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Abstract

With the advances in technology and changes in customers’ attitude towards di↵erent service

delivery formats, it is important for the service providers to deliver online services in addition to

the traditional face-to-face services. In the cooperative service network presented in this study,

service providers cooperate to serve online service requests received by the network in addition to

their own customers. Designing and managing the cooperative network e↵ectively increase the

utilization of the involved servers, provide an adequate service for the external customers, and

increase the profit for both the network and service providers. From the operational perspective,

the number and utilization of the members to be included in the network and the price that

will be paid to each member for a directed request are the main design questions. In order to

answer these questions, we present a stochastic model that captures the dynamics of customer

arrivals, assignment, and admission control. To establish this model, we first derive the solution

of the dynamic admission control problem for the servers who decide how to admit their own

customers and the external online customers using a Markov decision process. We then analyze

the operation of the whole network with the servers who use the optimal admission control

policy and obtain the system performance measures depending on the members’ operational

parameters. These results are used to determine the optimal number of servers in the network

and the service price to be paid to the participating servers in order to maximize the obtained

profit. We show that a cooperative service network is an e↵ective way of utilizing the idle

capacity of the servers while providing an adequate service level for the external online customers

and increasing the profit for both the network and service providers.
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1. Introduction

Technology has improved the ways of delivering services to the customers (Snyder et al.,

2016). As one of the significant advances, online services lead to a more convenient access for the

customers and a utilization improvement for the providers (Zhang and Prybutok, 2005; Ostrom

et al., 2015). Online services enable the service providers to serve not only the customers who

come to the service centers but also the external customers over a distance. Although some

customers still prefer to have a direct in person interaction with the service providers, online

services help to target the customers who want to be served without any cost of traveling

(Fernández-Sabiote and Román, 2012). Hence, there is a significant potential to o↵er online

services in addition to traditional face-to-face services by the service providers (Berry et al.,

2002; Ostrom et al., 2015).

Based on this motivation, we focus on a cooperative service network which is formed by

a group of independent cooperating service providers. Each server serves the stream of his

own customers independently of the network structure at the service facility. The cooperative

network enables the servers to access online external customers who request for the remote

service by using the network online platform. A telemedicine platform is a good example of

cooperative service networks. It is a group of cooperating healthcare providers who deliver

healthcare services over a distance through an easy to use on-line network using the means of

information technology (Roine et al., 2001; Norris, 2002; Craig and Petterson, 2005; Whitten

et al., 2010). It is crucial to design these platforms in a way to provide profitable and e�cient

service for the customers (Körpeoğlu et al., 2014). Based on the operational parameters of the

service providers, designers should decide on the characteristics of the servers to be included

in the cooperative network as well as the optimal number of participants. These decisions are

dependent on the servers’ admission policy to serve their own customers and external customers.

Moreover, the network needs to decide about the service price to pay the members for serving

external customers. This price should be high enough to convince the servers to participate in

the network while it should result in a profitable network operation with respect to the market

price set externally for online services. In order to answer these questions about designing

and managing a cooperative service network, we develop a stochastic model that captures the

operation of the network with the dynamics of customer arrivals, assignment, and admission

control. We use this model to determine the optimal number of servers and the service price

to be o↵ered to the service providers in order to maximize the expected profit while achieving

an adequate service level for the external customers. We then make general observations about

the e↵ects of the servers’ utilization rate, the external customers’ arrival rate, and the service

price on the optimal decisions. We show that in an optimally designed cooperative network,

the members benefit from pooling their excess capacity to serve external customers and hence
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increasing their utilization and obtained profit.

There are a large number of studies focused on the cooperation-based business models for

service networks by pooling the individual streams of customers. Our paper di↵ers from the

other ones in the literature since we consider a type of cooperative operation that allows the

members to receive and serve their own customers independent of the cooperation structure.

This assumption is consistent with the industrial practice for the service providers who wish to

add another channel to o↵er a service in addition to their previous mode of serving customers.

The service providers in the proposed network decide about their availability for the external

customers. In response to the servers’ admission policy, the network defines the optimal number

of members and the service price for the external customers. Di↵erent from the other works

that focus on the profit of the whole service network, we discuss profit of each member at the

first step. Accordingly, we establish a relatively simple su�cient condition for the service price

to identify whether participation in the network is economically feasible for the servers. We

then turn into the whole network’s profit to define the optimal design.

The main contribution of this work is two-fold. First, we provide a detailed operational

model of a cooperative network among a number of independent servers with embedded optimal

dynamic admission decisions. This operational model is then used for determining the optimal

design of the network. To the best of our knowledge, this is the first study that addresses the

optimal design of a cooperative network based on the analytical analysis of the structure with

the optimal operational decisions . Second, we extend the literature on the analysis of queueing

systems with non-preemptive service order and heterogeneous customer streams. We prove that

the optimal dynamic admission policy is a non-preemptive threshold-type policy in these kind

of systems.

The organization of the remaining parts of this paper is as follows: In Section 2, we review

the related literature. We present the model, its assumptions and also explain the two main

stages of our analysis in Section 3. In Section 4, we give the dynamic programming formulation

for each server’s operation and derive the optimal admission policy for the customers. Then,

we perform the stationary analysis of this operation using a queueing model and obtain the

stationary optimal admission policy for the service providers. Based on our results from Section

4, we analyze the operation of the network in Section 5 and determine the optimal number of

servers to achieve the desired performance of the network. Our numerical results and discussion

regarding the e�cient design of the network are given in Section 6. Finally, Section 7 is devoted

to concluding remarks.
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2. Literature review

Using a cooperative network structure to o↵er services is gaining acceptance as a promising

approach to utilize the resources more e↵ectively and achieve cost e�ciency. Hence, dynamic

resource allocation and admission control policies in network structures are studied in di↵erent

settings such as communication, video services, radio access and manufacturing systems (Niu

et al., 2016; Bagci and Tekalp, 2018; Buyakar et al., 2020; Mourtzis et al., 2020; Feng et al.,

2020).

From an operational point of view, our study is related to two streams of the literature

in queueing systems: cooperative networks, and dynamic resource allocation and admission

decisions in service systems.

2.1. Cooperative networks

The papers related to the cooperation in the service operations are mainly focused on the

queueing systems with server pooling. One of the earliest works in this area is presented by

Stidham (1970), who considered a design problem to define the optimal number of parallel

servers and the service rate of each server to minimize the service and waiting cost in the

system. Later on Benjaafar (1995), Buzacott (1996) and Mandelbaum and Reiman (1998)

studied pooled systems and discussed the e↵ectiveness of several pooling scenarios. There is

also another stream of researches that focus on pooling, capacity sharing and cost allocation

decisions among a number of companies (González and Herrero, 2004; Garćıa-Sanz et al., 2008;

Anily and Haviv, 2010) by applying cooperative game theory. Yu et al. (2015) extended these

studies by considering the level of information exchange about the servers’ parameters. Similar

studies are given by Karsten et al. (2015), Anily and Haviv (2017), Zeng et al. (2018), Bendel

and Haviv (2018) and Liu et al. (2021).

