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a b s t r a c t 

Firms regularly replace their old product generation by a newer generation to sustain and increase their 

market share and profit. The product rollover problem of deciding on the number of old products to be 

pre-produced before the introduction of the new generation, and then deciding on the prices, sales vol- 

umes, and production volumes of the old and the new generation during the introduction under capacity 

constraint is considered. 

Production capacity limitations are common during the introduction period of a new product. We 

provide the first study that examines how a production capacity constraint affects the optimal decisions. 

The optimal decisions for a deterministic period-based model are provided in closed-form. 

A single sales/production rollover strategy implies that the sales/production of the old generation is 

discontinued before introducing the new generation. With a dual sales/production rollover strategy, the 

old and the new generation are sold/produced simultaneously. Depending on the capacity shortage, there 

are two types of mitigation actions: (i) increasing the prices, (ii) changing the sales and/or production 

rollover strategies with pre-production while adjusting the prices accordingly. If the capacity is unlim- 

ited, aligned sales and production rollover strategies are always optimal. We establish the conditions 

under which limited capacity leads to a combination of a single production rollover with a dual sales 

rollover strategy. We show that the selection of optimal rollover strategies is non-monotone in the avail- 

able capacity. This implies that a change in the rollover strategy in response to limiting capacity has to 

be revoked for more severe capacity shortages. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

In many industries, such as home appliances, consumer elec- 

ronics, and semiconductors industry, firms regularly replace their 

ld product generation by a newer generation to sustain and in- 

rease market share and profit. Introducing a new product gener- 

tion may also require a controlled phase-out of the old product 

rom the market and the manufacturing system. 

There are two strategies for offering new and old products to 

ustomers: a single rollover or a dual rollover ( Billington, Lee, & 

ang, 1998 ). A dual rollover refers to a transition in which both 

enerations are sold simultaneously. This strategy leaves the firm 

xposed to cannibalization effects between the generations and 

ostponement of purchasing decisions by strategic customers. By 
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hoosing a single rollover strategy, i.e., removing the old generation 

rom the market prior to the introduction of the new generation, 

oth negative effects can be avoided. However, this comes at the 

xpense of lost revenue from the old generation. 

This paper investigates the case of a new product introduction 

n the presence of a previous generation and finite production ca- 

acity. In order to differentiate the two market transition strategies 

rom the transition taking place on the shop floor, we introduce 

he terms sales rollover and production rollover . We use the terms 

ingle sales rollover (SSR) and dual sales rollover (DSR) to refer to 

he two market transition strategies described above. Analogously, 

 dual production rollover (DPR) refers to simultaneous production 

f both products. A single production rollover (SPR) refers to stop- 

ing the production of the old generation before the ramp-up of 

he new generation. 

The advantage of a DPR is that it aligns production with the 

ales of a DSR without pre-production. However, it requires either 

uilding up a dedicated production capacity for the new genera- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ion or flexible capacity that is shared between both generations. 

hared capacity is common for assembly processes found e.g. at 

ome appliance and automotive manufacturers ( Clark & Fujimoto, 

991 ), and in industries where technological upgrades result in 

exible capacity such as the semiconductor industry ( Bansal, Uz- 

oy, & Kempf, 2020; Li, Graves, & Huh, 2014 ). In the case of limited

apacity, the disadvantage of the DPR is that the new and the old 

enerations compete for the shared capacity. An SPR, on the con- 

rary, frees up the capacity for the new generation. However, it re- 

uires building up inventory of the old product if a DSR is planned. 

In this paper, we analyze the optimal sales and production 

ollover strategies and the underlying optimal prices, sales volume, 

nd production volume in the presence of a finite production ca- 

acity to answer the following research questions. (i) What are 

he optimal sales and production rollover strategies to mitigate the 

egative effects of limited capacity? (ii) How much does a firm lose 

f it ignores capacity limitations when deciding its sales rollover 

trategy and prices? 

To answer these research questions, we introduce a model for a 

rofit-maximizing monopolist that decides the sales and produc- 

ion rollover strategies and the production, sales, and prices for 

oth generations in a deterministic setting. While the new gen- 

ration with improved product quality can only be produced af- 

er the start of the introduction period, the firm has the option 

o pre-produce old products at the expense of additional inventory 

olding costs. The old and the new generation are produced with a 

hared and finite production capacity. The capacity consumption of 

he new generation and its variable production cost may be differ- 

nt from the old generation. Customers base their purchasing de- 

isions on prices in relation to the perceived quality of the offered 

roduct generations. 

For example, home appliances and white goods manufacturers 

ace this problem of selecting sales and production rollover strate- 

ies on a regular basis, since they introduce new models of wash- 

ng machines and dryers approximately every two to three years. 

he home appliances market typically features gradual improve- 

ents. In particular, increased energy efficiency is one aspect that 

mproves from one model generation to the next ( Michel, Attali, & 

ush, 2016 ). The ramp-up of the production of a new model typ- 

cally takes three to six months. During the ramp-up, the produc- 

ion output has not yet reached its target level due to technical dif- 

culties with new processes and shortages of critical components. 

anufacturers may produce the old and the new generation on the 

ame assembly line to meet the demand with their limited capac- 

ty. 

Despite the importance of limited production capacities during 

he introduction of a new generation, analytical models that have 

nalyzed optimal rollover strategies so far have assumed unlimited 

apacities. We contribute to the literature by presenting the op- 

imal solution of the firm’s optimization problem analytically and 

y characterizing its structure. Moreover, we derive the following 

nsights regarding the impact of a limited production capacity on 

ptimal sales and production rollover strategies. 

Depending on the severity of the capacity limitation, different 

ctions can be taken to mitigate the effects of limited capacity: (i) 

rice increases, and (ii) changes in sales and/or production rollover 

trategies and exploitation of the pre-production of the old prod- 

ct. A differentiation between sales and production rollover strate- 

ies is required because in contrast to the unlimited capacity case, 

ptimal sales and production rollover strategies are not necessar- 

ly aligned if the capacity is limited. Limited production capacity is 

ne of the drivers behind firms selecting a DSR instead of an SSR 

trategy because it allows for a DPR strategy where the produc- 

ion can be shifted to a less capacity-demanding older generation. 

oreover, a DSR allows for the exploitation of the pre-production 

f the old product. 
508 
One might expect that if the rollover strategy is changed in 

esponse to a limited capacity this change is optimal for all set- 

ings in which the capacity is even more restrictive. However, we 

nd that for new product generations with a medium quality in- 

rease, the selection of optimal rollover strategies is non-monotone 

n the available capacity. This is due to the substitution effects be- 

ween the product generations and implies that a change in the 

ollover strategy in response to limiting capacity has to be revoked 

or more severe capacity shortages. 

Finally, our results show that integrated sales and operations 

lanning provides substantial improvements over a sequential 

lanning approach. The sequential planning approach neglects ca- 

acity limitations in the first step when selecting the sales rollover 

trategy and only considers capacity restrictions when determining 

he actual production to comply with the previously selected sales 

ollover strategy. 

The remainder of the paper is organized as follows. We begin 

ith a review of the related literature in Section 2 . Section 3 in-

roduces the model and its underlying assumptions. The optimal 

ecisions are analyzed in Section 4 . The sensitivity of the opti- 

al strategies in key model parameters is discussed in Section 5 . 

oreover, the proposed integrated sales and operations planning 

s compared numerically with a sequential planning approach. 

ection 6 summarizes the obtained managerial insights. Conclud- 

ng remarks and potential areas of future research are presented in 

ection 7 . 

. Literature review 

Our work is related to the literature on sales and operations 

lanning for new product introductions. In contrast to classical 

odels of competing products with different qualities, such as dis- 

ussed in Moorthy (1988) and Mussa and Rosen (1978) , product 

ollover models need to cover the dynamics of product availabil- 

ty and other operational requirements during the introduction of 

 new product generation. There are studies on new product in- 

roductions with a limited production capacity but without pre- 

eding product generations, e.g., Jain, Mahajan, and Muller (1991) , 

umar and Swaminathan (2003) , Ho, Savin, and Terwiesch (2002) , 

o, Savin, and Terwiesch (2011) , Shen, Duenyas, and Kapuscinski 

2011) , Shen, Duenyas, and Kapuscinski (2014) , and Bilginer and Er- 

un (2015) . Due to the absence of a predecessor generation, these 

tudies do not discuss rollover strategies. Our study focuses on the 

ntroduction of new products in the presence of predecessor gen- 

rations such that a rollover strategy has to be selected. 

For product introductions with predecessors, Billington et al. 

1998) relate the optimal selection of strategies to the firms’ risk 

rofiles based on case studies. They recommend the DSR strat- 

gy for firms exposed to high market and product risks and the 

SR strategy in low-risk situations. Erhun, Gonçalves, and Hopman 

2007) describe a case where Intel Corp. struggled with pricing and 

imited production capacities during the transition to a new micro- 

rocessor generation. 

In contrast to a product rollover, a product line extension means 

hat the old version is complemented by a new product version 

nd both versions will remain in the market in the long run (see 

.g. Wilson & Norton, 1989 ). The existing analytical models for 

roduct rollovers have two different foci. They either analyze the 

ptimal selection of rollover strategies but do not consider opera- 

ional aspects such as a limited production capacity or they con- 

ider the operational aspects but assume fixed rollover strategies. 

The studies that analytically analyze the optimal selection of 

ollover strategies focus on sales rollover strategies. Whether an 

SR or a DSR strategy is recommended depends on the assump- 

ions regarding the market setting and the customer choice model. 

eatures considered in these studies include the availability of a 
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Table 1 

Model notation. 

Indices 

o, n product generations old ( o) and new ( n ) 

Parameters 

τ 0 length of the of pre-introduction period 

τ length of the introduction period 

c variable production costs for producing one unit of the old 

generation 

α relative difference in variable production costs of the new compared 

to the old generation 

h holding costs for pre-produced old products 

q quality level of the old product 

� relative difference in the quality of the new generation compared to 

the old generation 

θ quality valuation parameter 

k 0 ,total total capacity during the pre-introduction period 

k 0 capacity to pre-produce the old generation during the 

pre-introduction period 

k capacity during the introduction period (in old product units) 

β relative difference in capacity consumption of the new compared to 

the old generation 

x o, 0 , ∗ production of the old generation for sales in the pre-introduction 

period 

Decision variables 

P o , P n price of the old and the new generation in the introduction period 

X o , X n production of the old and the new generation in the introduction 

period 

X o pre pre-production of the old the generation in the pre-introduction 

period 

S o , S n sales of the old and the new generation in the introduction period 

Fig. 1. Period based model of the transition period with production X o pre , X 
o , X n , 

sales S o , S n , and prices P o , P n . 

3

b

t

T

o

i

p

d

l

t

m

t

d

w

econd hand-market for durable goods ( Levinthal & Purohit, 1989 ), 

he development of demand over time ( Lim & Tang, 2006 ), the use

f a demand function that depends on the diffusion of awareness 

 Koca, Souza, & Druehl, 2010 ), the consideration of a decrease in 

he perceived value of the new product if the customers already 

ave bought the old product ( Zhou, Zhang, Gou, & Liang, 2015 ), the

resence of leftovers of the old generation due to random demand 

 Ferguson & Koenigsberg, 2007 ), and the modeling of demand un- 

ertainty during the transition period ( Li & Graves, 2012 ). In ad- 

ition, if customers are capable of acting strategically, they con- 

ider the expected rollover strategy of a firm when making a de- 

ision about the buying or delaying of their purchase ( Bernstein & 

artínez-de-Albéniz, 2017; Liang, Çakanyıldırım, & Sethi, 2014; Liu, 

hai, & Chen, 2018; 2019 ). 

The common modeling approach is to capture the dynamics of 

 product rollover in a two-period model with a focus on the sub- 

titution effects between the product generations. All of these two- 

eriod models assume that the relevant information is determinis- 

ic during the second period in which a new generation is poten- 

ially introduced. Ferguson and Koenigsberg (2007) and Liang et al. 

2014) consider stochastic demand for the old product in the first 

eriod while the remaining models are completely deterministic. 

In general, these models assume that the production rollover 

trategy is aligned with the sales rollover strategy. However, Koca 

t al. (2010) , Ferguson and Koenigsberg (2007) , and Liang et al. 

2014) assume a fixed SPR for technological reasons or because 

ales of the old generation occur only because of leftovers caused 

y random demand. The firms never produce the old generation 

ith inferior quality on purpose. 

Even though the need for considering a finite production capac- 

ty is acknowledged, among others by Koca et al. (2010) , all of the

eferences reviewed above assume unlimited production capacities. 

The existing studies that consider finite capacity in new product 

ntroduction either explicitly assume a given sales and production 

ollover strategy ( Sale, Mesak, & Inman, 2017 ), the optimal strategy 

s implicitly given by the model assumptions ( Bansal et al., 2020; Li 

t al., 2014 ), or do not consider pricing ( Negahban & Smith, 2018 ).

xcept for Sale et al. (2017) , prices are given exogenously and do 

ot affect customer behavior. All models are deterministic with the 

xception of Li et al. (2014) who consider random demand. 

