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Abstract
Empirical studies show that the inter-event times of a production system are corre-
lated. However, most of the analytical studies for the analysis and control of produc-
tion systems ignore correlation. In this study, we show that real-time data collected 
from a manufacturing system can be used to build a Markovian arrival processes 
(MAP) model that captures correlation in inter-event times. The obtained MAP 
model can then be used to control production in an effective way. We first present 
a comprehensive review on MAP modeling and MAP fitting methods applicable to 
manufacturing systems. Then we present results on the effectiveness of these fitting 
methods and discuss how the collected inter-event data can be used to represent the 
flow dynamics of a production system accurately. In order to study the impact of 
capturing the flow dynamics accurately on the performance of a production con-
trol system, we analyze a manufacturing system that is controlled by using a base-
stock policy. We study the impact of correlation in inter-event times on the optimal 
base-stock level of the system numerically by employing the structural properties 
of the MAP. We show that ignoring correlated arrival or service process can lead to 
overestimation of the optimal base-stock level for negatively correlated processes, 
and underestimation for the positively correlated processes. We conclude that MAPs 
can be used to develop data-driven models and control manufacturing systems more 
effectively by using shop-floor inter-event data.
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1 Introduction

Technological advances allow manufacturers to access and collect data from the 
shop floor more easily and effectively. Extensive data collected from the shop 
floor can be analyzed to develop decision support systems for integrated prod-
uct-production simulation, problem identification, and production control. As a 
result, data-driven modeling and control methods are now considered as enabling 
technologies to address technology challenges for implementing factory of the 
future (IEC 2015).

Empirical studies show that the inter-departure times of a production system 
demonstrate significant correlation (Schomig and Mittler 1995; Inman 1999). In 
addition, analysis of the output dynamics of production system with i.i.d. service 
time distribution demonstrates that the output process from a production system 
can be correlated (Hendricks and McClain 1993; Tan and Lagershausen 2017). 
Since the output from a production system is an input to another one, the inter-
arrival times of work centers also exhibit autocorrelation. However, most of the 
studies in the literature make simplifying assumptions for the inter-event distri-
butions. More specifically, they assume independence of the inter-event times in 
order to achieve analytical tractability. However, these simplifying assumptions 
may increase the risk of model misspecification that leads to errors in setting con-
trol parameters.

In this paper, we focus on the inter-event data such as the inter-arrival, inter-
departure, and service completion times that can be collected from the shop floor. 
Our objective is to answer the following questions: how can the collected inter-
event data be used to represent the statistical properties of the flow dynamics of a 
production system accurately and what is the benefit of capturing flow dynamics 
accurately on the performance of a production control system?

This paper addresses the first problem by presenting a modeling framework 
that faithfully captures the statistical properties of the shop-floor inter-event data. 
For example, Fig.  1 and Table 1 show the empirical inter-arrival time distribu-
tion, and the autocorrelation structure of the data collected from a specific equip-
ment at the Robert Bosch Reutlingen semiconductor manufacturing plant and the 
fitted distribution, and the autocorrelations. As the figure shows, the inter-arrival 
times have significant autocorrelations. The modeling framework presented 
in this study that yields the fitted distribution and the autocorrelation structure 
shown in the figure allows developing an analytical model that captures these sta-
tistical properties for the production processes. These models can then be used to 
evaluate the performance by using analytical techniques and simulation and also 
to control the system.

We adopt Markovian arrival processeses (MAP) to model the inter-event times. 
MAPs are point processes that can approximate any inter-event process arbitrar-
ily close enough (Asmussen and Koole 1993). There exist numerous MAP fitting 
methods in the literature of telecommunications systems that can be exploited to 
fit a MAP for the collected inter-event data. This approach yields accurate models 
that can generate flow dynamics that is statistically very close to the collected 
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data. These models can be used in process visualization as building blocks for 
analytical and numerical simulation. Since the inter-event data can be collected 
for a single machine, for a group of machines, or for a production area, this 
approach can also be used to develop aggregate models for planning. The MAP 
representation of a production system can also be used to determine the param-
eters of the control policies for a given production system.

Fig. 1  The observed and fitted distribution and autocorrelations ( �
k
 ) of inter-arrival time of a specific 

equipment at the Robert Bosch Reutlingen semiconductor manufacturing plant

Table 1  Statistical descriptors of the inter-arrival time of an equipment and its fitted MAP

Moments Autocorrelation (lag)

1 2 3 1 2 3 4 5

Real 1.00 2.37 8.87 − 0.2088 0.1950 − 0.1593 0.1902 − 0.1690
̂MAP (Horváth 
and Telek 2017)

1.00 2.65 11.78 − 0.1684 0.1488 − 0.1439 0.1398 − 0.1360
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We first present a comprehensive review on MAP modeling and MAP fitting 
methods applicable to manufacturing systems and present results on the effective-
ness of these fitting methods to provide an answer to the first research question on 
how the collected inter-event data can be used to represent the flow dynamics of a 
production system accurately.