In the studies reviewed above, the servers agree to operate as a common server for all arriving

customers. However, in our setting, the cooperative network provides another channel for the

servers to receive additional customers. Hence, the members need to manage their service policy

not only for the network customers but also for their own customers independently from the

others. Di↵erent from these studies, we focus on the operational decisions for each independent

server first and then use the obtained results to discuss about the network’s optimal design.

Our results enable us to address the optimal design of the cooperative network based on the

number of service providers, their utilization level, the customers’ arrival rates and the service

price.

Table 1 shows the summary of the reviewed literature related to cooperative networks and

the contribution of this study.
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Table 1: Summary table for the reviewed studies related to cooperative networks
Study

Server
pooling

capacity sharing
(Independent
firms)

cooperate to
serve all cus-
tomers

cooperate to
serve additional
customers

Objective function
Maximize
total profit

Minimize
total cost

Performance
evaluation

Optimal cost allocation
(cost sharing game)

Stidham (1970)

Benjaafar (1995)

Buzacott (1996)

Mandelbaum and
Reiman (1998)
González and Herrero
(2004)
Garćıa-Sanz et al.
(2008)

Anily and Haviv (2010)

Yu et al. (2015)

Karsten et al. (2015)

Anily and Haviv (2017)

Zeng et al. (2018)

Liu et al. (2021)

This paper

2.2. Dynamic resource allocation and admission decisions in service systems

One of the important operational issues in service operations management is the resource

allocation between heterogeneous customer streams and the admission decisions that should

be made upon each arrival and service completions. In our model, determining the individual

server’s admission policy is crucial for designing the cooperative network. In one of the earli-

est studies, Harrison (1975) showed that the rµ rule is optimal for scheduling a single server

queue with two classes of jobs characterized by di↵erent service rates µi, and rewards, ri. Later

on Örmeci et al. (2001) consider the dynamic admission control problem in a Markovian loss

queueing system with two classes of customers and show the optimality of a threshold type

admission policy in this structure. This model is also analyzed under di↵erent kinds of as-

sumptions regarding the arrival process. For example, Örmeci and Burnetas (2004) show the

optimality of sequential threshold policy in the system receiving random batches and Örmeci

and van der Wal (2006) establish the existence of the optimal acceptance thresholds for all job

classes in the system with general inter-arrival times.

All these studies formulate the dynamic programming for the admission problem based on

the assumption of having a preemptive service discipline. There are also a number of studies that

use preemption as a control tool (Brouns and Van Der Wal, 2006; Ulukus et al., 2011; Turhan

et al., 2012). However, the main di↵erence of our work with the other studies in the literature

is that the operation of each server is defined as a non-preemptive process. Moreover, we have

di↵erent settings for di↵erent class of customers to join the system: the servers’ own customers

join a queue and wait for their admission time whereas the external customers are assigned

to one of the available servers without waiting in the queue. There are a few studies dealing

with non-preemptive models. Iravani et al. (2007) consider the optimal single-server scheduling

in a non-preemptive finite-population queueing system with heterogeneous customers. They

show that the optimal service policy is a simple static priority policy for those classes that are

served. Bispo (2013) study a single server scheduling problem with the non-preemptive service
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discipline, di↵erent classes of customers, and convex costs depending on the arrival rates. He

establishes a policy to reach near optimal performances and presents the policy as a function

of individual loads in the system. Zhao and Wang (2009) investigate the performance of a

non-preemptive M/M/1 queueing system with two priority classes, and derive the probability

that the server is busy or idle in the system.

In this study, we contribute to the admission control literature by extending the theoretical

results of the dynamic admission control problem with non-preemptive service and two groups

of customers joining in two di↵erent ways. We change the standard formulation of the result-

ing Markov decision process to accommodate our model where the server’s state needs to be

captured in the overall state description. We establish results on the structure of the optimal

admission policy for this problem and give an approximate analysis of the cooperative network

accordingly.

Table 2 shows the summary of the reviewed literature related to dynamic resource allocation

and admission control in service systems and the contribution of this study.

Table 2: Summary table for the reviewed studies related to dynamic resource allocation and admission control
in service systems

Study
Single
server

Server
pooling

cooperate to serve
all customers

Model assumptions Objective function

preemptive non-preemptive admission control termination control

Örmeci et al. (2001)

Örmeci and Burnetas
(2004)
Örmeci and van der
Wal (2006)
Brouns and Van
Der Wal (2006)

Ulukus et al. (2011)

Iravani et al. (2007)

Bispo (2013)

This paper

3. Model description

In this study, we consider a cooperative service network which connects on-line customers

to a network of servers who serve their own customers and also the customers sent through

the online network. Figure 1 depicts the network along with the servers participating in the

network and receiving both groups of customers.

Network. The network operates with N homogeneous servers. The online customers of

the network, referred as the external customers place their requests on the network according

to a Poisson process with the rate of �t and pay pt for receiving an on-line consultation to

the network. The price pt is determined externally based on the market conditions. That is,

the network cannot dictate pt to its customers due to the competitive environment it operates

in. The network pays pp to the server who serves the arrived external customer. Hence, the

network earns pt�pp from each customer who receives an on-line service. We assume that pt is
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Figure 1: The cooperative service network

a given benchmark price for the online service in the market and the pp is set by the network.

The price that will be paid to the servers must be less than pt, pt > pp to form an economically

feasible cooperative network.

We assume that the network incurs a cost of c for each server working in the cooperative

network to cover operational and technological costs. When a request from an external customer

is received, the customer is dispatched to one of the available servers who is available to accept

the external customer at the time of arrival and the service starts immediately. Due to the non-

preemptive feature of the service process, the servers can be available for the network only when

they are idle. If more than one server is available at the time of arrival of an external customer,

the customer is dispatched to one of the available servers randomly with equal probability. If

none of the servers are available to admit an external customer when the request is received,

then the request is unsatisfied for this time and the customer goes in to the pool of unsatisfied

customers referred as the orbit (Keilson et al., 1968). An orbiting external customer repeats her

request repeatedly until she is accepted by the network and assigned to an available server. The

network incurs a cost of cr for each unsuccessful attempt of an external customer. The total

amount of this cost is defined by ct and referred as rejection cost in this study. The inter-retrial

times of the orbiting external customers are assumed to be exponentially distributed with the

rate of ✓ and the average number of orbiting external customers in the system is defined by Lr.

The long run proportion of the external customers whose requests are accepted by the

network at each single attempt is defined by �t. Therefore, unsatisfied external customers

enter to the orbit with the rate of (1 � �t)�t. We define �t as the service level o↵ered by the

network to its customers. Although, the network does not lose any customer, �t is interpreted

as the network service level to show the performance of the network setting. O↵ering a high

service level to the external customers decreases the number of unsatisfied customers and hence

provides a desired service experience for this group of customers.

The e↵ective arrival rate of the external customers to each server in the network is defined

by �e. The servers’ admission policy and the number of servers in the network are the main

factors to determine the e↵ective arrival rate of the external customer �e.
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Service providers. The servers in the network serve their own customers in addition

to the external customers and they do not have information about the other servers in the

network, the total number of servers and the network operating strategy.

The server’s own customers are served in person and referred as the own customers in this

study. Each server receives own customers independently of the network and according to a

Poisson process with the arrival rate of �o. When a server’s own customer arrives, the customer

joins a queue and wait to be served by the server. The servers’ own customers pay po for the

service and each server incurs a holding cost of h for each of her own customers waiting in the

queue per unit time.