Sale et al. (2017) model the diffusion of awareness with a Bass 

iffusion model and decide on the pricing, lot sizes, and the length 

f a sales period while considering inventory holding costs, setup 

osts, and fixed costs to introduce a new generation. Their model 

ssumes a given SSR and SPR strategy. Li et al. (2014) focus on 

nding an optimal conversion and purchasing plan for the capacity. 

he demand for both generations is given exogenously and has to 

e fulfilled according to a service level agreement. Therefore, all of 

he considered cases feature a DSR and a DPR strategy. Negahban 

nd Smith (2018) consider timing, capacity, sales and production 

ecisions in the introduction of two successive generations with 

 capacity constraint for the new generation. This model assumes 

ndependent capacities for both products and includes neither the 

trategic customers nor the cannibalization of sales of the new 

eneration by the old. Bansal et al. (2020) develop a coordination 

echanism to share capacity between existing products, test runs 

or new product generations, and production of new product gen- 

rations. The demand for the different product generations is given 

xogenously. 

To the best of our knowledge, our model is the first to ana- 

yze the optimal selection of sales and production rollover strate- 

ies with the corresponding optimal pricing decisions while con- 

idering limited production capacities. 
n

g

T

509 
. Model 

This section presents the assumptions regarding the customer 

ehavior, the operational setting of the firm, and the resulting op- 

imization problem for the firm. The notation is summarized in 

able 1 . The model aggregates the continuous time in two peri- 

ds to capture the relevant dynamics. These periods are a pre- 

ntroduction period and the introduction period for which the new 

roduct introduction is intended ( Fig. 1 ). The timing of the intro- 

uction and the length of the pre-introduction period τ 0 and the 

ength of the introduction period τ are exogenously given. Hence, 

he decisions on production quantities and sales quantities are 

ade for cumulative values during the pre-introduction period and 

he introduction period. Capacity restrictions and holding costs are 

efined accordingly. 

The following numerical example illustrates the decisions of a 

hite-goods appliances manufacturer that considers introducing a 

ew product generation on February 1st and phasing out the old 

eneration after a six month introduction period ( τ ) by August 1st. 

he firm uses the last month ( τ ) before the introduction to build 
0 
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p inventory to be sold during the introduction period. The firm 

ay choose a DSR and sell S o = 100 units of the old generation

t P o = $300 and S n = 500 new products at P n = $400 during the

ntroduction period. The realized sales of the firm depend on the 

ustomer’s buying decisions. Customers of home appliances mainly 

ocus on the price and key features such as energy efficiency and 

he capacity of the white good when making their purchasing deci- 

ion ( Policy Studies Institute, 2006 ). By the time the customers en- 

er the market, the product in their possession is typically outdated 

ecause the lifetime of a home appliance of eight to ten years ex- 

eeds several new product introduction cycles ( Wieser, Tröger, & 

übner, 2015 ). A survey indicated that 88% of customers in the 

S enter the market in home appliances because their old product 

roke down ( Statista, 2017 ). The absence of a working product at 

ome limits the ability of these customers to postpone a purchas- 

ng decision for strategic reasons. Hence, the customers that con- 

ider buying during the pre-introduction period and the introduc- 

ion period can be considered to be independent. A feasible pro- 

uction plan to support the DSR is the production of X n = 500 new

roducts and X o = 50 old products during the introduction period 

n addition to X o pre = 50 pre-produced old products. The objective 

f the firm is to maximize its profit by finding the optimal val- 

es of production quantities X o pre , X 
o , X n , sales quantities S o , S n and

rices P o , P n . The firm also has to optimize the production x o, 0 , ∗,
rice, and sales of the old product during the pre-production pe- 

iod. The model captures the result of these decisions by a limited 

bility of the firm to pre-produce (see Section 3.2 ). 

.1. Demand model 

We assume that the firm is a monopolist that faces an exoge- 

ously given and deterministic potential demand. The potential de- 

and refers to the maximum number of new and old units that 

an be sold in the market. Due to customer preferences and pric- 

ng, only a portion of the potential demand can be converted into 

ctual sales. During the introduction period, there is a potential de- 

and for d products. We further assume that d is large enough 

o be treated as continuous. The potential demands of the pre- 

ntroduction period and the introduction period are assumed to 

e independent. This assumption is suitable for products whose 

urchases can hardly be postponed and have product lifetimes 

hat exceed multiple introduction cycles, e.g., home appliances. The 

ustomers choose between the old and the new product genera- 

ions that are offered by the firm in the introduction period. A ver- 

ical demand model captures the heterogenous willingness to pay 

f different customers, the substitution effects between the two 

roduct generations, and the price sensitivity of customers. This 

odeling approach is common in the literature (e.g., Ferguson & 

oenigsberg, 2007; Zhou et al., 2015 ). The old and the new genera- 

ion have given quality levels q > 0 and q (1 + �) > 0 , respectively.

he parameter � > 0 captures the relative increase in the quality 

evel, e.g., it is determined by the set of new features or the im- 

roved energy efficiency. 

The customers decide on buying the old generation, buying the 

ew generation, or not buying at all, based on their net utility. The 

et utilities u o (θ ) and u n (θ ) are given for the old and the new

eneration by 

 

o (θ ) = qθ − P o , u 

n (θ ) = q (1 + �) θ − P n , (1) 

here P o and P n represent the prices for the old and the new prod-

ct. The valuation of the quality level is modeled by the factor θ . 

 customer with a high value of θ cares more about the qual- 

ty level, whereas a customer with a small θ is more concerned 

bout the price. The customers are heterogeneous in their valua- 

ion of the product quality. We assume that θ is uniformly dis- 

ributed between 0 and 1 (see, e.g., Zhou et al., 2015 ). Each cus-
510 
omer will buy the available product generation that provides the 

ighest non-negative net utility. We define θ ′ = 

P n −P o 

q � as the qual- 

ty valuation for which a customer is indifferent between buying 

he old and the new product generation. From the net utilities, 

e derive the demand for the old and the new product genera- 

ions that limit the sales according to (2f) and (2g) , depending on 

he sales rollover strategy. The details of the derivation, in which 

e normalize the demand potential to d = 1 and the quality level 

 = 1 , can be found in Appendix A . In this model, the potential

ffect of stock-out based substitution is ignored. 

.2. Operational setting 

The firm decides on the quantities of the old and the new prod- 

ct generation X o and X n to be produced during the introduction 

eriod. The variable production costs of the old and the new gener- 

tion, c > 0 and c(1 + α) > 0 , can be different. The parameter α >

1 represents the relative difference between the production costs 

f the new and the old generation. Positive values of α capture 

he effects of the increased costs of raw materials or components 

or the new generation. We exclude trivial cases where there ex- 

sts no price that ensures both a positive net utility for customers 

nd a positive profit margin for the firm exist. For the old product 

 price P o > c is required for a positive margin and P o < q = 1 is

equired for a positive net utility of the customers. Thus, the anal- 

sis focuses on cases with 1 > c. Respectively, for the new product 

 

n > c(1 + α) and P n < (1 + �) q = 1 + �, i.e. (1 + �) > c(1 + α)

s required. 

The production capacity of the firm is finite during both peri- 

ds. Fig. 2 illustrates that for a given production rate, e.g., per shift, 

he capacity k 0 ,total and k are functions of the length of the pre- 

ntroduction period τ 0 and the length of the introduction period τ, 

espectively. Hence, k 0 ,total and k may differ even if the production 

ate remains constant. 

We assume that the production capacity k during the introduc- 

ion period is shared between the product generations. Shared ca- 

acity occurs when the two product generations are produced with 

he same resource, e.g., on the same assembly line. The capacity 

onsumption per produced unit can be different for the two prod- 

ct generations, and their relative difference is given by β . If the 

ntire capacity is devoted exclusively to one generation, k units of 

he old generation or k 
1+ β units of the new generation can be pro- 

uced. Higher or equal capacity consumption β ≥ 0 for the new 

roduct, i.e., β > 0 , is often observed in the introduction period 

ecause of learning effects still to occur or lower yield of the new 

roduct. Even if new designs and new manufacturing technologies 

re expected to decrease capacity consumption in the long run, 

he new environment may lead to an increased capacity consump- 

ion during the production ramp up in the introduction period. The 

nalysis of the case β < 0 has been conducted but is omitted in 

his paper. 
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The new generation is produced during the introduction period. 

owever, the firm may also decide to pre-produce X o pre units of the 

ld generation during the pre-introduction period. Inventory hold- 

ng costs of 0 ≤ h < 1 − c occur per pre-produced unit. We focus on 

 < 1 − c because otherwise pre-production is never profitable. The 

otal production capacity during the pre-introduction period k 0 ,total 

an be used to produce old products x o, 0 , ∗ which are directly sold 

nd for pre-production X o pre . Without loss of generality, the model 

ocuses on the remaining capacity k 0 = max { k 0 ,total − x o, 0 , ∗, 0 } af-

er optimal production decisions x o, 0 , ∗ for sales during the pre- 

ntroduction period are made. This simplification of the model can 

e made as it is always optimal to prioritize sales of the old prod-

ct in the pre-introduction period over future sales during the in- 

roduction period. This is due to avoidable inventory holding costs 

nd a potentially lower price during the introduction period in re- 

ponse to cannibalization by the new product generation. Cases in 

hich the sales during the pre-introduction period are limited by 

he capacity k 0 ,total are captured by setting the remaining capacity 

or pre-production k 0 = 0 . 

.3. The firm’s optimization problem 

The firm’s optimization problem is given by (2) . The objective 

f the firm is to maximize the profit π from the revenue of units 

old of the old S o and of the new generation S n , while taking

nto account the costs of production and pre-production ( Eq. (2a) ). 

he decisions regarding prices, the number of units to be sold, 

nd the number of units to be produced are subject to the fol- 

owing constraints: the firm can only sell old products that are 

ither pre-produced or produced during the introduction period 

Constraint (2b) ), and the new products have to be produced dur- 

ng the introduction period (Constraint (2c) ). As the demand is de- 

erministic, overproduction will never occur and both constraints 

ave to be fulfilled with equality. The pre-production must not 

xceed k 0 (Constraint (2d) ), and the production during the intro- 

uction period must not exceed the available capacity k that is 

hared between both product generations (Constraint (2e) ). The 

mount of the old and the new generation that can be sold is lim-

ted by the demand function that depends on the sales rollover 

trategy, the prices, and the difference in quality levels (Con- 

traints (2f) and (2g) ). Finally, prices, sales, and production quanti- 

ies are non-negative (Constraint (2h) ) 

ax π = P n S n − c(1 + α) X 

n + P o S o − cX 

o − (h + c) X 

o 
pre (2a) 

.t. 

 

o = X 

o 
pre + X 

o , (2b) 

 

n = X 

n , (2c) 

 

0 ≥ X 

o 
pre , (2d) 

 ≥ X 

o + (1 + β) X 

n , (2e) 

 

o ≤
{

min { 1 ; θ ′ } − min { 1 ; P o ; θ ′ } if S n > 0 , 

1 − min { 1 ; P o } otherwise , 
(2f) 

 

n ≤

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 − min 

{
1 ; max 

{
P n 

1 + �
; θ ′ 

}}
if S o > 0 , 

1 − min 

{
P n 

1 + �
; 1 

}
otherwise , 

(2g) 
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o , P n , S o , S n , X 

o , X 

n , X 

o 
pre ≥ 0 . (2h) 

The sales and production rollover strategies are determined by 

he sales and production decisions. A solution where only the new 

eneration is sold ( S o = 0 , S n > 0 ) corresponds to an SSR strategy.

n the other hand, the solution where both generations are sold 

 S o > 0 , S n > 0 ) corresponds to a DSR strategy. Analogously, pro-

ucing only the new generation ( X o = 0 , X n > 0 ) implies an SPR

trategy whereas producing both generations ( X o > 0 , X n > 0 ) cor-

esponds to a DPR strategy. The model also allows for X n = S n = 0

hat corresponds to a “do not introduce” the new product strategy. 

he model thereby captures situations in which it is not profitable 

o introduce the new generation at all. 