In order to answer the second research question on the impact of capturing the 
flow dynamics accurately on the performance of a production control system, we 
then focus our analysis to the control of a manufacturing system that uses a single-
level base-stock policy. This policy is fully specified with a single threshold, referred 
as the base-stock level where production stops when inventory hits the threshold. 
This policy (or its alternative representations) is commonly implemented in practice.

We utilize the MAP models to generate flow dynamics with the desired distribu-
tion and autocorrelation structure analytically. We investigate how representing the 
inter-event time with its first and second moments, with its distribution, and with 
the complete autocorrelation structure affects the determination of the base-stock 
level and the performance of the system that uses the base-stock level determined by 
these different representations.

We use the structural properties of MAPs to generate models that approximate 
the inter-event time process with i.i.d inter-event times that have exponential distri-
bution which uses the first moment, acyclic phase-type (APH) distribution with the 
same first-two moment of the correlated process, and phase-type (PH) distribution 
of the correlated process. For each representation, we use the structural properties of 
MAPs to generate the processes and calculate the optimal base-stock level by using 
matrix analytic methods.

We demonstrate that capturing the inter-arrival time distribution more accurately 
while ignoring the autocorrelations does not improve the accuracy of the results. For 
example, modeling the correlated arrival process with a phase-type distribution does 
not necessarily result in a more accurate estimation of the optimal control parameter. 
In this case, modeling a positively correlated arrival with a coefficient of variation 
less than one, with an exponential distribution may result in better estimates of the 
base-stock level than using a phase-type distribution that matches the distribution of 
the observed inter-event times.

The MAP representation also allows us to investigate the effects of autocorrela-
tion on the performance of a production system controlled with a base-stock policy. 
We demonstrate the effectiveness of employing MAP in modeling shop-floor inter-
event data by evaluating its performance in estimating the optimal base-stock level. 
We simulate inter-arrival times from a given process. Then, we use the simplest 
MAP fitting method, which generates a MAP with the same first-two moments and 
first-lag autocorrelation of data, to fit a MAP into the simulated data. We adopt the 
fitted MAP to estimate the optimal base-stock level of the system. We compare its 
performance in fitting base-stock level with that of the original correlated process, 
and exact marginal distribution of the correlated process. Our analysis shows that 
using MAP fitting methods allows setting the base-stock level in a way that performs 
at least as good as the performance obtained by using the exact marginal distribu-
tion. Employing more sophisticated fitting methods can result in more accurate esti-
mated optimal base-stock levels.
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This study contributes to the literature in three areas. First, we present a compre-
hensive review of MAPs and the existing MAP fitting methods to build MAPs from 
inter-event shop-floor data for the manufacturing systems literature. Second, we pre-
sent results that show the impact of correlation in inter-event times on the produc-
tion control of a system for the first time in the literature. We show that ignoring 
autocorrelation of a correlated arrival process results in setting the base-stock level 
at a higher or lower level. Finally, we present the effectiveness of the existing MAP 
fitting methods as they are used to build MAP models from the inter-event time data 
and then used to determine the base-stock levels. As a summary, this study shows 
that MAPs can be used to develop data-driven models and control manufacturing 
systems more effectively by using shop-floor inter-event data.

The rest of this paper is organized as follows: in Sect.  2, we review the litera-
ture of presence of correlation, impact of correlation on performance evaluation and 
MAP fitting methods. In Sect. 3, we introduce the model we use for our evaluation 
and present the methodology that we incorporate in the numerical experiments. In 
Sect. 4, we evaluate the impact of correlation in inter-arrival times on the optimal 
base-stock level, and performance of the renewal estimation of a correlated process 
in setting the base-stock level. We evaluate the performance of modeling a corre-
lated process by means of commonly adopted distributions ignoring autocorrelation 
in Sect. 5. In Sect. 6, we evaluate the performance of MAP fitting methods that are 
used to fit a MAP model to real, and simulated inter-event time data and then to set 
the base-stock level. We summarize our findings from these numerical experiments 
in Sect. 7. Finally, we conclude our study and state possible future research direc-
tions in Sect. 8.

2  Literature survey

We divide our discussion of how this work fits into the existing research literature 
into two areas. First area is related to papers that demonstrate the presence of auto-
correlation in manufacturing systems, and evaluate the impact of autocorrelation on 
performance measures of the system. Second area is related to the existing MAP 
fitting methods.