Each idle server uses an admission policy to decide whether to start serving a waiting own

customer from the queue or stay available to receive an arriving external customer. The optimal

admission policy for a server to admit her waiting own customer or an external customer or

stay idle for the future customer arrivals depending on the state of the system is denoted with

u. We give the full description about u in Section 4.

The servers’ own customers are served by the order of their arrival to the queue and the

average number of the customers waiting in the queue is denoted by LQ. The average waiting

time of the servers’ own customers in the queue is also defined by WQ in this study.

The service times for the servers’ own customers and also for the external customers are

independently and exponentially distributed with the mean of 1/µ. The utilization of the

servers due to their own customers is defined by ⇢ = �o/µ. Their utilization due to both groups

of customers is defined by ⇠. Once a server starts to serve a customer, the service will not be

preempted, and upon completion of a service, the customer being served leaves the system.

The service level provided to the external customers by a server in the cooperative network

is the long run proportion of the time that a server is available to admit the external customers

and denoted by �p. Therefore, the service level o↵ered by the network to the external customers

(�t) is dependent on the value of �p.

3.1. The network’s and the servers’ decision problems

The two main decision problems in this study are deciding on the number of servers N and

determining the price to be paid to the servers pp, depending on the system parameters. In

order to examine this problem, we need to analyze the operation of the network model. Hence,

the first step is to derive the servers’ optimal admission policy to serve their own customers

and the external customers.

The network’s optimization problem. The cooperative network makes a profit of pt�pp

from each arriving customer who is served by an available server in the network. The orbiting

proportion of the external customers retry their requests until they are accepted and hence the

network does not lose any external customer and make profit from serving all of them. On
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the other hand, the network incurs a total rejection cost due to unsatisfied customers requests.

Rejection happens with the probability of 1� �t at each trial of an external customer and the

value of �t is dependent on two decision factors. The first one is the servers’ optimal admission

policy (u), which determines the availability of the servers for the network, and the second one

is the number of servers in the cooperative network (N). Therefore, the total rejection cost is

also a function of u and N , and defined by ct(u,N). Moreover, the network incurs a total cost

of cN for operating N servers in the setting. Thus, the network’s decision problem is deciding

on N and pp to maximize its average profit ⇧t:

⇧t = �t(pt � pp)� ct(u,N)� cN, (1)

and

⇧⇤
t = max

N,pp

⇧t (2)

The optimal decision factors, N and pp are determined by solving the optimization problem

given in Equation (2). While the optimal value of pp should be less than the market benchmark

price pt to form a profitable network, it should be also high enough to convince the members

to participate in the network. If the price that needs to be paid to the servers to convince them

to join the network (pp) is determined to be greater than the market price pt (pp > pt), then

the network cannot operate in a feasible way.

Since the participating servers in the network are homogeneous and they do not have any

information about the network, there is no competition between the servers to serve the external

customers and they use the same optimal admission policy. The network has full information

regarding the participants and solve its decision problem by assuming that the servers in the

network use the optimal admission policy to serve both groups of customers.

The server’s decision problem. Each participating server in the network receives a pay-

ment from her own customers and also from the external customers who are admitted and

served. The servers also incur a waiting cost due to keeping their own customers waiting in the

queue. Therefore, they should manage their own customers’ admission and their availability to

receive and serve the external customers in a way to maximize the average profit rate, ⇧D:

⇧D = �opo + �e(u,N)�ppp � hLQ(u). (3)

In this equation, the first term is the revenue from an arrival of the server’s own customers.

The second term is the revenue from an admitted external customer. The external customers’

revenue is generated only when the server is available, and hence the value of �p is dependent

on the admission policy, u. The state-dependent arrival rate of the external customers to each
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server (�e) is a function of both u and N since it depends on the availabilities of the other

servers in the network. A server will receive an arriving external customer surely if she is the

only available server at the time of arrival. However, if there are many servers available at the

requested time, her chance of receiving the external customer will be lower. Since the servers

do not have any information regarding the network and other servers, they will consider �e

as an average arriving rate of the external customers that they can receive at their available

time, and solve their optimal admission problem accordingly. In Section 4.1, we will capture

the dependency of �e on u and N from the network’s perspective who has full information

regarding the system. Finally, the last term of Equation (3) depicts the waiting cost of the

server’s own customers in the queue. LQ is also dependent on the server’s decision about the

way of serving their own customers.

Therefore, the servers should decide about the optimal admission policy u to maximize the

average profit ⇧D,

⇧⇤
D = max

u
⇧D. (4)

The servers’ optimal admission policy of serving their own and the external customers must

be determined in order to address the network’s decision problem. As a result, the decisions of

the network designers and the servers must be solved jointly.

In order to simplify the notation in the remaining part, we use �p, ct and LQ instead of

�p(u), ct(u,N) and LQ(u) respectively.

4. The servers’ optimal admission policy

We first consider the servers’ optimal admission policy to serve two streams of customers

arriving with exponentially distributed inter-arrival times. Each server’s arriving own customers

join to a queue and wait for the server’s admission to get an in-person service. However, an

arriving external customer is assigned to the server only if the server is in the available state for

the network. The service times for both groups of customers are also exponentially distributed.

Since this system evolves as a continuous-time Markov chain, each server in the network

should decide on the admission policy depending on the current state and not on the prior

history. Hence, we employ a Markov decision process (MDP) framework to find the optimal

admission control policy. The objective is to obtain a dynamic scheduling policy for each server

to maximize the discounted profit with discount parameter � in an infinite time horizon as well

as the long-run average profit.

We define the state of the system as S(t) = (x(t), j(t)), where x(t) is the number of the

server’s customers, including the server’s own customers and the external customers present in

the system at time t, and j(t) 2 {0, 1} is the server’s state at time t. If j(t) = 0, the server is
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idle, and j(t) = 1 means that the server is busy by serving a customer. This state description

captures the server state, which is needed for modeling of a non-preemptive system. The only

decision points for the server are the arrival times of the server’s own customers when the

server is idle (j(t) = 0), and the departure times of the served customers when the server is

busy (j(t) = 1).

We use the standard tools of uniformization to convert the continuous time Markov process

into a discrete-time equivalent. The uniformization rate is defined by � = µ + �o + �e + �.

Without loss of generality, we normalized � and set � = 1.

Let v(x, j) be the maximum expected �-discounted reward of the system over the infi-

nite time horizon and vn(x, j) be the maximum expected �-discounted reward of the sys-

tem over a finite time horizon starting in state (x, j) when n observation points remain in

the horizon. There exists an optimal stationary policy for the infinite horizon problem and

v(x, j) = limn!1 vn(x, j) whenever � > 0 (Puterman (2014), chapter 6). Therefore, the struc-

tural properties of the system over a finite time horizon holds for the infinite time horizon as

well.