. Analysis of the model 

In the following, we present the analytical solution to the firm’s 

ptimization Problem (2) . The solution to the optimization prob- 

em (2) , is given in closed form by Theorem 1 . The proof of

heorem 1 and all further proofs can be found in Appendix B . 

heorem 1. For a firm that optimizes Problem (2) , the optimal sales 

nd production rollover strategies as well as the respective opti- 

al pricing, production, and sales decisions for the old generation 

 

o, ∗, X o, ∗, X o, ∗
pre , S 

o, ∗, the new generation P n, ∗, X n, ∗, S n, ∗, and the result-

ng profit π ∗ are given 

• in Table 2 if k 0 ≥ w (Constraint (2d) is not binding) 
• in Table 3 if 0 ≤ k 0 < w (Constraint (2d) binding) 

where 

 = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 −c−h 
2 

− k 
1+ β (k < 

˜ k 3 ∧ 

˜ �3 ≤ � < 

˜ �4 ) 

∨ (k < 

˜ k 1 ∧ 

˜ �4 ≤ �) , 
�(1+ β) −c(�+ αβ) −h (�+ β2 ) 

2� − k ˜ k 3 ≤ k < 

˜ k 2 ∧ 

˜ �3 < � < 

˜ �4 , 
1 −c−h 

2 
− k k < 

˜ k 4 ∧ � ≤ ˜ �3 

nd k̄ 1 = 

(1+ β)(1+�−c(1+ α)) 
2(1+�) 

, ̄k 2 = 

(1+ β)�−c(αβ+�) 
2�

, 

¯
 3 = 

1 −c 
2 , ̃  k 1 = 

(1+ β)(1 −c−h ) 
2 , ̃  k 2 = 

�(1+ β) −c(αβ+�) −h (�+ β2 ) 
2� , 

˜ 
 3 = 

(1+ β)(�−βh −αc) 
2� , ̃  k 4 = 

1 −c−h 
2 , ̂  k 1 = (1 + 

c(β−α) 
(�−β) 

) (1+ β) 
2 , 

ˆ 
 2 = 

β−�−c(β−α) 
2 β

, ˜ �1 = α, ˜ �2 = cα, ˜ �3 = hβ + cα, ˜ �4 = 

hβ+ cα
c+ h , 

x o 
pre, ̄k 

= 

−β2 (c−1) −β(c+�+2 k −1)+�(2 k −1)+ α(c(1+ β)) 
2 β(1+ β) 

, and 

 

o 
pre, k 

= 

β−�−c(β−α) 
2 β

− k . 

Theorem 1 shows that there are twelve regions ( A, B, . . . , L ) in

hich the optimal decisions differ structurally (see Table 2 for 

ufficient pre-production capacity k 0 and Table 3 if the capacity 

o pre-produce is binding). The optimal decisions and the thresh- 

lds ( ̄k 1 , ̄k 2 . . . , X 
o 

pre, ̄k 
) that separate the regions depend on the 

vailable capacity, inventory holding costs, and variable production 

osts, as well as the relative difference in variable costs, capacity 

onsumption, and quality. 

Theorem 1 shows that for parameter combinations that fall into 

he regions (A ) , (D ) , and (G ) the optimal decisions do not depend

n the capacity k during the introduction period. Hence, we re- 

er to these regions as cases with sufficient capacity . We refer to 

arameter combinations as minor capacity shortages if they fall in 

egions that are bordered from above in terms of capacity k by 

 region with sufficient capacity. This applies to certain parame- 

er combinations in regions (B ) , (E) , and (H) . In these cases, the

ptimal decisions depend on the capacity during the introduction 

eriod k . We term parameter configurations as cases of severe ca- 

acity shortages if the optimal decisions depend on the capacity k 

ut they are bounded from above by a region with minor capac- 

ty shortages. This is the case for all parameter configurations in 

egions (C) , (F ) , (I) , (J) , (K) , and (L ) . 
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Table 2 

Firm’s optimal decisions and resulting profit if capacity to pre-produce is sufficient. 

(A ) : ̄k 1 ≤ k ∧ ˜ �1 ≤ � (B ) : ( ̃ k 1 ≤ k < ̄k 1 ) ∧ ((k ≤ ˆ k 1 ∧ � > β) 

∨ (k ≥ ˆ k 1 ∧ � < β) ∨ (� ≥ ˜ �1 ∧ α = β)) 

(C) : (k < ̃

 k 3 ∧ ˜ �3 ≤ � < 

˜ �4 ) ∨ (k < ̃

 k 1 ∧ ˜ �4 ≤ �) 

Rollover strategy single sales rollover, single 

production rollover 

single sales rollover, single production 

rollover 

dual sales rollover, single production rollover 

P o, ∗ - - 1 
2 
(c + h + 1) 

P n, ∗ c(1+ α)+1+�
2 

(1+�)(1+ β−k ) 
1+ β

1 
2 
(c + h + 1) + �(1 − k 

1+ β ) 

X o, ∗
pre 0 0 1 −c−h 

2 
− k 

1+ β
X o, ∗ 0 0 0 

S o, ∗ 0 0 1 −c−h 
2 

− k 
1+ β

S n, ∗ = X n, ∗ 1+�−c(1+ α) 
2(1+�) 

k 
1+ β

k 
1+ β

π ∗ (c(1+ α) −(1+�)) 2 

4(1+�) 
k ((1+ β)(�+1 −c(α+1)) −(�+1) k ) 

(1+ β) 2 
(1+ β) ( β(c+ h −1) 2 + c 2 +2 c(h −2 αk −1)+4 hk +(h −1) 2 ) +4�k (β−k +1) 

4(1+ β) 2 

(D ) : ̄k 2 ≤ k ∧ ˜ �2 < � < 

˜ �1 (E) : ( ̃ k 2 ≤ k < ̄k 2 ) ∧ (( ̂ k 2 < k ∧ β > 

0) ∨ ( ̃  �2 < � ∧ β = 0)) ∧ ((k > ̂

 k 1 ∧ � > 

β) ∨ (k < ̂

 k 1 ∧ � < β) ∨ (� < �1 ∧ α = β)) 

(F ) : ̃  k 3 ≤ k < ̃

 k 2 ∧ ˜ �3 < � < 

˜ �4 

Rollover strategy dual sales rollover, dual 

production rollover 

dual sales rollover, dual production 

rollover 

dual sales rollover, dual production rollover 

P o, ∗ c+1 
2 

β(−αc+ β(c+1))+�(2(1 −k )+ β) 
2(�+ β2 ) 

1+ c+ h 
2 

P n, ∗ c(1+ α)+1+�
2 

�2 +(−αc+ β(c+1)) β+�(−2(1+ β) k +(c(α−β)+2(1+ β+ β2 ))) 
2(�+ β2 ) 

1+�+ c(1+ α)+ h (1+ β) 
2 

X o, ∗
pre 0 0 �(1+ β) −c(�+ αβ) −h (�+ β2 ) 

2� − k 

X o, ∗ c(α−�) 
2�

(1+ β)(c(α−β)+(β−�))+2 k (�−β) 
2(�+ β2 ) 

(1+ β)(cα+ hβ)+�(2 k −(β+1)) 
2�

S o, ∗ c(α−�) 
2�

(1+ β)(c(α−β)+(β−�))+2 k (�−β) 
2(�+ β2 ) 

c(α−�)+ h (β−�) 
2�

S n, ∗ = X n, ∗ �−αc 
2�

2 βk +(c(β−α)+�−β) 
2(�+ β2 ) 

�−αc−hβ
2�

π ∗ c 2 �+ α2 c 2 −2 αc�−2 c�+�2 +�
4�

β2 (c−1) 2 +�2 −4�k (c−1+ k ) −2 c�α+ c 2 α2 +2 β(c−1+2 k )(�−cα) 
4(�+ β2 ) 

�2 +�(1+ c 2 + h (−2 −2 β+ h +4 k )+2 c(−1+ h −α))+(βh + cα) 2 

4�

(G ) : ̄k 3 ≤ k ∧ � ≤ ˜ �2 (H) : ( ̃ k 4 ≤ k < ̄k 3 ) ∧ ((k ≤ ˆ k 2 ∧ β > 

0) ∨ (� ≤ ˜ �2 ∧ β = 0) 

(I) : k < ̃

 k 4 ∧ � ≤ ˜ �3 

Rollover strategy do not introduce do not introduce do not introduce 

P o, ∗ c+1 
2 

1 − k c+ h +1 
2 

P n, ∗ – – –

X o, ∗
pre 0 0 1 −c−h 

2 
− k 

X o, ∗ 1 −c 
2 

k k 

S o, ∗ 1 −c 
2 

k 1 −c−h 
2 

S n, ∗ = X n, ∗ 0 0 0 

π ∗ (c−1) 2 

4 
(1 − c − k ) k (c+ h −1)(1+3 h −c) 

4 
+ hk 

Table 3 

Firm’s optimal decisions and resulting profit if capacity to pre-produce is binding. 

(J) : (k 0 > x o 
pre, ̄k 

∧ β > 0) ∨ (k ≤ ˆ k 1 ∧ β = 0) (K) : (x o 
pre, k 

≥ k 0 ∧ β > 0) ∨ (� ≤ ˜ �2 ∧ α > 0 ∧ β = 0) 

Rollover strategy dual sales rollover, single production rollover do not introduce 

P o, ∗ 1 − k 0 − k 
1+ β 1 − k 0 − k 

P n, ∗ (1 + �)(1 − k 
1+ β ) − k 0 - 

X o, ∗
pre k 0 k 0 

X o, ∗ 0 k 

S o, ∗ k 0 k 0 + k 

S n, ∗ = X n, ∗ k 
1+ β 0 

π ∗ (1 − c − h ) k 0 − k 0 
2 − 2 k 0 k 

1+ β − k ((1+�)(k −1)+ c(1+ α)+ β(c(1+ α) −1 −�)) 
(1+ β) 2 

(1 − k 0 − k )(k 0 + k ) − ck − (c + h ) k 0 

(L ) : (x o 
pre, ̄k 

≥ k 0 > x o 
pre, k 

∧ β > 0) ∨ (((� > 

˜ �2 ∧ α > 0) ∨ α ≤ 0) ∧ k > ̂

 k 1 ∧ β = 0) 

Rollover strategy dual sales rollover, dual production rollover 

P o, ∗ β2 (c+1)+ β(�−αc) −2�(k 0 + k −1) 

2 ( β2 +�) 

P n, ∗ β2 (1+ c+2�)+�(�−2(−1+ k 0 + k )+ cα) −β(�(c+2(k 0 + k −1))+ cα) 
2(β2 +�) 

X o, ∗
pre k 0 

X o, ∗ β2 (1 −c−2 k 0 )+�(2 k −1) −β(−1+ c+�+2(k 0 + k ))+ cα+ βcα
2(β2 +�) 

S o, ∗ β(1+ β−�−2(k 0 + k ))+�(2(k 0 + k ) −1)+ c(α+ β(α−1 −β)) 
2(β2 +�) 

S n, ∗ = X n, ∗ �+ β(c+2(k 0 + k ) −1) −cα
2(β2 +�) 

π ∗ β2 ( (c−1) 2 −4 hk 0 ) +2 β(�−αc)(c+2 k 0 +2 k −1)+ α2 c 2 −2 αc�+�( −4 k 0 (c+ h + k 0 −1) −4 k (c+2 k 0 −1)+�−4 k 2 ) 
4 ( β2 +�) 

512 
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Fig. 3. Optimal rollover strategies for non-binding capacity k > ̄k during the intro- 

duction period depending on the difference in variable production costs α and the 

difference in quality �. 
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. Results and discussion 

Based on the analysis in the preceding section, we discuss the 

ptimal decisions and selected rollover strategies in two subsec- 

ions depending on the available production capacity during the 

ntroduction period as well as the impact of limited pre-production 

apacity. This section is concluded by a numerical investigation of 

he impact of the mitigation actions on the obtainable profit. 

.1. Optimal sales and production rollover strategies for sufficient 

apacity 

We first establish the condition under which there is sufficient 

apacity such that the optimal decisions are independent of the 

roduction capacity k . Subsequently, we analyze the resulting op- 

imal rollover strategies. 

orollary 1. The capacity k̄ that is required such that the optimal 

ecisions are independent of any capacity k ≥ k̄ is 

¯
 = 

⎧ ⎨ 

⎩ 

k̄ 1 ˜ �1 < �, 

k̄ 2 ˜ �2 < � ≤ ˜ �1 , 

k̄ 3 � ≤ ˜ �2 

. (3) 

The value of k̄ depends on the relative difference in the qual- 

ty � where ˜ �1 marks the threshold between SSR and DSR and 

˜ 
2 marks the threshold between DSR and the case where the 

ew product is not introduced as given by Theorem 1 . For capac- 

ty k > k̄ , the optimal rollover strategy choice is depicted in Fig. 3 .

t depends on the relative difference in quality � and the relative 

ifference in production costs α. 

bservation 1. If there is sufficient capacity ( k ≥ k̄ ), the produc- 

ion and sales rollover strategies are always aligned. 

Fig. 3 illustrates Observation 1 . Moreover, it shows the domi- 

ance of the SSR strategy if the product generations have the same 

arginal production costs, or the new generation is cheaper to 

anufacture (α ≤ 0) . Intuitively, the new product is more attrac- 

ive for customers due to increased quality (� > 0) and allows for 

n at least equal profit margin for the firm. This confirms the find- 

ngs by Levinthal and Purohit (1989) and Li and Graves (2012) with 

espect to the impact of marginal production costs on the selection 

f sales rollover strategy for unlimited production capacity. 