2.1  Presence of autocorrelation in inter‑event times of manufacturing systems

Schomig and Mittler (1995) analyze the cycle time of semiconductor manufactur-
ing systems and show that the cycle time is highly correlated. Inman (1999) dem-
onstrates the presence of autocorrelation in the output data of some manufacturing 
stations in automotive industry. Altiok and Melamed (2001) present data depict-
ing the presence of significant empirical first lag autocorrelation in times between 
machine alignment (registration) failures, aviation equipment times to failure, and 
inter-arrival times of packaged food items. Tan and Lagershausen (2017) present 
evidence of correlated inter-departure times of cars leaving an assembly line of 
an automotive manufacturer. Hendricks and McClain (1993) demonstrate that 
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the output process of a production line with i.i.d. arrival and service processes 
can be correlated. Tan and Lagershausen (2017) propose an analytical method to 
calculate the inter-departure time correlation analytically and discuss how buffer 
capacity and process variability affect autocorrelation structure.

2.2  Impact of correlation on the performance of queuing and manufacturing 
systems

The impact of correlation on the performance of a system has been investigated 
by using simulation and by using analytical methods in the literature. Simula-
tion studies introduce correlation to queues by methods like Transform Expand 
Sample and Minification (Livny et  al. 1993), vector-auto-regressive-to-anything 
(Biller and Nelson 2003) and Markovian arrival processeses. On the other hand, 
analytical studies use Markov Renewal Processes, Markovian arrival processeses, 
and Supplementary Variables to take dependence into account (Distefano and 
Trivedi 2013).

2.2.1  Simulation studies

Livny et al. (1993) demonstrate that autocorrelation in service or inter-arrival times 
may severely affect the queue lengths and consequently waiting time distribution of 
a system. Takahashi and Nakamura (1998) analyze a production system controlled 
by Kanban cards with concurrent and sequential ordering processes. They demon-
strate that correlated demand arrivals can have significant impact on the WIP inven-
tories and on the expected waiting time of the products. Altiok and Melamed (2001) 
study the effects of correlated job arrivals in an M/M/1 queue, the effects of corre-
lated production process in an M/G/1 queue, and in a pull-type production system. 
Resnick and Samorodnitsky (1997) study the impact of arrival dependence on the 
performance measures of G/M/1 queues. They demonstrate that ignoring long range 
dependence can significantly alter behavior of the system. Dahl and Willemain 
(2001) analyze the impact of long-memory arrivals on the performance measures 
of queuing systems, such as utilization and expected number of customers in the 
system. Resnick and Samorodnitsky (1997) implement a similar study, stating posi-
tive autocorrelation among inter-arrival times increases the waiting time and queue 
size of the process. Civelek et al. (2009) study the impact of dependence in a sin-
gle server queue in different scenarios and conclude that positively correlated arriv-
als increase the expected waiting time of a customer in the system. Brickner et al. 
(2010) conduct a simulation study with MAP arrival, PH service with infinitely 
many servers and finite buffer capacities. They show that positively correlated arriv-
als spent more expected time in the system. Pereira et al. (2012) evaluate the impact 
of correlation on assembly processes, serial lines and disassembly processes. They 
demonstrate that considering autocorrelation in modeling the process enhances the 
accuracy of estimated performance measures of the real system.



1048 N. Manafzadeh Dizbin, B. Tan 

1 3

2.2.2  Analytical approaches

Runnenburg (1961, 1962) study the effect of dependence on the expected waiting 
time of a system with integer Markov dependent arrival intervals and independent 
exponential service. Hadidi (1985) studies the impact of positive correlation on the 
waiting time distribution of a M/M/1 queue. He shows that by increasing the cor-
relation, the pace of convergence of waiting time distribution to its liming value 
increases. Patuwo (1989) is an extensive numerical study of a correlated arrival 
process which is represented by a two-state Markov Renewal process. Patuwo et al. 
(1993) investigate the impact of correlation on mean queue length of queues with 
correlated Markov renewal arrival process, and exponential service time (MR/M/1). 
They show that mean queue length of a system with correlated arrival, independ-
ent of the arrival distribution, can be over 30 times greater than renewal processes’ 
queue length. Szekli et al. (1994a, b) study the the impact of positively correlated 
arrival times on the queuing measures of a MR/GI/1 queues. They demonstrate that 
the higher correlation in arrival streams may result in more variability of the waiting 
times and higher mean queue lengths. Bauerle (1997) study the effect of the transi-
tion matrix of the environmental process on the waiting time of the nth customer and 
on the stationary waiting time. They generalize the results of Szekli et al. (1994b) 
and state that the more dependency in the arrival process, the larger is the stationary 
waiting time with respect to the increasing convex order. Xu (1999) studies the cor-
relation among the jobs at separate facilities and evaluate the effect of correlation on 
a variety of system performance measures such as queue length. Adan and Kulkarni 
(2003) study a single server queue with MAP inter-arrival and generally distributed 
service times with a cross-correlation between arrival and service process. They 
evaluate the impact of autocorrelation and cross-correlation on the mean waiting 
time. Hwang and Sohraby (2003) consider a discrete time queuing system with two-
state discrete time Markov modulated batch arrival with autoregressive input. They 
demonstrate that the mean queue length of the processes is quite different in corre-
lated arrival processes.