The value iteration expressions for the dynamic scheduling of a server in the cooperative

network over a finite number of transitions, n, can be written as follows:

vn+1(x, 0) =�o max
n
vn(x+ 1, 0) + po, vn(x+ 1, 1) + po

o
(5a)

+ �e

h
vn(x+ 1, 1) + pp

i
+ µvn(x, 0)� hx 8x,

vn+1(x, 1) =�o

h
vn(x+ 1, 1) + po

i
+ �evn(x, 1) (5b)

+ µmax
n
vn(x� 1, 0), vn(x� 1, 1)

o
� h(x� 1) 8x � 1.

The maximization term in Equation (5a) corresponds to an available server’s decision when the

server’s own customer arrives at the queue. At this point, the server should decide whether

to start serving the first customer in the queue or stay idle to receive and serve an external

customer who may arrive later. According to the second term in the right-hand side of Equation

(5a), the available server serves the arriving external customer immediately upon the arrival

time. The third term shows that the service completion rate does not have any e↵ect on the

state of system since the server is idle. Finally, the last term in Equation (5a) shows the holding

cost for the server’s own customers waiting in the queue to receive a service.

According to Equation (5b), the server is not available to serve any customer, when she is

busy. Thus, the only decision time is the completion of the customer’s service, when the server

should decide whether to serve her own customer from the queue or stay idle and wait for an

external customer’s arrival at a later time.

It can be argued that it should be less profitable for the servers to stay idle and accept
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the external customers when they have a number of their own customers already in the queue

waiting for the service and incurring a waiting cost. The optimality of the threshold policy for

the admission control problem has been proven for di↵erent systems where the system state is

based on the number of jobs in the system but not on the state of the server (Altman et al.,

1998; Koole, 1998; Örmeci et al., 2001). We modify the related results for our model and show

the optimality of a threshold policy for the proposed system in Theorem 4.1.

Theorem 4.1. The optimal admission policy for the servers participating in the cooperative

network is a threshold-type policy: there exists a threshold level R, such that it is optimal to

stay idle, and serve the arriving external customers if the total number of customers already in

the system is under the threshold level R. Otherwise, it is optimal for the server to serve her

own customers, and reject the network requests.

The proof is given in the Appendix

4.1. Analysis of the system in the steady state

All the results proven for a finite number of transition n in previous section are also true as

n goes to infinity. Therefore, the corresponding conclusions are valid when the total expected

discounted reward over an infinite horizon is maximized. Moreover, since the state space and

the action space in each state are finite, the results also hold for � = 0; so, we have the same

conclusions for the long-run average reward. In this section, we evaluate the average profit rate

of the servers under the threshold policy.

The explicit expressions for the average profit can be obtained by analyzing the related

queueing model. To obtain the queueing model for each server in the network, we define the

state of the system as (x1, x2), where x1 indicates the number of server’s own customers in the

system and x2 2 {0, 1} shows whether there is an external customer in service (x2 = 1) or not

(x2 = 0).

Figure 2 shows the state space diagram of the resulting queueing model for the server’s

operation. As depicted in Figure 2, each server in the network serves only the received network

requests if the number of the waiting customers is less than the threshold level, i.e. x1  R�1.

Consequently, the server starts to serve her own waiting customers from the queue whenever

the number of customers reaches the threshold level.

Figure 2: The state space diagram of queueing model for server’s operation
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In this case, an incoming external customer is served whenever the number of waiting

customers in the queue is less than the threshold level R and there is not any external customer

already in the system. Analyzing the queueing model depicted in Figure 2 analytically, the

service level o↵ered by each server to the external customers is determined from the steady

state probabilities as

�p = Pr(x1  R� 1, x2 = 0) =
1� ⇢

1 + �e/µ
=

µ� �o

µ+ �e
. (6)

Equation (6) indicates that the steady state probability of accepting the external customers

does not depend on the value of the threshold level R. The reason for this result is that

all the states under the threshold value are transient states and the value of �p is equal to

Pr(x1 = R� 1, x2 = 0) and independent of all the states that the number of waiting customers

is smaller than R� 1 (x1 < R� 1).

Consequently, the first two terms in the average profit rate given in Equation (3) are inde-

pendent of the threshold level R while the last term, the average waiting cost of the customers

waiting in the queue increases with R. As a result, setting R as low as possible will maximize

the average profit rate for the servers. This observation yields the following proposition on the

non-preemptive priority policy with the proof given in the Appendix.

Proposition 4.2. The optimal threshold level is equal to one, R = 1 and the servers are

available to receive the network requests whenever there is not any customer in the queue. The

stationary optimal admission policy for the servers in the network, u is a non-preemptive-

priority policy: the servers serve their own customers in a non-idling manner whenever there

is at least one customer in the queue.

Since it is equally likely for all the available servers to receive the arriving customer, we can also

find the e↵ective state dependent arrival rate of �e which is dependent on the servers admission

policy and the number of participants in the network:

�e =
�t

N�p
. (7)

When the servers decide to work with the cooperative network and use the optimal admission

policy to serve their customers, the average waiting time of their own customers in the queue

is determined from the steady-state probabilities of the system in Figure 2 with R = 1:

WQ =
�o + �e

(µ+ �e)(µ� �o)
. (8)

Based on Equation (8), When �e goes to infinity, the average waiting time of the own
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customers becomes equal to 1/(µ� �o). Hence, accepting the external customers will increase

the server’s own customers’ average waiting time by 1/µ at most.

We can also derive the servers’ utilization due to the both network and their own customers

as follows:

⇠ =
�o + �p�e

µ
=

�o + �e

µ+ �e
. (9)

Therefore, the percentage of the server’s utilization increase due to the external customers will

be equal to �e(1�⇢)
⇢(µ+�e)

. When �e goes to infinity, the percentage of the utilization increase becomes

equal to 1�⇢
⇢ , which means that the server’s utilization approaches 1 in this case.

5. Approximate analysis of the cooperative network under the optimal admission

policy

Based on the result of the optimal admission policy for the servers in the network, we will

analyze the performance of the network approximately in this section and discuss the optimal

number of participants as well as the pricing strategy for this setting.

The network will reject an arriving request only if there is no available server in the system.

In order to derive a closed-form expression for the network service level, we assume that the

servers operate independently as an approximation. Therefore, the approximate value of the

network service level, �t, is given by:

�t ⇠= 1� (1� �p)
N . (10)

Accordingly, we derive the total rejection cost, ct as:

ct =
1X

k=1

(1� �t)
k�tcr =

1� �t
�t

�tcr, (11)

where k is the number of unsuccessful trials for the external customers before admission.

The average number of orbiting customers who are repeating their requests to enter the

system is given by

Lr =
�t(1� �t)

�t✓
. (12)

As a result, the network’s decision problem in Equation(2) is written as follows:

⇧⇤
t = max

N,pp

�t(pt � pp)�
1� �t
�t

�tcr � cN. (13)

Our numerical experiments given in Section 6.1 show that this approximation is accurate

to determine the optimal number of servers.

14



Next, we discuss the optimal pricing strategy along with the optimal number of servers to

achieve the optimal profit and enhance a desired performance of the cooperative network.

5.1. Pricing

From the network designers’ perspective, the network should pay the minimum level that

will give the servers the incentive to accept the network customers. Paying a higher price does

not have any e↵ect on the service level o↵ered by the servers for the external customers while

it decreases the network’s profit. The servers will participate in the cooperative network only if

the network brings them financial benefits compared to the case that they serve only their own

customers independently. This means that they should compare the financial benefit of getting

external customers with the increase in the waiting cost due to higher utilization associated

with the external customers.