In the case of a marginal production costs increase ( α > 0 ), the 

inimum increase in quality such that the firm will introduce the 

ew generation is ˜ �2 = cα. The firm then chooses a DSR and a 

PR strategy. For new generations with � > α = 

˜ � , an SSR and 
1 
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PR become optimal. These findings are in line with the finding of 

oca et al. (2010) that a larger difference between product genera- 

ions drives the firm towards an SSR strategy. 

.2. Optimal mitigation actions for binding capacity during the 

ntroduction period 

In the case that the available capacity of the firm is below k̄ , 

.e., the capacity constraint (2e) is binding, it cannot produce the 

equired amount of products to fulfill the transition as discussed in 

ection 5.1 . We analyze the optimal actions to mitigate the effects 

f capacity shortages and the actions’ dependence on the severity 

f the capacity shortage, as well as on the relative differences in 

uality, variable production costs, and capacity consumption. 

Since we are interested in capacity shortages that occur during 

he introduction of a new product generation, the following discus- 

ion focuses on cases where available capacity is sufficient if only 

he old product is produced and sold: 

 ≥ k̄ 3 = 

1 − c 

2 

. (4) 

oreover, the analysis focuses on cases where the increase in qual- 

ty is large enough to justify the introduction of the new genera- 

ion: 

> 

˜ �2 = cα. (5) 

n addition, Theorem 1 shows that if it is not optimal to introduce 

 new generation, given sufficient capacity k ≥ k̄ 3 , that is, � ≤ ˜ �2 , 

t is never optimal to introduce the new generation for binding ca- 

acity k < k̄ 3 and � ≤ ˜ �2 . Conditions (4) and (5) exclude the re- 

ions (G ) , (H) , (I) , and (K) in which the new generation is not

ntroduced at all. 

In order to account for limited capacity, the firm can change 

ts production, sales, and pricing decisions. This may also require a 

hange in the sales and the production rollover strategy. The op- 

imal values of the decisions on production, sales, and pricing de- 

end on the level of available capacity and the product parameters. 

The analytical results indicate that the firm can take two types 

f mitigation actions to reduce the negative effect of capacity 

hortages, depending on the severity of the capacity shortage and 

he product parameters: 

i) Changing prices while maintaining the sales and production 

rollover strategy that is optimal for the non-binding capacity 

case (k ≥ k̄ ) . 

ii) Changing the sales and/or production rollover strategies and ex- 

ploiting pre-production supported by changes in prices of the 

old and the new generation. 

The applicability of the two mitigation actions given above is 

escribed in the following two subsections. 

.2.1. Mitigating minor capacity shortages 

If the capacity during the introduction period is binding, the 

rm has to react with changes in the pricing of the product. 

orollary 2. The prices P o and P n are decreasing in the available ca- 

acity k . 

The increase in prices of the sold product generations for de- 

reasing capacity reflects the market power of the monopolist. 

owever, this does not imply that the price for the old generation 

ncreases in the introduction period compared to the price before 

he introduction period. The quality level of a product q is typi- 

ally a decreasing function of time. Hence, the pricing before the 

ntroduction period is typically higher to exploit the higher quality 

alue. 
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Fig. 4. Optimal sales and production rollover strategies for equal capacity consumption (β = 0) , depending on the available capacity k, the difference in quality �, and the 

difference in variable production costs α, with regions (A ) , (B ) , and (D ) as given in Table 2 . 
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bservation 2. For minor capacity shortages, it is sufficient to only 

se pricing as mitigation action. 

If k is close to k̄ it is sufficient to use pricing such that the re-

ulting demand is equivalent to the available capacity. This applies 

o all cases for which k is limited from above by k . Furthermore, 

f the old and the new generation consume the same amount of 

apacity per produced unit, the following result can be obtained. 

orollary 3. In the region of interest k̄ 3 ≤ k < k̄ ∧ � > 

˜ �2 , if there 

s no difference in the capacity consumption β = 0 , the optimal sales 

ollover strategy and the optimal production rollover strategies are al- 

ays equivalent to the optimal strategies for sufficient capacity k > k̄ . 

Fig. 4 illustrates the case of β = 0 by depicting optimal sales 

nd production rollover strategies given by Theorem 1 for k ≥ k̄ 3 
nd � > 

˜ �2 . It shows that pricing is sufficient in the complete pa- 

ameter range of interest. As available capacity decreases, mitiga- 

ion via pricing always corresponds to a change from the region 

A ) to the region (B ) while maintaining a SSR and a SPR. A change

n price is sufficient for k̄ 3 ≤ k < k̄ because there is a quality ad- 

antage for the new generation but no quantity advantage for the 

ld product because the old and the new product generation con- 

ume the same amount of capacity. Therefore, switching from an 

PR to a DPR strategy is not beneficial. Moreover, the additional 

evenue from old products, in the case of a DSR and an SPR with

re-produced old products, cannot recover the inventory holding 

osts and the losses from cannibalization. 

.2.2. Mitigating severe capacity shortages 

In the following, we describe the mitigation action for severe 

apacity shortages during the introduction period such that react- 

ng by changes in pricing is insufficient to mitigate the shortages. 

he second type of mitigation actions encompasses the change of 

he sales and/or production rollover strategies and exploiting pre- 

roduction supported by changes in prices of the old and the new 

eneration. In this subsection, we analyze settings in which the 

onstraint on the firm’s capacity k 0 to pre-produce the old genera- 

ion is not binding. This is often the case, as sales and production 

ecrease at the end of a product lifecycle. Implications of insuffi- 

ient capacity to pre-produce are discussed in the succeeding sub- 

ection. In general, we make the following observation. 

bservation 3. Decreasing capacity drives the firm towards a DSR 

or two reasons: 

i) A DSR allows for a DPR strategy, which increases the quantity of 

products that can be produced during the introduction period 

because the old product is less capacity intensive. 

ii) A DSR facilitates exploiting pre-production before the introduc- 

tion period. 

Whether changes in the rollover strategy or pre-production are 

he optimal mitigation actions depends on the relation between 
514 
he relative capacity increase and the relative difference in variable 

roduction costs, i.e., α ≤ β or α > β, and the relative increase in 

uality �. 

Fig. 5 visualizes the optimal sales and production rollover 

trategies given by Theorem 1 for β > 0 , α ≥ 0 , α ≤ β, in the re-

ion of interest k > k̄ 3 , � > 

˜ �2 , and h < 

1 −c 

1+ 1 
β

, such that the neces-

ary condition for the use of pre-production is fulfilled. The shaded 

reas mark combinations of k and � for which a change in sales 

nd/or production rollover strategies compared to the case k ≥ k̄ is 

ptimal. Cases with α < 0 are not depicted because they resem- 

le the case depicted in Fig. 5 a. The only structural difference is 

hat the threshold 

˜ �4 moves to smaller values of � and disap- 

ears for α < − hβ
c . The case of β = 0 is covered by Corollary 3 in

ection 5.2.1 . 

It can be observed that the optimal mitigation actions differ 

tructurally depending on the relative quality increase �. We dif- 

erentiate the three cases of a high (� ≥ ˜ �4 ) , a medium ( ̃  �1 < 

< 

˜ �4 ) , and a low ( ̃  �2 ≤ � ≤ ˜ �1 ) quality increase. 

New products with high quality increase . 

For new generations within the high-quality range (� ≥ ˜ �4 ) , 

n SPR strategy is always optimal independent of the capacity 

 . The quality of the new generation and the prices that can be 

harged are so large that it is always optimal to devote the com- 

lete capacity during the introduction period to the new genera- 

ion. However, for severe capacity shortages with a capacity k be- 

ow the threshold 

˜ k 1 , it is optimal to switch from an SSR strategy 

n region (B ) to a DSR strategy in region (C) . 

bservation 4. For severe capacity shortages, it can be optimal to 

isalign production rollover strategy (SPR) and sales rollover strat- 

gy (DSR). 

This misalignment is realized via pre-production that is bene- 

cial as long as inventory holding costs are below h < 

1 −c 

1+ 1 
β

. The 

ncreased revenues due to sales of the pre-produced old products 

vercompensate for the inventory holding costs and the cannibal- 

zation of the new generation. 

New products with medium quality increase . 

The medium quality increase in the range of ˜ �1 < � < 

˜ �4 ex- 

sts only for α < β . For α = β, the thresholds ˜ �1 and 

˜ �4 coincide 

 Fig. 5 c). If mitigation via prices is insufficient because the capac- 

ty falls below k < ̂

 k 1 , a change from an SSR and an SPR (B ) to a

SR and a DPR strategy (E) is optimal. In this situation, the can- 

ibalization of sales of the new generation by the old is not a ma- 

or concern for the firm because the available capacity limits the 

uantity of the new generation that can be produced and sold. In- 

tead, switching to a DSR and a DPR strategy allows for increased 

evenues from the old generation, which requires less capacity per 
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Fig. 5. Optimal sales and production rollover strategies in regions (A ) − (F ) for capacity consumption β > 0 , inventory holding costs 0 < h < 

1 −c 

1+ 1 
β

depending on the available 

capacity k, the difference in quality �, and the difference in variable production costs α. 
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Fig. 6. Optimal sales and production rollover strategies in regions (A ) − (F ) for in- 

ventory holding costs 0 < h < 

1 −c 

1+ 1 
β

and an increase in variable production costs 

greater than the increase in capacity consumption α > β depending on the avail- 

able capacity k and the difference in quality �. 
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roduct. Therefore, more products can be produced with the avail- 

ble capacity. In this case, the quantity increase outweighs the neg- 

tive effects of cannibalization and lower prices for the old genera- 

ion. If capacity shortages are more severe ( k < ̃

 k 2 ) and the holding

osts are not prohibitively high (h < 

1 −c 

1+ 1 
β

) , the firm starts to use

re-production while maintaining a DSR and a DPR strategy (F ) . 

n this case, the production in the introduction period shifts from 

he old to the new generation, such that the sales of the new gen-

ration S n, ∗ are not affected by decreasing capacity. The reduced 

roduction of the old generation is compensated for by the pre- 

roduction, such that the same amount of sales of the old gener- 

tion is maintained during the introduction period. Ultimately the 

omplete amount of sold old products is pre-produced if k falls be- 

ow 

˜ k 3 (region (C) ). This leads to the following observation. 

bservation 5. For products with medium quality increase, the 

ptimal production rollover strategy is non-monotone in the ca- 

acity, i.e., for decreasing capacity the optimal mitigation actions 

re changes from a SPR to a DPR and back to a SPR. 

New products with low quality increase . 

The range of new generations with low quality ( ̃  �2 ≤ � ≤ ˜ �1 ) 

xists only for α > 0 ; otherwise ˜ �2 coincides with the threshold 

˜ 
1 ( Fig. 5 a). The main difference to the medium quality case is 

hat for sufficient capacity k ≥ k̄ a DSR and a DPR strategy are opti- 

al (region (D ) ). Hence, a shift to region (E) in response to capac-

ty shortages means only mitigation via pricing but no change in 

ollover strategies. Otherwise, the mitigation actions are the same 

s for products with a medium quality increase. 

New products with larger relative increase in variable production 

osts that exceeds the relative increase in capacity consumption . 

We now turn to cases where the relative increase in vari- 

ble production costs exceeds the relative increase in capacity 

onsumption ( α > β). The resulting optimal sales and production 

ollover strategies are depicted in Fig. 6 for the case that h < 

1 −c 

1+ 1 
β

.

ince ˜ �4 < 

˜ �1 in the case of α > β, we now refer to products 

n the ranges of � ≤ ˜ �4 as low quality, ˜ �4 < � < 

˜ �1 as medium 

uality, and � ≥ ˜ �1 as high quality. The optimal mitigation ac- 

ions for new generations in the low-quality range and high-quality 

ange follow the same structure as discussed for α ≤ β . How- 
515 
ver, the optimal mitigation strategies for new generations in the 

edium-quality range ˜ �4 < � < 

˜ �1 are different. 

It might be assumed that for cases in which variable produc- 

ion costs and capacity consumption increase for the new product 

α > 0 , β > 0) , a switch due to limited capacity from a DSR and a

PR strategy to an SSR and an SPR strategy without pre-production 

s never optimal because this switch means shifting the produc- 

ion exclusively towards the generation that is more expensive to 

roduce, and at the same time more demanding in terms of the 

apacity consumption. However, we find that a shift from a DPR 

nd a DSR strategy in the region (E) to an SPR and an SSR in re-

ion (B ) is optimal if the capacity falls below the threshold 

ˆ k 1 for 

 < α < β and there is medium quality increase ( ̃  �4 < � < 

˜ �1 ) 

see Fig. 6 ). This at first sight counterintuitive finding is driven by 

he cannibalization between product generations. By removing the 

ld product, the firm is able to charge higher prices since price- 

ensitive customers cannot substitute with the old generation. This 

s particularly relevant in this setting because of the high value of 
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> β that in turn requires a high price P n to make the sales of

he new generation profitable. 