Our study differs from the existing literature in the sense that we evaluate the 
impact of autocorrelation on the optimal control of a production system. In particu-
lar, we evaluate the impact of correlation in inter-arrival or service times in a make-
to-stock system controlled by a base-stock policy. The influence of demand vari-
ability on the performance of a make-to-stock systems has already been investigated 
(Jemai and Karaesmen 2005). However, the impact of correlation in demand or ser-
vice times on the optimal control of the system is not known.

2.3  MAP fitting methods

MAP estimation is a quite new research topic such that most of the available meth-
ods have been developed during the last decade. In this section, we review the major 
MAP fitting approaches. We exclude papers fitting special structures of MAP, such 
as MMPP or MAPs of order two. The interested reader can refer to Gerhardt and 
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Nelson (2009) and Buchholz et  al. (2014) for a comprehensive review of those 
methods.

There are two types of MAP fitting methods in general: moment-based, and max-
imum-likelihood-based fitting methods. Table 2 gives a classification of the MAP 
fitting methods discussed in this section.

The moment-based approaches employ statistical properties of the trace in dif-
ferent stages. Two of the main methods of this approach estimate the associated 
PH distribution at first stage. Then, they introduce the empirical dependence into 
the PH distribution. Horváth et  al. (2005) propose the first moment-based fitting 
method. They construct a nonlinear optimization problem that matches the theoreti-
cal autocorrelation of the MAP into the empirical autocorrelation structure of the 
observed data. This method gives an exact solution to the first-lag autocorrelation if 
the parameters are within an acceptable range. Bause et al. (2010) employ the joint 
moments of the empirical data to construct a nonlinear optimization problem with 
linear constraints. The objective function of this problem is minimizing the squared 
difference between the empirical and theoretical joint moments. Casale et al. (2010) 
determine the most important statistical descriptors by conducting a sensitivity 
analysis over MAP/M/1 queue. Then, they construct MAPs of order two with the 
same coefficient of variation and autocorrelations as empirical data. They employ 
Kronecker product to build MAPs with higher orders. Telek and Horváth (2007) 
fit a MAP with a specified number of parameters. They utilize the minimal repre-
sentation of the MAP to determine the minimum number of parameters. Horváth 
(2013) suggest an algorithm that fits a MAP to the mean, coefficient of variation 
and the first lag autocorrelation of the data. Their method fits the third-moment and 
takes the autocorrelation decay parameter into account if the parameters are within 
an acceptable range.

The second group of the fitting methods are the maximum-likelihood-based 
approaches. They employ Expectation Maximization (EM) algorithms to increase the 
maximum likelihood of the fitted MAP at each iteration of the algorithm. EM algo-
rithms were first applied to PH and Markov Modulated Poisson Processes. Buch-
holz (2003) extends application of the EM algorithm on PH distribution and hidden 
Markov models into MAP. He applies the uniformization technique into EM algorithm 
to reduce its time complexity. The method generates acceptable estimations for trace 
lengths of some thousands elements. Klemm et al. (2002) and Breuer (2002) provide 
similar studies that applies EM algorithm for parameter fitting of batch MAP (BMAP) 
process. Kriege and Buchholz (2014) improve the convergence speed of the EM algo-
rithm by employing aggregated data. The main advantage of the method over former 
EM algorithms is truncating data and preserving the statistical properties at the same 
time. Buchholz and Panchenko (2004) improve the EM algorithm for MAP fitting by 
adopting a two step algorithm. The first step of the algorithm fits a PH distribution and 
the second step captures the empirical auto-covariance. Okamura and Dohi (2009) pro-
pose uniformization based EM algorithm to improve the time complexity of the exist-
ing algorithms. Okamura et al. (2013) provide a deterministic annealing PH and MAP 
fitting algorithm that deals with local maxima problem of the conventional algorithms. 
Horváth and Okamura (2013) extend the EM algorithm for fitting MAPs with differ-
ent types of arrivals or MMAPs. Buchholz and Kriege (2017) exploit both EM and 
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moment fitting methods to fit processes with serial and cross correlation at the same 
time.