Proposition 5.1. Participating in the cooperative network is economically feasible for the

servers if and only if:

pp > h
⇢

µ(1� ⇢)
. (14)

The proof is given in the Appendix.

Proposition 5.1 states that each external customer must bring a revenue higher than h ⇢
µ(1�⇢)

for each member to work in the cooperative network and accept network’s on-line customers.

Note that this lower bound is independent of the network and it is fully defined by the server’s

operational parameters. The servers expect a higher value of pp when their utilization level ⇢

is higher. Moreover, the network should o↵er a higher price of pp if the customers’ service time

is higher.

The inequality in (14) defines the condition to form an economically feasible network. Con-

sidering the value of pt, for a group of servers if h ⇢
µ(1�⇢) > pt, it is infeasible to form a cooperative

service network with this group of servers.

5.2. Deciding on the number of participating servers

In this section, we discuss the network design problem in Equation (13) to define the op-

timal number of servers in the cooperative network leading to the network and its members

profitability.

According to Equations (6) and (7), increasing the number of participants in the network

will result in a lower e↵ective arrival rate of the external customers for each server and then

the servers become more available to receive the external customers. Figure 3 shows the e↵ect

of the number of servers in the cooperative network on �p and �e.

As a result of increasing N , the cooperative network will be able to provide a higher service

level for its customers, �t, and decrease the rejection probability of the customers on each
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Figure 3: The o↵ered service level for the external customers by each server in the network (�p) and the e↵ective
arrival rate of the external customers (�e). (⇢ = 0.5,�t = 10, µ = 10)

trial. All these changes lead to a lower rejection cost for the network based on Equation (11).

However, there is a trade-o↵ between the rejection cost, ct, and the cost of operating servers

in the cooperative network defined by cN in the profit function. Achieving a balance between

these two aspects of the profit function in Equation (13) leads to a unique optimal solution,

N⇤, in a way to give the maximum possible profit for the network.

Furthermore, the cost of cr determines the network’s sensitivity regarding the unsatisfied

customers since the higher level of cr causes a higher optimal solution, N⇤, and hence a higher

service level for the external customers. It means that by setting an adequate value of cr, the

network assures a desired service level for the external customers.

Proposition 5.2. The network’s maximization problem has a unique optimal solution for the

number of participating servers in the network. In other words, there is a unique optimal number

of participating servers in the cooperative network which assures the maximum total profit for

the network and a desired service level for the external customers.

The proof of this proposition includes showing the dependency depicted in Figure 3 formally

and it is given in the Appendix.

6. Numerical experiments

The important parameters in determination of the optimal number of participants in the

cooperative network are the utilization of the servers (⇢) and their service rate (µ), the network’s

technological cost (c), the external customers’ rejection cost (cr) and their arrival rate to the

network (�t). The network designers should consider all these parameters to achieve an e�cient

cooperative network with the maximum profit and the desired performance.

In this section, we are going to show the accuracy of our proposed model compared to

the simulation and then discuss the e↵ects of changing parameters on the optimal number of

servers, the lower bound of the price pp and the feasibility of the network depending on the

market price pt.
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6.1. Accuracy of the approximate model

Assuming that the servers operate independently from each other and receive the external

customers with a Poisson arrival rate, may lead to errors in calculating �p, �t and hence the

total rejection cost ct. In order to evaluate the accuracy of the approximate model, we compared

our obtained numerical results with the simulation of the system. The simulation length is set

to get results with the same number of significant digits as the approximate model.

We run the simulation for di↵erent cases with di↵erent utilization levels ⇢ 2 {0.4, 0.5, 0.6, 0.7, 0.8},

and also di↵erent levels of network cost cr/c 2 {0.1, 0.2, 0.3, 0.4, 0.5}. The optimal number of

participants are determined by using the approximate model, N⇤, and also by using simula-

tion, N⇤
s . Our obtained results with the approximate model show a high accuracy compared to

the simulation results. Figure 4 shows that in 68% of the total 25 instances we considered, the

model gives the same optimal number of participants as the simulation. In 28% of the instances

the di↵erence between the result of simulation and the approximate model is 1, and only in one

of the instances where ⇢ = 0.8 and cr/c = 0.5 the di↵erence between the results is 2.

Figure 4: The di↵erence between the optimal number of participants obtained by the approximate
model (N⇤) and simulation (N⇤

s ) in solving 25 di↵erent instances. (⇢ 2 {0.4, 0.5, 0.6, 0.7, 0.8}, cr/c 2
{0.1, 0.2, 0.3, 0.4, 0.5},�t = 20, pt = 80, pp = 20)

6.2. E↵ect of the servers’ utilization level on the optimal number of servers and the lower bound

of pp in the cooperative network

The servers in a selected segment or in a selected geographic area can have similar utilization.

The network chooses these servers depending on their utilization level and define the optimal

number of participants accordingly. Figure 5 shows the optimal number of servers for di↵erent

utilization levels. This figure is given for di↵erent values of cr to highlight the e↵ect of rejection

cost on the optimal number of participants and hence the network’s o↵ered service level, �t.

According to Figure 5, for the higher values of the rejection cost, the network may need

to increase the number of participants to reduce the rejection probability and then reach the

maximum possible profit. In other words, because the total rejection cost is larger for higher

cr, the network tries to decrease the rejection probability, thereby increases the o↵ered service
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Figure 5: The optimal number of participating servers in the cooperative network (N⇤) for di↵erent values of
servers’ utilization (⇢) and the external customers rejection cost (cr). (µ = 10,�t = 10, pt = 80, pp = 20, c = 10)

level. In summary, setting an adequate value of cr ensures the desired service level for the

external customers. For instance, when ⇢ = 0.7, the network o↵ered service level is equal to

�t = 0.4, �t = 0.57 and �t = 0.69 respectively for cr = 1, cr = 2 and cr = 4. On the other hand,

the optimal number of participants is the same when ⇢ is less than 0.6 for cr = 2 and cr = 4.

The reason for this equality is that the technological cost of adding one more server (associated

with c) is more than the increase of total rejection cost in these networks. Therefore, choosing

the servers with higher utilization values leads to a higher optimal number of participants. This

could be even more if the network wants to achieve a higher service level.

Figure 6 shows the lower bound of the price pp for di↵erent values of servers’ utilization

level. According to this figure, the network needs to pay a higher price to the servers with

higher utilization level in order to convince them to cooperate within the network. Considering

an arbitrarily set value of pt = 30, all the servers with a higher utilization than 0.9 are infeasible

to participate in the cooperative network since their required lower bound of pp is greater than

the pt price. That is why, we defined the infeasible region by a dashed line where pp > pt.

Figure 6: The lower bound of the price o↵ered by the network to the servers for serving external customers (pp)
for di↵erent values of servers’ utilization level(⇢). (µ = 5, h = 15, pt = 30)
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6.3. E↵ect of the servers’ service rate on the optimal number of servers and the lower bound of

pp in the cooperative network

The servers’ service rate is another parameter in defining the optimal number of participants

in the network and the lower bound for the price pp. Figure 7 shows that the optimal number

of servers in the network is decreasing in response to the higher values of servers’ service rate

and the rate of decreasing is higher for the smaller value of rejection cost. The reason for this

e↵ect, is that the rejection cost grows with a lower rate whenever the value of cr is smaller.