A change back from an SSR (B ) to a DSR strategy (C) occurs if

he capacity falls below 

˜ k 1 and h < 

1 −c 

1+ 1 
β

. In this case, the capacity 

s so tight, that the benefits of selling pre-produced old products 

vercompensate for the associated holding costs and cannibaliza- 

ion. This leads to the following observation. 

bservation 6. For products with medium quality increase, the 

ptimal sales rollover strategy is non-monotone in the capacity, i.e., 

or decreasing capacity the optimal mitigation actions are changes 

rom an DSR to a SSR and back to an DSR. 

In conclusion, we find that severe shortages in the produc- 

ion capacity during the introduction period require changes in the 

ales and production rollover strategies. In contrast to the existing 

iterature, we find that in the case of limited capacity, it can be 

ptimal to deliberately choose unaligned sales rollover and pro- 

uction rollover strategies. Even for new generations with a sub- 

tantial increase in quality, a DSR in combination with an SPR can 

e optimal because it allows for the exploitation of pre-production 

f the available capacity is scarce. 

.2.3. Impact of binding pre-production capacity 

A finite pre-production capacity can affect only parameter re- 

ions in which under unlimited pre-production capacity it is op- 

imal to pre-produce, i.e., regions (C), (F), (I). Hence, the finding 

f Corollary 3 is not affected by limited pre-production capacity. 

hat is, for equal capacity consumption of both generations ( β = 0 ) 

ricing is always a sufficient mitigation action. Theorem 1 shows 

hat if pre-production capacity becomes binding (Constraint (2d) ), 

he optimal approach of the firm is to use all of the available ca- 

acity k 0 . 

Concerning pricing, a smaller capacity during the introduction 

eriod k also leads to higher prices if the ability to pre-produce 

s limited, i.e., Corollary 2 includes the regions ( J), ( K), and ( L ).

oreover, the prices also increase if k 0 is decreased. Intuitively, the 

rice of the old product is increased to match the available units 

f the old product with demand. The increased price of the old 

eneration reduces the cannibalization of the new generation. To 

ake advantage of this, it is optimal to also increase the price of 

he new generation. 

These changes in optimal decisions are also reflected in the 

ptimal rollover strategies. The pre-production capacity limits the 

rm’s ability to misalign sales and production rollover strategy. 

herefore, the second reason for the usage of DSR strategy as 

tated in Observation 3 is affected by limited pre-production ca- 

acity. In the extreme case of k 0 = 0 , it is no longer possible to

ombine a DSR with an SPR, i.e., Observations 4 and 5 cannot be 

ade. However, the finite production capacity k may still require a 

hange in the sales and production rollover strategy compared to 

he uncapacitated setting discussed in Section 5.1 . 

Fig. 7 depicts the optimal sales and production decisions given 

nlimited pre-production capacity (k 0 = ∞ ) and the extreme case 

hat no pre-production is possible (k 0 = 0) depending on the pro- 

uction capacity during the introduction period. The optimal de- 

isions only deviate for k < ̃

 k 2 = 0 . 32 for which pre-production is

ptimal, given k 0 = ∞ . For the case k 0 = 0 pre-production can-

ot occur, hence the firm cannot combine a DSR with an SPR for 

 < ̃

 k 3 = 0 . 28 . Instead, it is optimal to stick to a DSR and a DPR

trategy to mitigate the effects of the limited capacity. Note that 

his still implies a change in the optimal rollover strategy com- 

ared to the uncapacitated cases for which an SSR and an SPR are 

ptimal. 
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.3. Impact of limited capacity and mitigation actions on the profit 

Obviously, the smaller the available capacity k the lower the 

rofit that can be obtained because Constraint (2e) becomes more 

estrictive. This section provides insights into how important the 

ptimal mitigation actions, as described in the previous section, 

re with respect to the obtainable profit. Therefore, we compare 

he optimal solutions to a common but simplified sequential plan- 

ing approach. 

The sequential planning approach first determines the sales 

ollover strategy and pricing decisions under the assumption that 

here will be sufficient capacity. In the second step, the firm tries 

o fulfill the sales plan under the actual available capacity. For ex- 

mple, Erhun et al. (2007) report that Intel made pricing deci- 

ions without considering available production capacities that led 

o substantial problems during the introduction period. 

In the first step of the sequential planning approach, it is as- 

umed that unlimited capacity before and during the introduction 

eriod is available ( k 0 = k = ∞ ). The optimal amounts of old and

ew products to be sold S o, ∗∞ 

, S n, ∗∞ 

and the prices of the old and the

ew generation P o, ∗∞ 

, P n, ∗∞ 

are obtained according to Lemma 3 given 

n Appendix B . The prices for the old and the new generation are

et to the solution obtained for the non-binding capacity case: 

 

o,seq = P o, ∗
∞ 

and P n,seq = P n, ∗
∞ 

. (6) 

e consider two alternatives to account for the finite capacity k in 

he second step, first a proportional cut of the production quanti- 

ies and second a reoptimization of the production quantity subject 

o the available capacity. 

The proportional reduction of the production quantities ensures 

hat the original sales rollover strategy is preserved. The produc- 

ion quantities are set in such a way that they match the capacity 

onstraint (2e) : 

 

o,seqPro = X 

o,seqPro = k 
S o, ∗

∞ 

S o, ∗∞ 

+ (1 + β) S n, ∗∞ 

, (7) 

 

n,seqPro = X 

n,seqPro = k 
S n, ∗

∞ 

S o, ∗∞ 

+ (1 + β) S n, ∗∞ 

. (8) 

he second variant is a reoptimization of the production quantities 

y the production department in the second step. For given prices 

ccording to (6) , the optimization problem (2) can be transformed 

nto a mixed-integer program that is used to obtain the optimal 

roduction and sales quantities S o,seqOpt = X o,seqOpt and S n,seqOpt = 

 

n,seqOpt . However, this reoptimization may lead to a change in the 

ales and production rollover strategies that were initially intended 

n the first step. 

To evaluate the losses if the limited capacity is ignored in 

he first planning step, we compare the optimal solution given in 

heorem 1 to the two variants of the sequential planning approach. 

he relative profit losses δseqPro = 

π∗−π seqPro 

π∗ and δseqOpt = 

π∗−π seqOpt 

π∗
re calculated, given the optimal profit π ∗ and the profits π seqPro , 
seqOpt , respectively. 

Fig. 8 shows the relative profit losses for both sequential ap- 

roaches depending on the available capacity k and the relative 

ncrease in quality � that satisfy Conditions (4) and (5) for the ex- 

mplary numerical values α = 0 . 2 , β = 0 . 5 , c = 0 . 5 , h = 0 . 05 , k 0 =
 . 

For both approaches, the relative profit loss δ increases with 

n increasing difference in the quality � between generations and 

ith decreasing capacity k . The greatest profit losses are observed 

or cases with � > 

˜ �4 = 0 . 23 and k < ̃

 k 1 = 0 . 34 in which the op-

imal sales rollover strategy is changed from an SSR to a DSR. 

he optimization of the production quantities in the second stage 

mproves only the profit for new generations with lower qual- 

ty � < 

˜ �1 for which under unlimited capacity a DSR is optimal 

 Fig. 8 b). 
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Fig. 7. Sales and production decisions, given unlimited pre-production capacity and no pre-production capacity depending on the production capacity k for α = 0 . 2 , β = 

0 . 5 , � = 0 . 2 , c = 0 . 5 , h = 0 . 05 . 

Fig. 8. Relative profit loss due to a sequential approach dependent on production capacity k and relative difference in quality � for α = 0 . 2 , β = 0 . 5 , c = 0 . 5 , h = 0 . 05 , k 0 = ∞ . 
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An additional numerical study in which the firm does not 

ave the option of pre-production, i.e., k 0 = 0 , yielded structurally 

quivalent results. 

The presented numerical comparisons show that substantial 

rofit losses can occur if firms use a sequential planning approach 

ompared to the optimal integrated approach in which all deci- 

ions are made under the explicit consideration of the limited ca- 

acity. 

. Managerial insights 

Based on the discussion in the previous section, we high- 

ight the practical implications for the management of product 

ollovers under capacity constraints. Key drivers for the selection 

f the rollover strategy are the available capacity and the differ- 

nce in quality between the product generations. Table 4 qualita- 

ively summarizes the optimal rollover strategy selection based on 
517 
hese two parameters and the increase in capacity consumption of 

he new generation. 

• If the old generation and the new generation consume the same 

amount of capacity per produced unit during the introduction 

period, the selection of the sales and production rollover strat- 

egy mainly depends on the increase in quality. For products 

with a large quality increase, an SSR in combination with an 

SPR is optimal. The use of a DSR aligned with a DPR is optimal 

for new generations with a lower increase in quality. Limited 

capacity is always mitigated via pricing without the need for a 

change in the rollover strategies. 
• In contrast, if the new generation consumes more capacity than 

the old generation, changes in the sales and production strategy 

are beneficial in case of severe capacity shortages. 

For introductions of new generations with a small quality in- 

crease, severe capacity shortages drive the firm to combine a 

DSR with an SPR. The SPR frees up capacity for the new gen- 
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Table 4 

Optimal rollover strategies depending on capacity and quality increase. 

(a) Equal capacity consumption of both generations 

Quality increase 

low high 

high dual sales single sales 

Capacity during introduction dual production single production 

low dual sales single sales 

dual production single production 

(b) Increased capacity consumption of the new generation 

Quality increase 

low high 

high dual sales single sales 

Capacity during introduction dual production single production 

low dual sales dual sales 

single production single production 
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eration while the demand for the old product is still fulfilled 

via pre-produced products. For new generations with a high 

quality increase, the switch from an SSR to a DSR supported 

by pre-production is also optimal. The capacity is more restric- 

tive to the sales of the new generation than the reduction due 

to cannibalization effects induced by the old generation. Hence, 

independently of the quality increase, it is optimal for severe 

capacity shortages to mix an SPR with a DSR. The limited ca- 

pacity is focused on the new generation while it is possible to 

sell products to a broad range of the market by the exploitation 

of pre-production. 
• Whereas the optimal mitigation actions for capacity shortages 

are relatively straightforward for low and high quality increases, 

the optimal mitigation actions are more complex for medium 

quality increases of the new product. Surprisingly, the opti- 

mal strategy selection for sales and production rollover is non- 

monotone in the available capacity. This means a switch in the 

strategy that is optimal to react to medium capacity shortages 

may need to be reversed for more severe capacity shortages. 

This is due to the complex interdependencies between the cus- 

tomer behavior and the operational parameters of the firm. 

For example, if the relative increase in capacity consumption 

exceeds the relative increase in variable production costs, it is 

beneficial to switch from an SPR and an SSR to a DPR and a DSR

in response to medium capacity shortages. This change makes 

use of the capacity efficiently because per capacity unit more 

products are produced. However, if the capacity shortages are 

more severe it is beneficial to switch back to an SPR and devote 

the complete capacity to the new product while fulfilling the 

demand for the old generation by pre-production. 
• If the relative increase in variable production costs exceeds the 

relative increase in capacity consumption it is optimal to switch 

from a DSR and a DPR to an SSR and an SPR. This strategy 

switch may seem counterintuitive at first sight because the 

complete sales and production are shifted to the product that 

has the higher variable costs and consumes more capacity per 

unit. However, it allows the firm to charge a higher price for 

the limited amount of products that can be produced with the 

available capacity. This premium price could not be charged in 

the presence of the old product on the market that causes can- 

nibalization effects. Only if the capacity shortages are so severe 

such that they restrict the sales of the new generation instead 

of the substitution effects, it is optimal to utilize a DSR in com- 

bination with an SPR supported by pre-production. 
518 
• Choosing the optimal mitigation actions is important because 

rollover strategies and pricing decisions that are derived under 

the assumption of unlimited capacity may lead to substantial 

profit losses if applied to cases in which the capacity is scarce. 

These losses increase with the severity of the capacity shortage 

and the increase of the quality of the new generation. 

. Conclusions 

In this paper, we analyzed a capacity-constrained monopolist 

hat intends to introduce a new product in a market in which a 

redecessor generation is already sold. The firm selects sales and 

roduction rollover strategies and decides the amount of the old 

nd the new products to be produced and to be sold as well as 

he corresponding prices to maximize profit. 

The proposed model generalizes existing operations models by 

ncorporating the selection of sales and production rollover strate- 

ies and price decisions. Although there are models for the selec- 

ion of rollover strategies, the existing models ignore capacity con- 

traints that are often observed during new product introductions. 

ur model includes both the selection of rollover strategies and fi- 

ite capacity to capture the interdependencies between the sales 

nd operations-related decisions. 