Okamura et al. (2009) extend the EM algorithm for fitting a MAP into a group data. 
The method is useful for situations where the collected data contains the number of 
arrivals in a given time interval instead of the inter-arrival times. Their method is com-
putationally more expensive than others. However, it contains other EM approaches as 
its subclass. Breuer and Kume (2010) propose an EM algorithm that fits an empirical 
counting process, observed at discrete times, to a MAP. The input data for this algo-
rithm are the numbers of observed events in disjoint time intervals as well.

In order to give an example to the performance of fitting methods, we fit MAPs by 
using different fitting algorithms to the real data of processing, cycle, and inter-arrival 
time collected from three different equipments at Robert Bosch Reutlingen plant. Fig-
ures 1, 7, 8 show the observed and a fitted distribution and autocorrelation for these 
processes.

3  Model and evaluation methodology

We now present the basic model and the evaluation methodology used to answer the 
main research questions: how can the collected inter-event data be used to represent the 
flow dynamics of a production system accurately and what is the benefit of capturing 
flow dynamics accurately on the performance of a production control system?

3.1  Markovian arrival processeses

We model the correlated demand arrival or service processes as MAPs (Neuts 1979). 
MAPs are generalization of PH distributions (Neuts 1975) that can capture correlated 
inter-event times. They contain most of the commonly used arrival processes such 
as Erlang processes, Coxian distributions and Markov-modulated Poisson processes 
(MMPP) as subclasses. A MAP consists of two different sub-processes each of which 
has a discrete state space called phases. One sub-process represents the dynamics of 
the phase process denoted by D0 , i.e transition between phases without an event, while 
the other corresponds to the occurrence of an event denoted by D1 . A MAP can be 
interpreted as a continuous-time Markov-chain with the generator matrix D = D0 + D1 , 
and |D| states. Let D be an irreducible generator matrix with initial probability vector 
�0 . The Markov chain starts at state i with probability �0(i) , spends an exponential time 
with rate �i = −D0(i, i) there, and moves to state j with probability pij defined as:

when the Markov chain experiences a state transition from state i to j, an arrival 
occurs with probability D1(i,j)

�i

 . Let P = −(D0)
−1D1 and �P = � and �� = 1 where � is 

(1)pij =

{ D1(i,i)

�i

, j = i

D0(i,j)+D1(i,j)

�i

, j ≠ i
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vector of ones with appropriate size. The phase distribution at arrival instants form a 
discrete time Markov chain with transition probability matrix P. A MAP can be 
fully specified with D0 and D1 if we let �0 = � . We denote a MAP with these sub-
processes with MAP(D0,D1 ). For further detailed information regarding, distribu-
tion, moments, autocorrelation structure, and other features of MAPs the reader is 
referred to He (2013), Buchholz et al. (2014) and Lakatos et al. (2013).

3.1.1  MAP representation of the output process of a production system

We will represent the output process of the production systems by differentiating 
between transitions that lead to departure of a product and the rest of transitions. By 
capturing the transitions that do not lead to departure in matrix D0 , and transitions 
that lead to departure in matrix D1 , we represent the output process as MAP(D0,D1).

For instance, the MAP representation of a two-station production line with expo-
nential service times with rates �1 and �2 , respectively, and no inter-station buffer 
is given below. The state of this system consists of a tuple (s1, s2) where si demon-
strates the state of machine i, si ∈ {0, 1} where si = 1 represent that machine i is 
working, s1 = 0 represents machine 1 is blocked and s2 = 0 represents machine 2 is 
idle. The D0 , and D1 matrices of this line can be written as:

where the states are ordered as (1, 0), (1, 1), (0, 1). The D1 matrix captures transi-
tions that are related to process completions on machine 2 that generates an output 
from the production line. Tan and Lagershausen (2017) use this approach to deter-
mine the autocorrelation structure of the output process from open and closed queu-
ing networks subject to blocking. The output process of the two-station production 
line with no inter-station buffers with the MAP(D0,D1 ) representation given above 
demonstrates a negative first-lag autocorrelation.

3.2  Base‑stock model

We consider a production/inventory system with correlated demand inter-arrival and 
service times that are modeled as MAPs. We consider demand arrivals generated by 
the output of a different production system and therefore they can exhibit positive or 
negative autocorrelation. An arriving demand will be satisfied from the inventory 
according to the first-come-first-served (FIFO) rule if a product is available in the 
inventory. Otherwise, if the inventory is empty, it will be backlogged until it is satis-
fied. We will assume that the production is controlled by a base-stock policy. Under this 
policy, the producer produces when there is an outstanding production order i.e., inven-
tory is under a given threshold. We employ this control policy since it (or its equivalent 
representations) is commonly implemented control policy in practice. However, it is 

D0 =

⎡⎢⎢⎣

−�1 �1 0

0 −(�1 + �2) �1

0 0 −�2

⎤⎥⎥⎦
D1 =

⎡⎢⎢⎣

0 0 0

�2 0 0

0 �2 0

⎤⎥⎥⎦
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not necessarily the optimal control policy in this setting. Dizbin and Tan (2017) state 
that the optimal policy to control a production/inventory system with correlated arrival 
and service times is a state-dependent base-stock policy.