Figure 7: The optimal number of participating servers in the cooperative network (N⇤) for di↵erent values of
servers’ service rate (µ) and the external customers rejection cost (cr). (⇢ = 0.5,�t = 10, pt = 80, pp = 20, c =
10)

Similar to our discussion in 6.2, for higher cr the network tries to reduce the rejection

probability and then the rejection cost by keeping N at a higher level. Again, this happens

only if the rejection cost is higher than the technological cost of having more servers. For

example, when 10  µ  18 the optimal number of participants is the same and equal to 3 for

cr = 1. However, for 18 < µ  20, the optimal number of participants decreases to 2 since

the technological cost of having one more server is greater than the rejection cost associated by

having one less server in the network. Note that, for 18 < µ  20, when cr = 2 and cr = 4, the

optimal number of participants remains the same as before due to higher rejection cost.

Figure 8 presents the lower bound of price pp for di↵erent values of the server’s service rate.

As it is mentioned in Section 5.1, The network should o↵er a higher pp to the servers when they

have a lower service rate and need more time to serve the customers. Similar to Figure 6, we

defined the infeasible part by a dashed line where the required value of pp is greater than pt.

It means that the network operation is infeasible with the members whose service rate is less

than 1.17.

6.4. E↵ects of the technological and rejection costs on the optimal number of servers in the

network

The technological and rejection costs in the cooperative network have important roles in

defining the optimal number of servers to create a profitable network with a desired performance
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Figure 8: The lower bound of the price o↵ered by the network to the servers for serving external customers (pp)
for di↵erent values of servers’ service rate(µ). (⇢ = 0.7, h = 15, pt = 30)

level.

Figure 9 presents the e↵ect of increasing the operational cost on the optimal number of

participants for di↵erent values of rejection costs. According to this figure, in response to the

higher values of the technological cost, the network will decrease the number of servers down

to the points which gives the maximum possible profit as the result of the existing trade of

between the technological cost and the rejection cost. In terms of having a comparison between

the network performances in Figure 9, the network’s o↵ered service levels are equal to �t = 0.68,

�t = 0.83 and �t = 0.91 for cr = 6, cr = 12 and cr = 18 respectively, when c/pt = 0.16.

Figure 9: The optimal number of participating servers in the cooperative network (N⇤) for di↵erent values of
c/pt and the external customers rejection cost (cr). (⇢ = 0.5, µ = 10,�t = 10, pt = 100, pp = 30)

Definitely, the value of cr is the main designing parameter for achieving the desired perfor-

mance of the di↵erent kinds of networks with di↵erent characteristics regarding their members.

Figure 10 shows the e↵ect of the rejection cost on the networks with di↵erent utilization levels

of the participants. Again, we can see that the network will try to choose higher number of

servers when the rejection cost is higher and the increasing rate of N is lower for the networks

with low utilization participants
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Figure 10: The optimal number of participating servers in the cooperative network (N⇤) for di↵erent values of
cr/pt and the servers’ utilization level (⇢). (µ = 10,�t = 10, pt = 100, pp = 30, c = 5)

6.5. E↵ect of the external customers’ tra�c on the optimal number of servers in the network

The main uncertainty in the network design is the customers’ on-line request rate which

may be subject to change due to many di↵erent reasons. Hence, it is essential for the designers

to consider how the number of members in the network should be changed in response to an

increase in �t in order to have an e�cient and profitable network. Figure 11 shows this e↵ect

for di↵erent networks containing the members with three di↵erent utilization levels.

Figure 11: The optimal number of participating number of servers in the cooperative network (N⇤) for di↵erent
values of external customers request rate and for three di↵erent values of servers’ utilization (µ = 10, pt =
80, pp = 20, c = 10, cr = 5)

According to Figure 11, whenever the members of the network have higher utilization, we

should increase the number of participants with a higher rate to obtain the maximum profit.

We can also consider the changes in the network o↵ered service level (�t) as the result of change

in the value of �t in the cooperative networks with di↵erent numbers of participants.

Figure 12 shows that the small-size cooperative networks with lower number of members

are more sensitive to the changes in the on-line request rate than the larger networks with a

higher number of members. In summary, we observe that the networks with high utilization

level of participating servers or lower number of members, show higher sensitivity to fluctuating

external customers request rate, and their o↵ered service level decreases with a higher rate in

response to increasing on-line request rate.

21



Figure 12: The network o↵ered service level for di↵erent values of external customers request rate and for three
di↵erent numbers of participating members, N (µ = 10, ⇢ = 0.6, pt = 80, pp = 20, c = 10)

7. Concluding remarks

In this paper, we present a detailed operational model for a cooperative service network

among a number of independent servers and discussed the optimal design of the proposed

setting.

The model developed in this study allows us to examine the relationship among important

network designing factors which are the number of members, their utilization level, external

customers arrival rate, service price and the operational and rejection costs. Based on these

findings, we discuss the network design problem to find the optimal number of participants.

We prove that there is a unique optimal number of participants in the network which assures

the maximum total profit for the network and a desired service level for the external customers.

Additionally, we derive a su�cient lower bound on the service price to show the economic

feasibility of the network for each independent server. The obtained lower bound is increasing

in the waiting cost, customers’ arrival rate and the servers’ utilization level while it is decreasing

in the servers’ service rate. Furthermore, we used this condition to define whether forming a

cooperative network is feasible by considering the benchmark service price in the market, pt.

According to the obtained results, the cooperative network increases the utilization of its

members serving their own customers together with the external customers when it is designed

and operated e↵ectively. Our numerical results show the optimal number of servers in the

cooperative network for di↵erent values of the rejection cost and the servers’ utilization level.

We also present the e↵ect of changing external customers arrival rate on the o↵ered service

level and discuss this issue for the networks with di↵erent number of participants and members’

utilization levels. Our results indicate that a cooperative network benefits the servers, as they

enjoy both a higher utilization and a higher revenue. We also demonstrate that accepting the

external customers will increase the servers’ own customers waiting time, 1/µ at the most,

which does not a↵ect their satisfaction.

This study shows that a cooperative service network is an e↵ective way of utilizing the idle
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capacity of the servers while providing an adequate service level for the external customers and

increasing the profit for both the network and service providers.

The model investigated in this study can be extended to examine the network with het-

erogeneous servers possessing di↵erent operational parameters. Also, the service rates can be

di↵erent for various groups of customers. This will a↵ect the optimal admission policy and

hence the optimal designing factors. The model can also be extended to consider a waiting

queue for the external customers, and to derive the optimal dispatching policy for the net-

work to improve the performance. Considering the utility functions, we can incorporate the

preference of customers in to the proposed model as well. These are left for the future research.

Appendix A. Structure of the optimal admission policy

In this section, we show that an optimal threshold policy indeed maximizes the expected

�-discounted reward over a finite horizon using induction.

We first show that when a new customer enters the system, the expected discounted profit

decreases:

vn(x+ 1, 1)  vn(x, 1) 8x � 1; (A.1)

vn(x+ 1, 0)  vn(x, 0) 8x. (A.2)

The Inequalities (A.1), (A.2) mean that an additional customer incurs a positive opportunity

cost.