Our first contribution is to derive the firm’s optimal decisions 

nd the structure of the optimal combination of sales and produc- 

ion rollover strategies. 

We identify two different mitigation actions in response to lim- 

ted capacity. First, increased prices can be used to match demand 

o the available capacity, and at the same time exploiting the cus- 

omers’ willingness to pay, in order to sustain profits. Second, ad- 

itional changes in the sales and/or production rollover strategy, as 

ell as pre-producing the old generation, can be required. 

We establish that limited capacity requires a differentiation be- 

ween sales and production rollover strategies because unlike in 

he case of unlimited capacity, sales and production rollover strate- 

ies are not necessarily aligned. We show that combining a DSR 

ith an SPR strategy can be optimal. Moreover, we find that lim- 

ted capacity drives the firm to select a DSR strategy if the in- 

rease in capacity consumption exceeds the increase in variable 

roduction costs. Thereby, we identify limited capacity as a poten- 

ial driver for a DSR. In the literature, the DSR is mainly consid- 

red as a strategy to mitigate risks. On the contrary, we show that 

 switch from a DSR to an SSR can be optimal in response to lim-

ted capacity if the increase in variable production costs exceeds 

he increase in capacity consumption, to avoid cannibalization of 

he new generation by the old generation. 

We find that for new product generation with a medium 

ncrease in quality, the selection of rollover strategies is non- 

onotone in the available capacity. This implies that a change in 

he rollover strategy that is optimal to mitigate a certain limiting 

apacity has to be reversed in case the capacity shortages are more 

evere. 

We examined the profit losses that occur if a capacity con- 

traint is ignored when deciding on the sales rollover strategy 

nd pricing. These losses compared to an integrated sales and op- 

rations planning approach can be substantial and increase with 

he severity of capacity shortages and the quality increase of the 

ew generation. In conclusion, our results show that differentiat- 

ng sales and production rollover strategies is an effective way to 

itigate the effects of a limited capacity. 

The proposed model leaves several avenues for future research. 

or example, instead of allowing the difference in quality between 

roduct generations and operational parameters such as the in- 

rease in variable production costs and capacity consumption to 

e varied independently, a positive correlation could be imposed. 

n addition, an endogenous decision regarding a capacity exten- 
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ion, e.g., via overtime can also be considered. While the pre- 

ented model assumes no stockout-based substitution, we ana- 

yzed a model variant with stockout-based substitution in which 

he available products are consumed according to a fluid model. 

he numerical results indicate that for optimal decisions stockout- 

ased substitution never occurs. How this result extends to a set- 

ing with more a sophisticated model of stockout-based substitu- 

ions is another direction for future research. Moreover, stochastic 

emand and stochastic production processes, and limited flexibility 

n pricing due to competition are also worth investigating. 
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ppendix A. Derivation of the demand function 

Let F be the cumulative density function of a uniform distri- 

ution between 0 and 1. Further, the demand potential is normal- 

zed to d = 1 . If the old and the new generations are sold simul-

aneously, the demand for the old generation d o n,o is given by the 

hare of customers that have a quality level valuation of θ < θ ′ and 

 

o (θ ) > 0 , i.e., θ > 

P o 

q , 

 

o 
n,o = 

(
F (θ ′ ) − F 

(
min 

{
P o 

q 
; θ ′ 

}))
d 

= min { 1 ; θ ′ } − min 

{
1 ; P o 

q 
; θ ′ 

}
. (9) 

n the case that only the old product is sold, all customers with 

 positive net utility will buy the old product and the demand d o o 

s 

 

o 
o = 

(
1 − F 

(
P o 

q 

))
d = 1 − min 

{
1 ; P o 

q 

}
. (10) 

nalogously, the demand for the new product when both product 

enerations are sold d n n,o , is given by the share of customers with a

ositive net utility for the new product u n (θ ) > 0 , i.e., θ > 

P n 

q (1+�) 

nd a quality valuation higher than the indifference point θ > θ ′ 

 

n 
n,o = 

(
1 − F 

(
max 

{
P n 

q (1 + �) 
; θ ′ 

}))
d 

= 1 − min 

{
1 ; max 

{
P n 

q (1 + �) 
; θ ′ 

}}
. (11) 

imilarly, all the customers with a positive net utility buy if only 

he new generation is sold, resulting in demand d n n with 

 

n 
n = 

(
1 − F ( 

P n 

q (1 + �) 

)
d = 1 − min 

{
1 ; P n 

q (1 + �) 

}
. (12) 

n the following, we normalize the base quality level of the old 

eneration to q = 1 so that (9) and (10) lead to Constraint (2f) on

he old product and (11) and (12) lead to the constraint on the 

ales of the new product (2g) . 

ppendix B. Proofs 

emma 1. All optimal solutions to Problem (2) can be found in the 

ubspace given by 0 ≤ P o ≤ 1 , (� + 1) P o ≤ P n ≤ P o + �, S o ≤ θ ′ −
 

o , and S n ≤ 1 − θ ′ . 
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roof of Lemma 1. The net utility is u o < 0 for P o > 1 and u n < 0

or P n > 1 + �, respectively. Hence, the demand for old and new 

roducts is 0, respectively and according to (2a) changes in the 

rices do not change the objective value. It has to be shown 

hat by excluding 0 ≤ (� + 1) P o < P n and P n > P o + � ≥ � + 1 no

nique optimal solution is excluded. 

For P n < (� + 1) P o it follows from (2f) that S o = 0 , conse-

uently decreasing P o to P o 
′ 

such that P n = P o 
′ + � yields the same 

rofit. From P n > P o + � it follow that θ ′ > 1 , hence S n = 0 ac-

ording to (2g) , consequently decreasing P n to P n 
′ 

such that θ ′ = 

 ⇔ P n 
′ = P o + � results in the same profit. Hence, a restriction to

� + 1) P o ≤ P n ≤ P o + � does not lead to suboptimal solutions. 

Given the price restrictions P o ≤ 1 and (� + 1) P o ≤ P n ≤ P o + �,

he sales constraints (2f) and (2g) simplify to 

 

o ≤
{ 

P n − P o 

�
− P o = d o n,o if S n > 0 , 

1 − P o = d o o otherwise , 

(13) 

 

n ≤

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 − P n − P o 

�
= d n n,o if S o > 0 , 

1 − P n 

1 + �
= d n n otherwise . 

(14) 

Next we show that for every 0 < P o < 1 there is a unique (� +
) P o ≤ P n ≤ � + P o for which d o o = d o n,o ≥ 0 and d n n,o = 0 . From d o o =
 

o 
n,o it follows that P n −P o 

� − P o = 1 − P o ⇔ P n = � + P o . From d n n,o =
 it follows 1 − P n −P o 

� = 0 ⇔ P n = � + P o . Hence, it is sufficient to

onsider S o ≤ P n −P o 

� − P o . 

Conversely, for every (� + 1) P o ≤ P n ≤ 1 + P o there is a unique 

 ≤ P o ≤ 1 for which d n n = d n n,o ≥ 0 and d o n,o = 0 . From d n n = d n n,o it

ollows 1 − P n −P o 

� = 1 − P n 

1+� ⇔ P o = 

P n 

1+� and from d o n,o = 0 it fol-

ows P o = 

P n −P o 

� − P o ⇔ P o = 

P n 

1+� . Hence, it is sufficient to consider

 

n ≤ 1 − P n −P o 

�
. �

emma 2. All optimal solutions to Problem (2) fulfill Con- 

traints (2f) and (2g) with equality. 

roof of Lemma 2. Suppose an optimal solution does not fulfill 

onstraint (2f) with equality. By increasing P o to P o 
′ 

such that Con- 

traint (2f) is binding, the objective value can be improved. The 

lack in Constraint (2g) is non-decreasing in P o and all other con- 

traints remain unaffected. Hence, the solution with P o 
′ 

is feasible 

ut has a higher objective value which contradicts the assumption 

hat the original solution is an optimal solution. Analogous argu- 

ents hold for non-binding Constraint (2g) and increases in P n . �

emma 3. The optimal decisions P o, ∗, X o, ∗, S o, ∗, P n, ∗, X n, ∗ = S n, ∗ and

he resulting profit π ∗∞ 

for Problem (2) with k = k 0 = ∞ are: 

� ≤ αc αc < � < α α ≤ �

P o, ∗
∞ 

c+1 
2 

c+1 
2 

- 

P n, ∗
∞ - c(1+ α)+1+�

2 
c(1+ α)+1+�

2 

S o, ∗
∞ = X o, ∗

∞ 
1 −c 

2 
c(α−�) 

2� 0 

S n, ∗
∞ = X n, ∗

∞ 0 �−αc 
2�

1+�−c(1+ α) 
2(1+�) 

π ∗
∞ 

(c−1) 2 

4 
c 2 �+ α2 c 2 −2 αc�−2 c�+�2 +�

4�
(c(1+ α) −(1+�)) 2 

4(1+�) 

roof of Lemma 3. Due to the unlimited capacity and nonnegative 

olding cost, pre-production is never optimal and X o, ∗
pre, ∞ 

= 0 and 

roduction is always aligned with sales, i.e., S o, ∗ = X o, ∗ and S n, ∗ = 

 

n, ∗. With Lemma 1 and 2 , Problem (2) further simplifies to 

ax 
P n ,P o 

π∞ 

= (P n −c(1+α)) 

(
1− P n −P o 

�

)
+(P o −c) 

(
P n −P o 

�
− P o 

)
(15a) 
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P n − P o 

�
− P o ≥ 0 , (15b) 

 − P n − P o 

�
≥ 0 , (15c) 

 ≤ P o ≤ 1 , (� + 1) P o ≤ P n ≤ � + P o . (15d) 

The necessary condition for optimal prices are obtained by 

quating the partial derivatives to 0 

∂π∞ 

∂P o 
= 

c(� − α) + 2(P n − P o (1 + �)) 

�
=0 ⇔ P o = 

2 P n + c(� − α)

2(1 + �) 
(16) 

∂π∞ 

∂P n 
= 

αc + � + 2(P o − P n ) 

�
= 0 ⇔ P o = 

2 P n − � − αc 

2 

. (17) 

ith the resulting prices 

 

n, ∗
∞ 

= 

c(1 + α) + 1 + �

2 

> 0 , (18) 

 

o, ∗
∞ 

= 

c + 1 

2 

> 0 . (19) 

he obtained prices mark a global maximum as the Hessian matrix 

 π∞ = 

⎛ 

⎜ ⎝ 

−2(1 + �) 

�

2 

�
2 

�
− 2 

�

⎞ 

⎟ ⎠ 

, (20) 

s negative definite because it is symmetric, − 2(1+�) 
� < 0 , and 

 H π∞ 

| = 

4 
�

> 0 . The resulting optimal sales and profit are 

 

n, ∗
∞ 

= 

� − αc 

2�
, S o, ∗

∞ 

= 

c(α − �) 

2�
, 

π ∗
∞ 

= 

c 2 � + α2 c 2 − 2 αc� − 2 c� + �2 + �

4�
. (21) 

e find the conditions for a DSR and DPR from the conditions for 

ositive sales of both generations 

 

n, ∗
∞ 

> 0 ⇔ αc < � and S o, ∗
∞ 

> 0 ⇔ α > �. (22) 

onsequently, for ˜ �1 = α ≤ � an SSR is optimal, for which 

P n, ∗−P o 

� − P o = 0 ⇔ P o, ∗ = 

1 
2 (1 + 

c(1+ α) 
1+� ) . The optimal sales of both

enerations and the resulting profit are 

 

o, ∗
∞ 

= 0 , S n, ∗
∞ 

= 

1 + � − c(1 + α) 

2(1 + �) 
> 0 , 

π ∗
∞ 

= 

(c(1 + α) − (1 + �)) 2 

4(1 + �) 
. (23) 

he non-negativity of the sales condition is fulfilled for all consid- 

red cases c(1 + α) < (1 + �) . Analogously, for ˜ �2 = cα ≥ � a “do

ot introduce” strategy is optimal, where the optimal decisions fol- 

ow from 1 − P n −P o, ∗
� = 0 ⇔ P n, ∗ = 

1 
2 (1 + c + �(1 − c)) , 

 

o, ∗
∞ 

= 

1 − c 

2 

> 0 , S n, ∗
∞ 

= 0 , π ∗
∞ 

= 

(c − 1) 2 

4 

. (24) 

he non-negativity of the sales condition is fulfilled for all consid- 

red cases 1 ≥ c. �

roof of Corollary 1. The value of k̄ follows immediately from 

 

o, ∗∞ 

+ (1 + β) X n, ∗∞ 

= k̄ with X o, ∗∞ 

, X n, ∗∞ 

according to Lemma 3 . �

roof of Theorem 1. From Corollary 1 , we find the capacity k̄ such 

hat capacity becomes binding (3) . Next, we analyze the optimal 
520 
ecisions for k < k̄ and relaxed Constraint (2d) . With Lemma 1 and 

 , we find the sales of the old and the new generation 

 

o = 

(
P n − P o 

�
− P o 

)
= X 

o + X 

o 
pre , S n = 

(
1 − P n − P o 

�

)
= X 

n . 