We assume that raw materials are supplied from an unlimited stock with zero lead-
time and the system is continuously reviewed. The cost structure of the system consists 
of inventory holding and backlog costs. The inventory holding cost is h per unit per unit 
of time and the backlog cost is b per unit per unit of time. The objective of the problem 
is minimizing the long run average cost of the system.

3.2.1  Optimal base‑stock level of a system with MAP arrival and service times

In this section, we demonstrate how to calculate the optimal base-stock level of a sys-
tem with correlated arrival and service processes modeled as MAP. Correlated arrival 
processes can be an output process from an earlier stage of the production line. Cor-
related service can be the result of production time variations of the machines. Let S be 
the base-stock level of the system, O(t) be the number of outstanding production orders 
at time t to reach base-stock level S, X(t) = S − O(t) be net inventory level at time t, 
and GX(S) be the stationary distribution of X given base-stock level S.

It is known that the optimal base stock level that minimizes the expected cost under 
the single threshold policy is given by:

The GX(S) of a system with MAP arrival and service processes is equivalent to the 
queue length distribution of the MAP/MAP/1 queue given in Eq. 8 which is a subclass 
of Quasi-Birth–Death (QBD) processes.

The generator matrix of a QBD process consists of three types of matrices. Forward 
matrices (F) capture the transitions with new arrival. Local matrices (L) capture the 
transition between phases of the process without any arrivals or departure from the sys-
tem. Backward matrices (B) capture transitions leading to a service completion. These 
matrices for a system with MAP ( D0 , D1 ) arrival, and MAP ( A0 , A1 ) service processes 
are

where ⊗ , ⊕ , ID , and IA are Kronecker product, Kronecker sum, and square identity 
matrices with size |D0| and |A0| , respectively. The generator matrix of a process with 
MAP arrival and service can be written as follows:

(2)S∗ = argmin
s

{
GX(S) ≥

b

b + h

}
.

(3)

F = D1 ⊗ IA

B = ID ⊗ A1

L = D0 ⊕ A0

L0 = D0 ⊕ IA
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The limiting probability distribution of QBD processes with block matrices F, L, B 
and level zero local matrix L0 can be calculated as

where R is the solution of quadratic matrix equation

and �0 is the solution of the following set of equations:

There exist a number of computational algorithms for computing the geometric 
matrix R. We refer the reader to Bini et et al. (2006) for a review of the methods and 
their algorithmic implementations. The stationary distribution of the X as a function 
of �0 and R can be written as:

In our study, we first generate the matrices D0 and D1 for the given arrival process 
and the matrices A0 , A1 for the given service process with their autocorrelation 
structures and inter-event time distributions. Then, we generate the block matrices 
F, L,B, L0 from D0,D1,A0,A1 by using Eq. (3). We determine the steady-state dis-
tribution for a given base-stock level S by using Eqs. (5), (6), (7), and (8). Finally, 
we determine the optimal base-stock level by using Eq. (2). Once the optimal base-
stock level, S∗ is determined, the performance measures can be evaluated from the 
distribution of GX(S

∗) . The expected inventory level ( E[X+] ), the expected backlog 
level ( E[X−] ), and the probability of not having inventory in the system ( Pr[X < 0] ) 
can be written as:

(4)Q =

⎛
⎜⎜⎜⎜⎝

L0 F

B L F

B L F

⋱ ⋱ ⋱

⎞
⎟⎟⎟⎟⎠
.

(5)�n = �0R
n

(6)F + RL + R2B = 0

(7)
�0(L0 + RB) = 0,

�0(I − R)−1� = 1.

(8)GX(S) =

S∑
i=0

�0R
i
�.