We then prove that the opportunity cost of having an additional customer when the server

is idle is always greater than having an additional customer when the server is busy:

vn(x, 1)� vn(x+ 1, 1)  vn(x, 0)� vn(x+ 1, 0) 8x � 1. (A.3)

Inequality (A.3) implies the optimality of threshold policy for each server in the cooperative

network if vn(x, 1) and vn(x, 0) are concave and decreasing in x, i.e.

vn(x+ 2, 1)� vn(x+ 1, 1)  vn(x+ 1, 1)� vn(x, 1) 8x � 1, (A.4)

vn(x+ 2, 0)� vn(x+ 1, 0)  vn(x+ 1, 0)� vn(x, 0) 8x. (A.5)

Appendix A.1. Proof of Theorem 4.1

We use induction to prove the structural properties for all finite n. To start the induction,

we set v0(x, 0) = 0 and v0(x, 1) = 0. For n = 1 all Inequalities (A.1), (A.2), (A.3), (A.4) and

(A.5) are true. We assume that all these inequalities hold for n and prove them for n + 1.

Hence,

23



1) For n+ 1, we can write Inequality A.1 as follows:

�o

h
vn(x+ 2, 1) + po

i
+ �evn(x+ 1, 1) + µmax

n
vn(x, 0), vn(x, 1)

o
� h(x) 

�o

h
vn(x+ 1, 1) + po

i
+ �evn(x, 1) + µmax

n
vn(x� 1, 0), vn(x� 1, 1)

o
� h(x� 1)

(A.6)

The inequalities in the first two lines can easily be shown to hold and the last line is trivially

true. Therefore, vn(x, 1) is decreasing in x. The same argument also applies to show the vn(x, 0)

is decreasing in x in Inequality (A.2).

2) For n+ 1, we can write Inequality (A.3) as follows:

vn+1(x, 1)� vn+1(x+ 1, 1)  vn+1(x, 0)� vn+1(x+ 1, 0).

According to Inequalities (5a) and (5b), we have:

�o

h
vn(x+ 1, 1)� vn(x+ 2, 1)

i
+ �e

h
vn(x, 1)� vn(x+ 1, 1)

i
(A.7)

+µ
h
max

n
vn(x� 1, 0), vn(x� 1, 1)

o
�max

n
vn(x, 0), vn(x, 1)

oi


�o

h
max

n
vn(x+ 1, 0), vn(x+ 1, 1)

o
�max

n
vn(x+ 2, 0), vn(x+ 2, 1)

oi

+�e

h
vn(x+ 1, 1)� vn(x+ 2, 1)

i
+ µ

h
vn(x, 0)� vn(x+ 1, 0)

i
.

In order to show that Inequality (A.7) is correct, we must show that the inequality holds for

all the components associated with the same multipliers on the both sides. For the multipliers

of �o, we must show that:

vn(x+1, 1)� vn(x+2, 1)  max
n
vn(x+1, 0), vn(x+1, 1)

o
�max

n
vn(x+2, 0), vn(x+2, 1)

o
.

(A.8)

Case 1: If x+ 1 � R, then max
n
vn(x+ 1, 0), vn(x+ 1, 1)

o
= vn(x+ 1, 1) and max

n
vn(x+

2, 0), vn(x+ 2, 1)
o
= vn(x+ 2, 1), so Inequality (A.8) is true.

Case 2: If x+ 2 < R, then max
n
vn(x+ 1, 0), vn(x+ 1, 1)

o
= vn(x+ 1, 0) and max

n
vn(x+

2, 0), vn(x+2, 1)
o
= vn(x+2, 0), so Inequality (A.8) is true due to our assumption in Inequality

(A.3).

Case 3: If x+ 2 = R, then max
n
vn(x+ 1, 0), vn(x+ 1, 1)

o
= vn(x+ 1, 0) and max

n
vn(x+

2, 0), vn(x+2, 1)
o
= vn(x+2, 1), so Inequality (A.8) is true due to our assumption in Inequality

(A.3).
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For the multipliers of �e, we must show that:

vn(x, 1)� vn(x+ 1, 1)  vn(x+ 1, 1)� vn(x+ 2, 1). (A.9)

Inequality (A.9) is true due to our assumption in Inequality (A.4) which implies that vn(x, 1)

is concave.

For the multipliers of µ, we must show that:

max
n
vn(x� 1, 0), vn(x� 1, 1)

o
�max

n
vn(x, 0), vn(x, 1)

o
 vn(x, 0)� vn(x+ 1, 0).

(A.10)

Case 1: If x < R, then max
n
vn(x�1, 0), vn(x�1, 1)

o
= vn(x�1, 0) and max

n
vn(x, 0), vn(x, 1)

o
=

vn(x, 0), so Inequality (A.10) is true due to our assumption in Inequality (A.5) which implies

that vn(x, 0) is concave.

Case 2: If x�1 > R, then max
n
vn(x�1, 0), vn(x�1, 1)

o
= vn(x�1, 1) and max

n
vn(x, 0), vn(x, 1)

o
=

vn(x, 1), so Inequality (A.10) is true due to our assumption in Inequalities (A.3) and (A.5).

Case 3: If x = R, then max
n
vn(x�1, 0), vn(x�1, 1)

o
= vn(x�1, 0) and max

n
vn(x, 0), vn(x, 1)

o
=

vn(x, 1), so Inequality (A.10) is true due to our assumption in Inequality (A.5) and knowing

that vn(x, 1) � vn(x, 0).

3) For n+ 1, we can write Inequality (A.4) as follows:

vn(x+ 2, 1)� vn(x+ 1, 1)  vn(x+ 1, 1)� vn(x, 1)

and we have:

�o

h
vn(x+ 3, 1)� vn(x+ 2, 1)

i
+ �e

h
vn(x+ 2, 1)� vn(x+ 1, 1)

i
(A.11)

+µ
h
max

n
vn(x+ 1, 1), vn(x+ 1, 0)

o
�max

n
vn(x, 0), vn(x, 1)

oi


�o

h
vn(x+ 2, 1)� vn(x+ 1, 1)

i
+ �e

h
vn(x+ 1, 1)� vn(x, 1)

i

+µ
h
max

n
vn(x, 1), vn(x, 0)

o
�max

n
vn(x� 1, 1), vn(x� 1, 0)

oi

In order to show that Inequality (A.11) is correct, we must show that the inequality holds for

all the components associated with the same multipliers on the both sides. For the multipliers

of �o, we must show that:

vn(x+ 3, 1)� vn(x+ 2, 1)  vn(x+ 2, 1)� vn(x+ 1, 1). (A.12)

Inequality (A.12) is true due to our assumption in Inequality (A.4) which implies that vn(x, 1)
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is concave.

For the multipliers of �e, we must show that:

vn(x+ 2, 1)� vn(x+ 1, 1)  vn(x+ 1, 1)� vn(x, 1). (A.13)

Inequality (A.13) is also true due to our assumption in Inequality (A.4).