(25) 

his leads to the following optimization problem 

max 
 

o ,P n ,X o pre 

πk = (P n − c(1 + α)) 

(
1 − P n − P o 

�

)

+(P o − c) 

(
P n − P o 

�
− P o 

)
− hX 

o 
pre (26a) 

.t. (
P n − P o 

�
− P o 

)
− X 

o 
pre + (1 + β) 

(
1 − P n − P o 

�

)
= k, (26b) 

P n − P o 

�
− P o ≥ X 

o 
pre , (26c) 

1 − P n − P o 

�
≥ 0 , (26d) 

0 ≤ P o ≤ 1 , (� + 1) P o ≤ P n ≤ � + P o , X 

o 
pre ≥ 0 . (26e) 

From Constraint (26b) , we obtain 

 

n = 

�(β − X 

o 
pre − k − P o + 1) 

β
+ P o β > 0 , (27) 

 

o = 1 − X 

o 
pre − k β = 0 . (28) 

ence, we split the analysis in the cases β > 0 and β = 0 . We start

ith the case β > 0 and fix the decision variable X o pre to x o pre . The

esulting optimization problem is given by 

max 
P o 

πk 

= 

β(�−αc)(x o pre +k + P o − 1) −β2 
(
P o 2 −(c + 1) P o + c+ hx o pre 

)
−�(x o pre + k + P o −1) 2 

β2 

(29a) 

.t. 

P o ≥ 1 − x o pre − k, (29b) 

P o ≤ 1 − x o pre −
k 

1 + β
. (29c) 

We split the analysis in the unconstrained and two constrained 

ases. For the unconstrained problem, the first and second partial 

erivative with respect to P o of the profit are 

∂πk 

∂P o 
= 

�(β − 2(x o pre + k + P o − 1)) 

β2 
− αc 

β
+ c − 2 P o + 1 , (30) 

∂ 2 πk 

∂ P o 2 
= −2�

β2 
− 2 < 0 . (31) 

e find the price P ∗,o 
k 

for the unconstrained case from the follow- 

ng necessary condition for extreme points 

∂πk 

∂P o 
= 0 ⇔ P ∗,o 

k 
= 

β2 (c + 1) + β(� − αc) − 2�(x o pre + k − 1) 

2 

(
β2 + �

) . 

(32) 

ue to the concavity of πk in P o ( 
∂ 2 πk 

∂ P o 2 
< 0 ), we find the following

wo optimal values in case the Constraints (29b) or (29c) become 

inding: 

 

∗,o 
k 

= 1 − x o pre − k, (33) 
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∗,o 

k̄ 
= 1 − x o pre −

k 

1 + β
. (34) 

hich of the constraints is binding depends on the value of 

 

o 
pre . We identify the following properties of the optimal uncon- 

trained, and constrained prices with respect to the amount of pre- 

roduction 

∂P ∗,o 
k 

∂x o pre 

= − �

� + β2 
, 

∂ 2 P ∗,n 
k 

∂ x o pre 
2 

= 0 , (35) 

∂P ∗,o 

k̄ 

∂x o pre 

= −1 , 
∂ 2 P ∗,o 

k̄ 

∂ x o pre 
2 

= 0 , (36) 

∂P ∗,o 
k 

∂x o pre 

= −1 , 
∂ 2 P ∗,o 

k 

∂ x o pre 
2 

= 0 . (37) 

ence, the unique value of x o pre at which P ∗,o 

k̄ 
= P ∗,o 

k 
is given by 

 

o 

pre, ̄k 
= 

−β2 (c−1) −β(c+ �+ 2 k −1) + �(2 k −1) + α(c(1 + β)) 

2 β(1 + β) 
(38) 

nd the value x o pre that ensures P ∗,o 
k 

is equal to P ∗,o 
k 

is obtained at 

 

o 
pre, k = 

β − � − c(β − α) 

2 β
− k. (39) 

ote that x o 
pre, ̄k 

≥ x o 
pre, k 

and the partial derivative of the profit with 

espect to the pre-production is continuous at (38) and (39) , i.e., 

∂πk (P ∗,o 
k 

, x o pre = x o 
pre, k 

) 

∂x o pre 

= 

∂πk (P ∗,o 
k 

, x o pre = x o 
pre, k 

) 

∂x o pre 

and 

∂πk (P ∗,o 

k̄ 
, x o pre = x o 

pre, ̄k 
) 

∂x o pre 

= 

∂πk (P ∗,o 
k 

, x o pre = x o 
pre, ̄k 

) 

∂x o pre 

, (40) 

nd decreasing in x o pre because 

∂πk (P ∗,o 
k 

) 

∂x o pre 

= 

�(1 + β − c − h − 2(x o pre + k )) − β(hβ + cα) 

β2 + �
, 

∂ 2 πk (P ∗,o 
k 

) 

∂ x o pre 
2 

= 

−2�

β2 + �
< 0 , (41) 

∂πk (P ∗,o 

k̄ 
) 

∂x o pre 

= 1 − 2 

(
x o pre + 

k 

1 + β

)
− c − h, 

∂ 2 πk (P ∗,o 

k̄ 
) 

∂ x o pre 
2 

= −2 < 0

(42) 

∂πk (P ∗,o 
k 

) 

∂x o pre 

= 1 − 2(x o pre + k ) − c − h, 
∂ 2 πk (P ∗,o 

k 
) 

∂ x o pre 
2 

= −2 < 0 . 

(43) 

ence, three cases can be differentiated based on whether the in- 

ersections x o 
pre, ̄k 

and x o 
pre, k 

occur for x o pre ≤ 0 or x o pre > 0 because 

he optimal prices are all linear in x o pre (see (35) –(37) ). 

Case 1 (x o 
pre, ̄k 

≤ 0 ∧ x o 
pre, k 

< 0 ∧ β > 0 ) : 

From x o 
pre, ̄k 

≤ 0 it follows, 

 ≤
(

1 + 

c(β − α) 

(� − β) 

)
(β + 1) 

2 

= 

ˆ k 1 for � > β, 

 ≥
(

1 + 

c(β − α) 

(� − β) 

)
(β + 1) 

2 

= 

ˆ k 1 for � < β, (44) 

� ≥ α = 

˜ �1 for � = β. 
i

521 
rom x o 
pre, k 

< 0 it follows, 

 > 

β − � − c(β − α) 

2 β
= 

ˆ k 2 . (45) 

or this case Constraint (29c) is binding. Dependent on the par- 

ial derivative of the profit with respect to the pre-production, two 

ubcases have to be differentiated. 

Case 1.1 : No pre-production, X o, ∗
pre = 0 , is optimal for 

∂πk (P ∗,o 

k̄ 
,x o pre =0) 

∂x o pre 
≤ 0 , i.e., 

 ≥ (β + 1)(1 − c − h ) 

2 

= 

˜ k 1 . (46) 

y substituting X o, ∗
pre in (34), (27) , and (25) , we find 

P o, ∗
k 

= 1 − k 

1 + β
, P n, ∗ = 

(1 + �)(1 + β − k ) 

(1 + β) 
, 

S o, ∗
k 

= X 

o, ∗
k 

= 0 , S n, ∗
k 

= X 

n, ∗
k 

= 

k 

β + 1 

, (47) 

nd from (29a) the resulting profit 

∗
k = 

k ((β + 1)(� + 1 − c(α + 1)) − (� + 1) k ) 

(β + 1) 2 
. (48) 

ase 1.2 : Pre-production is optimal for 
∂πk (P ∗,o 

k̄ 
,x o pre =0) 

∂x o pre 
> 0 , i.e., 

 < 

(β + 1)(1 − c − h ) 

2 

= 

˜ k 1 . (49) 

he optimal pre-production X o, ∗
pre is derived from 

∂πk (P ∗,o 

k̄ 
) 

∂x o pre 

= 1 − 2 

(
x o pre + 

k 

1 + β

)
− c − h = 0 

⇔ X 

o, ∗
pre = 

1 − c − h 

2 

− k 

1 + β
. (50) 

y substituting X o, ∗
pre in (34), (27), (25) , and (29a) we find 

 

o, ∗
k 

= 

c + h + 1 

2 
, P n, ∗

k 
= 

c + h + 1 

2 
+ �

(
1 − k 

(1 + β) 

)
, X o, ∗

k 
= 0 , 

 

o, ∗
k 

= X o, ∗
pre = 

1 − c − h 

2 
− k 

1 + β
, S n, ∗

k 
= X n, ∗

k 
= 

k 

β + 1 
, 

∗
k = 

(1 + β) 
(
β(c + h − 1) 2 + c 2 + 2 c(h − 2 αk − 1) + 4 hk + (h − 1) 2 

)
+ 4�k (β − k + 1) 

4(β + 1) 2 
.

(51) 

Case 2 ( x o 
pre, ̄k 

> 0 ∧ x o 
pre, k 

< 0 ∧ β > 0 ): 

In addition to Condition (45) , from x o 
pre, ̄k 

> 0 it follows 

 > 

(
1 + 

c(β − α) 

(� − β) 

)
(β + 1) 

2 

= 

ˆ k 1 for � > β, 

 < 

(
1 + 

c(β − α) 

(� − β) 

)
(β + 1) 

2 

= 

ˆ k 1 for � < β, (52) 

� < α = 

˜ �1 for � = β. 

epending on the partial derivative of the profit with respect to 

he pre-production, three subcases have to be differentiated. 

Case 2.1 : No pre-production, X o, ∗
pre = 0 , is optimal for 

∂πk (P ∗,o 
k 

,x o pre =0) 

∂x o pre 
≤ 0 , i.e., 

 ≥ �(β + 1) − c(αβ + �) − h (� + β2 ) 

2�
= 

˜ k 2 . (53) 

n this case Problem (29) is unconstrained. By substituting X o, ∗
pre = 0 

n (32), (27) , and (25) we find 
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o, ∗
k 

= 

β(−αc + β(c + 1)) + �(2(1 − k ) + β) 

2(� + β2 ) 
, 

 

n, ∗
k 

= 

�2 + β(−αc + β(c + 1)) + �(−2(1 + β) k + (c(α − β) + 2(1 + β + β2 )))

2(� + β2 ) 

 

o, ∗
k 

= X o, ∗
k 

= 

(1 + β)(c(α − β) + (β − �)) + 2 k (� − β) 

2(� + β2 ) 
, 

 

n, ∗
k 

= X n, ∗
k 

= 

2 βk + (c(β − α) + � − β) 

2(� + β2 ) 
, (54) 

nd from (29a) the resulting profit 

∗
k = 

β2 (c − 1) 2 + �2 − 4�k (c − 1 + k ) − 2 c�α + c 2 α2 + 2 β(c − 1 + 2 k )(� − cα

4(� + β2 ) 

(55) 

ase 2.2 : Pre-production is optimal for the case 
∂πk (P ∗,o 

k 
,x o pre =0) 

∂x o pre 
> 0 , 

.e., 

 < 

�(β + 1) − c(αβ + �) − h (� + β2 ) 

2�
= 

˜ k 2 (56) 

nd 

∂πk (P ∗,o 
k 

,x o pre = x o pre, ̄k 
) 

∂x o pre 
≤ 0 , i.e., 

 ≥ (β + 1)(� − βh − αc) 

2�
= 

˜ k 3 . (57) 

n this case Problem (29) is unconstrained. The optimal value of 

re-production is determined from 

∂πk (P ∗,o 
k 

) 

∂x o pre 

= 0 ⇔ X 

o, ∗
pre = 

�(1 + β) − c(� + αβ) − h (� + β2 ) 

2�
− k

(58) 

y substituting X o, ∗
pre in (32), (27) , and (25) , we find 

 

n, ∗
k 

= 

1 + � + c(1 + α) + h (1 + β) 

2 

, P o, ∗
k 

= 

1 + c + h 

2 

, 

 

o, ∗
k 

= 

(1 + β)(cα + hβ) + �(2 k − (β + 1)) 

2�
, 

 

o, ∗
k 

= 

c(α − �) + h (β − �) 

2�
, S n, ∗

k 
= X 

n, ∗
k 

= 

� − αc − hβ

2�
, (59) 

nd from (29a) the resulting profit 

∗
k = 

�2 + �(1 + c 2 + h (−2 − 2 β + h + 4 k ) + 2 c(−1 + h − α)) + (βh + cα) 2 

4�
. 

(60) 

ase 2.3 : For the case 
∂πk (P ∗,o 

k 
,x o pre = x o pre, ̄k 

) 

∂x o pre 
> 0 , i.e., 

 < 

(β + 1)(� − βh − αc) 

2�
= 

˜ k 3 , (61) 

he optimal decisions are equivalent to Case 1.2 and given by (51) . 

