x_{n+1} > x_n \).

Moreover \(x_n < \frac{1 + \sqrt{5}}{2} \) by induction again since \(x_{n+1} = \sqrt{1 + x_n} < \sqrt{1 + \frac{1 + \sqrt{5}}{2}} = \frac{1 + \sqrt{5}}{2} \). Hence \(\{x_n\} \) is bounded above and monotone increasing \(\Rightarrow \lim_{n \to \infty} x_n = L \). Note that \(\{x_{n+1}\} \to L \) as well and, hence \(L = \sqrt{1 + L} \Rightarrow L = \frac{1 + \sqrt{5}}{2} \).

If \(x_1^2 - x_1 - 1 > 0 \), then \(\{x_n\} \) is monotonically decreasing sequence converging to \(\frac{1 + \sqrt{5}}{2} \) and similar to above, \(\{x_n\} \) converges to its infimum : \(\frac{1 + \sqrt{5}}{2} \).