For the multipliers of µ, we must show that:

max
n
vn(x+ 1, 1), vn(x+ 1, 0)

o
�max

n
vn(x, 0), vn(x, 1)

o
(A.14)

 max
n
vn(x, 1), vn(x, 0)

o
�max

n
vn(x� 1, 1), vn(x� 1, 0)

o
.

Case 1: If x+1 < R, then max
n
vn(x+1, 1), vn(x+1, 0)

o
= vn(x+1, 0), max

n
vn(x, 0), vn(x, 1)

o
=

vn(x, 0) and max
n
vn(x� 1, 0), vn(x� 1, 1)

o
= vn(x� 1, 0) so Inequality (A.14) is true due to

our assumption in Inequality (A.5) which implies that vn(x, 0) is concave.

Case 2: If x�1 > R, then max
n
vn(x+1, 1), vn(x+1, 0)

o
= vn(x+1, 1), max

n
vn(x, 0), vn(x, 1)

o
=

vn(x, 1) and max
n
vn(x� 1, 0), vn(x� 1, 1)

o
= vn(x� 1, 1) so Inequality (A.14) is true due to

our assumption in Inequality (A.4).

Case 3: If x = R, then max
n
vn(x+1, 1), vn(x+1, 0)

o
= vn(x+1, 1), max

n
vn(x, 0), vn(x, 1)

o
=

vn(x, 1) and max
n
vn(x � 1, 0), vn(x � 1, 1)

o
= vn(x � 1, 0). Therefore, we should show that

the following inequality holds in this case:

vn(x+ 1, 1)� vn(x, 1)  vn(x, 1)� vn(x� 1, 0). (A.15)

According to the concavity conditions for vn(x, 0) and vn(x, 1), we can write:

vn(x+1, 1)+ vn(x+1, 0)� vn(x, 1)� vn(x, 0)  vn(x, 1)+ vn(x, 0)� vn(x� 1, 1)� vn(x� 1, 0).

(A.16)

On the other hand, we know that the following inequality is true because vn(x� 1, 0) � vn(x�

1, 1).

vn(x+ 1, 0)� vn(x, 0)  vn(x, 0)� vn(x� 1, 1). (A.17)

From Inequalities (A.16) and (A.17) we can conclude that Inequality (A.15) is true because

both vn(x, 0) and vn(x, 1) are decreasing functions.

The same argument also applies to show the concavity of vn(x, 0) and the same proof

procedure can be used to show that Inequality (A.5) is true.

Based on our discussion in Section 4, the structural properties obtained for vn(x, j) hold for

v(x, j), too. In order to address the long-run average profit, we use the result in Weber and
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Stidham (1987) which shows that under certain conditions, that are valid for our model, the

average reward could be obtained as the limit of the value function in the discounted problem

when the discounted factor, � goes to zero. Furthermore, in this setting, the average reward

problem possesses the identical structural properties as the discounted cost problem (Weber

and Stidham, 1987).

Appendix B. Proof of Proposition 4.2

Using the steady-state queue length probabilities, we can write the profit rate function in

Equation (3) as follows:

⇧D = �opo +�ePr(x1 < R, x2 = 0)pp � hLQ.

= �opo +�e
1� ⇢

1 + �e/µ
pp � hLQ. (B.1)

Based on the queueing model with the threshold level R in Figure 2, we can obtain the

steady state probabilities of the system as follows:

Pr(x1 = l, x2 = 0) =
⇣ 1� ⇢

1 + �e/µ

⌘⇣⇢l�R(�o + �e)

µ
� �e�l�R

o

(µ+ �o)l�R+1

⌘
8l > R� 1. (B.2)

Pr(x1 = l, x2 = 1) =
⇣ 1� ⇢

1 + �e/µ

⌘⇣ �e�l�R+1
o

(µ+ �o)l�R+2

⌘
8l � R� 1. (B.3)

Therefore, the value of LQ is equal to:

LQ =
(R� 1)(µ� �o) + (�o + �e)(µ(R� 1) + �o(2�R))

(µ+ �e)(µ� �o)
. (B.4)

Due to the independency of Equation (6) from the value of R, we should minimize the average

number of server’s own customers waiting in the queue (LQ) to maximize the average long run

profit obtained by each server in the network given in Equation (3). Since the value of LQ is

increasing in the value of R, the optimal threshold level to maximize the long run profit for

each member in the network is equal to 1. Setting R = 1 maximizes the profit and leads to the

following formulation for LQ:

LQ =
�o(⇢+ �e/µ)

(µ+ �e)(1� ⇢)
, (B.5)

and the value of �p becomes equal to Pr(x1 = 0, x2 = 0).

Appendix C. Proof of Proposition 5.1

Regarding the independent operation of the servers with just their own customers, we face

an M/M/1 queueing model where the customers join the queue with the rate of �o, pay the
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price of po, and get the service with the rate of µ. Hence, we can derive the minimum value

of the price pp by ensuring that the long run average profit for each member of the network in

Equation (B.1) is always greater than or at least equal to the resulting long run average profit

of the server’s independent operation:

�opo + �e
1� ⇢

1 + �e/µ
pp � h

�o(⇢+ �e/µ)

µ� �o + �e(1� ⇢)
� �opo � h

�o

µ� �o
(C.1)

As the result, the servers accept to work in the cooperative network if and only if:

pp � h
⇢

µ� �o
. (C.2)

Appendix D. Proof of Proposition 5.2

According to Equations (10) and (13) and for a defined value of pp, we can write the

network’s optimization problem as:

⇧⇤
t = max

N
�t(pt � pp)�

(1� �p)N

1� (1� �p)N
�tcr � cN. (D.1)

The revenue obtained from the external customers is independent of N and thus the network

profit maximization problem is the same as the costs minimization problem as follows:

⇧⇤
t = min

N

(1� �p)N

1� (1� �p)N
�tcr + cN. (D.2)

The objective function of the problem in (D.2) contains two parts. The first part is the

rejection cost, (1��p)
N

1�(1��p)N
�tcr, we define this part with f . The second part is the technological

and maintenance cost for all the servers in the network, (cN), we define this part with g .

It is quite easy to see that g is an increasing function of N due to positive slope. We need

to show that f is a non-increasing function of N and intersects g in one point to prove the

uniqueness of the optimal solution.

The only dependent part of function f on the value of N is (1��p)
N

1�(1��p)N
and we assume that

a = 1� �p. Let us consider the continuous form of this formulation and take the derivative of

aN

1�aN with respect to N :

@( aN

1�aN )

@N
=

NaN�1

(1� aN )2
(
@a

@N
). (D.3)

From Equations (6) and (7), we can write the value of �p as follows:

�p = 1� ⇢� �t

Nµ
, (D.4)
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and then:
@a

@N
=

@(⇢+ �t
Nµ )

@N
=

��t

N2µ
. (D.5)

By substituting the value of @a
@N in Equation (D.3), we can derive the value of @f

@N , which is

always negative according to the following equation:

@f

@N
= �cr

�t
2

Nµ

(⇢+ �t
Nµ )

N�1

(1� (⇢+ �t
Nµ )

N )2
 0. (D.6)

We show that f is a non-increasing function for continuous values of N . Therefore, we can also

say that f is a non-increasing function for discrete values of N and conclude that the network’s

maximization problem has a unique optimal solution, N⇤.
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