Case 3 ( x o 
pre, ̄k 

> 0 ∧ x o 
pre, k 

≥ 0 ∧ β > 0 ) 

In addition to Condition (52) , from x o 
pre, k 

≥ 0 it follows 

 ≤ β − � − c(β − α) 

2 β
= 

ˆ k 2 . (62) 

epending on the partial derivative of the profit with respect to 

he pre-production, four subcases have to be differentiated. 

Case 3.1 : No pre-production, X o, ∗
pre = 0 , is optimal for 

∂πk (P ∗,o 
k 

,x o pre =0) 

∂x o pre 
≤ 0 , i.e., 

 ≥ 1 − c − h = 

˜ k 4 . (63) 

2 

522 
n this case Problem (29) is constrained by Constraint (29b) . By 

ubstituting X o, ∗
pre in (33), (27), (25) , and (29a) we find 

 

o, ∗
k 

= 1 − k, P n, ∗
k 

= 1 + � − k , X 

o, ∗
k 

= S o, ∗
k 

= k , 

 

o, ∗
pre = S n, ∗

k 
= X 

n, ∗
k 

= 0 , π ∗
k = k ( 1 − c − k ) . (64) 

Case 3.2 : Pre-production is optimal for the case of 
∂πk (P ∗,o 

k 
,x o pre =0) 

∂x o pre 
> 0 , i.e., 

 < 

1 − c − h 

2 

= 

˜ k 4 , (65) 

nd 

∂πk (P ∗,o 
k 

,x o pre = x o pre, k 
) 

∂x o pre 
≤ 0 , i.e., 

≤ βh + αc = 

˜ �3 . (66) 

n this case also Constraint (29b) is binding. The optimal value of 

re-production is determined from 

∂πk (P ∗,o 
k 

) 

∂x o pre 

= 0 ⇔ X 

o, ∗
pre = 

1 − c − h 

2 

− k. (67) 

y substituting X o, ∗
pre in (33), (27) , and (25) , we find 

P o, ∗
k 

= 

c + h + 1 

2 

, P n, ∗
k 

= 

c + 2� + h + 1 

2 

, X 

o, ∗
k 

= k, 

S o, ∗
k 

= 

1 − c − h 

2 

, S n, ∗
k 

= X 

n, ∗
k 

= 0 , (68) 

ith resulting profit 

∗
k = 

(c + h − 1)(1 + 3 h − c) 

4 

+ hk. (69) 

ase 3.3 : For the case of 
∂πk (P ∗,o 

k 
,x o pre = x o pre, k 

) 

∂x o pre 
> 0 , i.e., 

> βh + αc = 

˜ �3 (70) 

nd 

∂πk (P ∗,n 
k 

,x o pre = x o pre, ̄k 
) 

∂x o pre 
≤ 0 , i.e., Condition (57) is fulfilled, the opti- 

al decisions are as in Case 2.2 given by (58) and (59) . 

Case 3.4 For the case of 
∂πk (P ∗,o 

k 
,x o pre = x o pre, ̄k 

) 

∂x o pre 
> 0 , i.e., Condi- 

ion (61) is fulfilled, the optimal decisions are equivalent to Cases 

.2 and 2.3 and given by (51) . 

The resulting optimization problem for β = 0 and X o pre fixed to 

 

o 
pre is given by 

max 
P n 

πk = (P n − (α + 1) c) 

(
1 − x o pre + k + P n − 1 

�

)
(71a) 

− (c + x o pre + k − 1)((� + 1)(x o pre + k − 1) + n ) 

�
− hx o pre (71a) 

.t. 

 

n ≤ 1 + � − x o pre − k = P ∗,n 

k̄ 
, (71b) 

 

n ≥ 1 + � − x o pre − k − �k = P ∗,n 
k 

. (71c) 

Problem (71) is analyzed analogous to Problem (29). First 

nd second order optimality conditions for the objective func- 

ion (71a) lead to P ∗,n 
k 

= 

1 
2 (αc + � − 2 x o pre − 2 k + 2) and results in

he following three cases depending on whether one of the Con- 

traints (71b) or (71c) is binding. The profit is concave for all three 

rices because 

∂ 2 πk (P ∗,n 
k 

) 

∂ x o pre 
2 

= 

∂ 2 πk (P ∗,n 
k 

) 

∂ x o pre 
2 

= −2 < 

∂ 2 πk (P ∗,n 

k̄ 
) 

∂ x o pre 
2 

= −1 < 0 . (72) 

ase 1 (P ∗,n 
k 

≥ P ∗,n 
k 

) : From P ∗,n 
k 

≥ P ∗,n 
k 

it follows that k ≤ �−αc 
2� =

ˆ 
 1 . Whether inventory is used depends on 

∂πk (P ∗,n 
k 

,x o pre =0) 

∂x o pre 
. For 
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M

∂πk (P ∗,n 
k 

,x o pre =0) 

∂x o pre 
≤ 0 , i.e., Condition (46) , no inventory is used and 

he optimal decisions are as given by (47) with resulting optimal 

rofit (48) . In contrast, for 
∂πk (P ∗,n 

k 
,x o pre =0) 

∂x o pre 
> 0 , i.e., Condition (49) , 

he use of inventory is optimal and the optimal decisions and the 

esulting profit are given by (50) and (51) . 

Case 2 (P ∗,n 
k 

< P ∗,n 
k 

< P ∗,n 

k̄ 
) : From P ∗,n 

k̄ 
< P ∗,n 

k 
it follows that k >

�−cα
2� = ̂

 k 1 and from P ∗,n 
k 

< P ∗,n 
k 

it follows that (� > cα = 

˜ �2 ∧ α > 

) ∨ α ≤ 0 . Whether inventory is used depends on 

∂πk (P ∗,n 
k 

,x o pre =0) 

∂x o pre 
. 

or 
∂πk (P ∗,n 

k 
,x o pre =0) 

∂x o pre 
≤ 0 , i.e., Condition (53) , no inventory is used 

nd the optimal decisions are as given by (54) . In contrast, for 
∂πk (P ∗,n 

k 
,x o pre =0) 

∂x o pre 
> 0 , i.e., Condition (56) , the use of inventory is op- 

imal and the optimal decisions are given by (58) and (59) with 

esulting profit (60) . 

Case 3 (P ∗,n 

k̄ 
≤ P ∗,n 

k 
) : From P ∗,n 

k 
≤ P ∗,n 

k 
it follows that � ≤ cα = 

˜ 
2 ∧ α > 0 . Whether inventory is used depends on 

∂πk (P ∗,n 

k̄ 
,x o pre =0) 

∂x o pre 
. 

or 
∂πk (P ∗,n 

k̄ 
,x o pre =0) 

∂x o pre 
≤ 0 , i.e., Condition (63) , no inventory is used 

nd the optimal decisions are as given by (64) . In contrast, for 
∂πk (P ∗,n 

k̄ 
,x o pre =0) 

∂x o pre 
> 0 , i.e., Condition (65) , the use of inventory is op- 

imal and the optimal decisions are given by (67) and (68) the re- 

ulting optimal profit (69) . 

The optimal decisions in Table 2 follow from the following ob- 

ervations: 

• The unique intersection of ˜ k 4 , ˜ �3 and 

˜ k 2 is found at � = βh + 

αc = 

˜ �3 and k = ̃

 k 4 , for β > 0 and 

˜ k 2 = ̃

 k 4 for β = 0 
• ˜ k 3 = 0 is given by ˜ �3 = βh + αc
• The unique intersection of ˆ k 1 and 

ˆ k 2 is k = 0 and � = β(1 −
c) + cα for which α 
 = β ∧ β > 0 

• The unique intersection of ˆ k 1 , ̃  k 1 , ̃  k 2 , and 

˜ k 3 is ˜ �4 = 

hβ+ cα
c+ h and 

k = ̃

 k 1 for β > 0 , and for β = 0 ˆ k 1 = ̃

 k 3 and 

˜ k 1 = ̃

 k 2 . 

• ˜ �4 = 

hβ+ cα
c+ h < β for α < β and 

˜ �4 = 

hβ+ cα
c+ h > β for α > β

• A unique intersection of ˆ k 1 and k̄ 1 exists at � = α = 

˜ �1 and 

k = 

(1+ β)(1 −c) 
2 if β 
 = α ∧ α > 0 

• ˆ k 1 > k̄ 1 and 

ˆ k 1 > k̄ 2 for (α < β ∧ (� < α ∨ � > β)) ∨ (α > β ∧ 

(� < β ∨ � > α) 
• ˆ k 1 < k̄ 1 and 

ˆ k 1 < k̄ 2 for (α < � < β) ∨ (α > β ∧ β < � < α) 
• ˆ k 2 > 0 ⇔ � < β − c(β − α) 
• For β > α ∧ 0 < � < β − c(β − α) it holds that ˆ k 1 > ̂

 k 2 
• For 0 < � < β < α it holds that ˆ k 1 > ̂

 k 2 and for β < α ∧ β <

� < β − c(β − α) we find 

ˆ k 1 < 0 

Next we turn to the cases in which Constraint (2d) is bind- 

ng. The partial derivative of the profit with respect to the pre- 

roduction is continuous and decreasing, for both β > 0 (see 

40) - (43) ) and also for β = 0 (see (72) ). It follows that X o, ∗
pre =

in { X o, ∗
pre ; k 0 } because 

∂πk (X o, ∗
pre ) 

∂x o pre 
= 0 if X o, ∗

pre > 0 . Hence, for the case

 

0 ≥ X o, ∗
pre , the optimal pricing, sales, and production are given by 

able 2 , for k 0 < X o, ∗
pre the optimal values are determined as follows.

For β > 0 the optimal price of the old product P o, ∗ is obtained 

rom (33) for x o 
pre, k 

≥ k 0 , from (32) for x o 
pre, ̄k 

≥ k 0 > x o 
pre, k 

, and from

34) for k 0 > x o 
pre, ̄k 

. The optimal price for the new product P n, ∗ is

iven by (27) , the optimal sales S o, ∗, S n, ∗ and production quantities 

 

o, ∗, X n, ∗ are obtained from (25) . 

Analogously, for β = 0 the optimal price of the new product 

 

n, ∗ follows from P n = 1 + � − X o, ∗
pre − k − �k for k ≤ ˆ k 1 (Case 1 for

= 0 ), from P ∗,n 
k 

= 

1 
2 (αc + � − 2 X o, ∗

pre − 2 k + 2) for (� > 

˜ �2 ∧ α >

) ∨ α ≤ 0) ∧ k > ̂

 k (Case 2 for β = 0 ), and from P n = 1 + � −
1 
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o, ∗
pre − k for � ≤ ˜ �2 ∧ α > 0 (Case 3 for β = 0 ). The opti-

al price of the old product P o, ∗ is given by (28) and the opti-

al sales S o, ∗, S n, ∗ and production quantities X o, ∗, X n, ∗ are obtained 

rom (25) . �

roof of Corollary 2. From Corollary 1 it follows that ∂P o, ∗
∂k 

= 

∂P n, ∗
∂k 

= 0 for k ≥ k̄ . Hence, we focus on the cases with k < k̄ . Ac-

ording to the derivations in Theorem 1 , P o and P n are continuous 

n k . Thus it is sufficient to show that the partial derivatives with 

espect to k are non-positive for k < k̄ 

∂P n, ∗
B 

∂k 
= 

∂P n, ∗
J 

∂k 
= −1 + �

1 + β
< 0 , 

∂P n, ∗
C 

∂k 
= 

∂P o, ∗
J 

∂k 
= − 1 

1 + β
< 0 , 

∂P o, ∗
E 

∂k 
= 

∂P o, ∗
L 

∂k 
= − �

� + β2 
< 0 , (73) 

∂P n, ∗
E 

∂k 
= 

∂P n, ∗
L 

∂k 
= −�(1 + β) 

� + β2 
< 0 , 

∂P o, ∗
H 

∂k 
= 

∂P o, ∗
H 

∂k 
= 

∂P n, ∗
K 

∂k 
= −1 ,

∂P o, ∗
C 

∂k 
= 

∂P o, ∗
F 

∂k 
= 

∂P n, ∗
F 

∂k 
= 

∂P o, ∗
G 

∂k 
= 0 . (74

�

roof of Corollary 3. For β = 0 , it follows that k̄ 3 = 

1 −c 
2 = k̄ 2 .

ence, a change in rollover strategies could only occur for � > 

˜ �2 . 

or β = 0 it follows ˜ k 1 = 

1 −c−h 
2 ≤ 1 −c 

2 = k̄ 3 . Thus optimal solutions 

or k̄ 3 ≤ k < k̄ 1 are are always found in region (B ) . In region (B )

he SSR and SPR strategy are optimal which are equivalent to the 

ptimal sales and production strategies for k ≥ k̄ and � > 

˜ �2 . �
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