(9)Pr[X < 0] =

∞∑
s=S∗+1

𝜋s� = 𝜋0R
S∗+1(I − R)−1�,
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3.3  Evaluation methodology

3.3.1  Impact of autocorrelation on the optimal base‑stock level

In order to measure the impact of autocorrelation on the optimal base-stock level, 
we employ processes with the same marginal distribution and different magnitude of 
autocorrelation. In order to generate processes with the same marginal distribution 
and different magnitudes of autocorrelation, we use the fact that first-lag autocor-
relation of a MAP is a linear function of the elements of D1 matrix (Horváth et al. 
2005). We use processes with the same D0 (which is associated with the marginal 
distribution of the process) and different D1 matrices. We generate Dnew

1
 matrices in 

the following form :

where � ∈ [0, 1] , and Dren
1

 is the D1 matrix of a MAP with the same distribution and 
zero autocorrelations (renewal MAP). The Dren

1
 of the renewal MAP can be calcu-

lated as:

where � is the phase distribution immediately after an arrival of the MAP. We use 
MAP(D0,D

new
1

 ) as an arrival process to measure the effect of autocorrelation on the 
optimal control policy. The first-lag autocorrelation of the MAP(D0,D

new
1

 ) is

where �1 is the first-lag autocorrelation of the MAP(D0,D1).
As an example, consider the system with two machine and no buffer in between, 

presented in Sect. 3.1.1, with rates �1 = �2 = 1.5 . The D0 , D1 , and Dren
1

 matrices of 
this system can be written as follows

Note that as we increase the first lag autocorrelation, the magnitude of the higher lags 
increases as well. In addition, MAPs have a decaying magnitude of autocorrelation 

(10)E[X−] =

∞∑
s=S∗+1

�s(s − S∗)� = �0R
S∗+1(I − R)−2�,

(11)E
[
X+

]
=

S∗−1∑
s=0

(S∗ − s)�s� = S∗�0(I − R)−1� − �0(I − R)−2(I − RS∗ )R�.

(12)Dnew
1

= �D1 + (1 − �)Dren
1

(13)Dren
1

= D1��

(14)�
new
1

(�) = ��1

D0 =

⎡⎢⎢⎣

−1.5 1.5 0

0 −3 1.5

0 0 −1.5

⎤⎥⎥⎦
D1 =

⎡⎢⎢⎣

0 0 0

1.5 0 0

0 1.5 0

⎤⎥⎥⎦
Dren

1
=

⎡⎢⎢⎣

0 0 0

0.75 0.75 0

0.75 0.75 0

⎤⎥⎥⎦
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structure (either negative or positive) which is a plausible autocorrelation structure 
for processing and cycle times of the manufacturing systems setting.

3.3.2  Performance of renewal approximations in estimating correlated processes

In the numerical experiments, we evaluate the performance of commonly adopted 
distributions in the literature in modeling a correlated arrival process of a system 
controlled by the single threshold base-stock policy. In particular, we consider the 
performance of modeling the correlated arrival process with processes that capture 
the exact marginal distribution, the first-two moments, and the first lag autocorrela-
tion of the correlated process. We evaluate the performance of the system controlled 
by the threshold calculated by using the approximated processes by comparing their 
performance measures to the values obtained by using the threshold set by using the 
original correlated process.The performance measures that we consider are the total 
cost, the expected inventory and backlog, and the probability of not having an inven-
tory in the system. For brevity, we present an exponentially distributed service and 
correlated arrival processes. However, the results are similar for the correlated ser-
vice processes (Dizbin 2016). We calculate the performance measures of a system 
with the correlated arrival and exponentially distributed service process, by employ-
ing the queue length distribution of a MAP/M/1 queue.

We employ PH distribution with the D0 equal to that of the correlated process and 
the column vector � to model a correlated process by means of its marginal distribu-
tion. A PH distribution can be fully specified with matrix D0 , and entry probability 
vector � . We employ the queue length distribution of the PH/M/1 queue in order to 
calculate the optimal base-stock level. Then, we calculate the performance measures 
of the original system controlled by this base-stock level. We employ a PH distribu-
tion with the same first-two moments ( PH2 ) to model the arrival process by means 
of it’s first-two moments. We employ the method presented in Horváth and Telek 
(2017) to generate a PH distribution with the first-two moments of the correlated 
arrival process. We employ the queue length distribution of the PH2/M/1 to calcu-
late the base-stock level of the system. Finally, we model the correlated arrival pro-
cess by means of its first moment by using exponential distribution. We employ the 
queue-length distribution of the M/M/1 queue to calculate the optimal base-stock 
level.

4  Impact of correlation in inter‑arrival times on the control 
of a production/inventory system

In this section, we analyze the impact of first-lag autocorrelation on optimal base-
stock level. We employ two types of processes with positive and negative first-lag 
autocorrelations. We consider autocorrelation structures with positive and negative 
first-lag and decaying magnitude of higher lags. We analyze the impact of autocor-
relation with different values of coefficient of variation of the arrival and service 
processes, and the traffic intensity of the system.
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4.1  Impact of positive correlation in inter‑arrival times on the control 
of a production/inventory system

In this part, we consider a production system with positively correlated arrival and 
PH distributed service processes. In order to analyze the effect of autocorrelation 
on the optimal base-stock level, we design an experiment with different first-lag 
autocorrelations, coefficient of variation of arrival and service processes, and traffic 
intensities. Table 3 gives the range of the coefficient of variation of the arrival ( cva ) 
and service ( cvs ) times, first-lag autocorrelation of negatively ( �−

1
 ) and positively 

( �+
1
 ) correlated processes, and traffic intensity ( � ) used in the numerical experiments. 

This experiment setup includes 3 × 6 × 36 × 6 = 3888 different cases analyzed.
Table 4 demonstrates the percentage of the optimal base-stock levels calculated 

for the correlated processes ( Scorr ) that are equal to the base stock level that is calcu-
lated by using the renewal approximation that ignores the autocorrelation ( Srenewal ) 
for different traffic intensities. When the utilization is 0.5, in 42% of the cases, the 
optimal base-stock levels calculated by using the autocorrelation structure and by 
using the renewal approximation are the same. However, as the traffic intensity of 
the system increases, the percentage of the base-stock levels of correlated processes 
equal to that of the renewal process decreases. When the utilization is 0.8, only in 
13% of the cases, the optimal base-stock levels calculated by using the autocorrela-
tion structure and by using the renewal approximation are the same.

Table  5 demonstrates the range of the optimal base-stock levels for correlated 
processes with their first-lag autocorrelation in the range [0, 0.7] for traffic intensity 
� = 0.8 . The base-stock level of a system with cva = cvs = 0.2 and zero first-lag auto-
correlation is equal to 2. The optimal base-stock level for the same processes and 
first-lag autocorrelation 0.7 is equal to 10. The optimal base-stock level increases as 
a function of coefficient of variation of the arrival and service process. This result 
is in line with the findings of Jemai and Karaesmen (2005) who study the effect 
demand variability on performance measures of make-to-stock systems.

The range of the optimal base-stock level for processes with no autocorrelation is 
between 2 and 14. For the correlated processes, the range of the optimal base-stock 
level is from 2 to 80. This is an indication of significant impact of positive autocor-
relation in inter-arrival times on the optimal base-stock levels.

Our numerical analysis shows that the impact of ignoring autocorrelation 
increases as a function of the first-lag autocorrelation. Figure 2 demonstrates the 
optimal base-stock level of the system as a function of the first-lag autocorre-
lation, for some of the cases. In all of the figures, the optimal base-stock level 
increases as a function of the first-lag autocorrelation. This behavior is due to 

Table 3  The parameters used in 
the numerical experiments cv

a
{0.2, 0.5, 0.8, 1, 1.3, 1.8}

cv
s

{0.2, 0.5, 0.8, 1, 1.3, 1.8}
� {0.5, 0.65, 0.8}
�
+

1
{0, 0.02, 0.04, …, 0.68, 0.70}

�
−
1

{0, − 0.02, − 0.04, …., − 0.48, − 0.50}



1058 N. Manafzadeh Dizbin, B. Tan 

1 3

the fact that positive autocorrelation increases the probability of having higher 
queue lengths in the output processes of the system since a short inter-arrival 
time is expected to be followed by a short inter-arrival time, and similarly a long 
inter-arrival time is expected to be followed by a long inter-arrival time in posi-
tively correlated processes. In other words, the process creates clusters of short 
and long inter-arrival times. This leads to an increase in the probability of higher 
queue lengths in comparison with independent inter-arrival times. Figure 3 dem-
onstrates this effect for systems with exponential service time and correlated 
arrival process with first-lag autocorrelations of 0, 0.1, 0.2, 0.3, 0.5, coefficient 
of variation equal to 0.5, and traffic intensity 0.8. Note that these processes have 
the same distribution. The difference in the queue length distribution of these sys-
tems is due to the impact of positive autocorrelation.

4.2  Impact of negative correlation in inter‑arrival times on the control 
of a production/inventory system

In this part, we analyze a production system with negatively correlated arrival and 
PH distributed service processes. Table 3 gives the values of the parameters used 
in the analysis. Figure 4 demonstrates the impact of negative autocorrelation on the 
optimal base-stock level for some of the cases. In all of the cases, the optimal base-
stock level of the system decreases as a function of the first-lag autocorrelation. In 
other words, ignoring correlation results in overestimation of the optimal base-stock 
level of a system with negatively correlated arrival process. This is due to the fact 
that in negatively correlated processes a short inter-arrival time is expected to be fol-
lowed by a long inter-arrival time. Therefore, the probability of having higher queue 
lengths in the system decreases, which results in having lower optimal base-stock 
level in comparison with the same process with lower magnitude of correlation. Fig-
ure 3 demonstrates the effect of negative autocorrelation on the queue length dis-
tribution of systems with exponential service time and correlated arrival process 
with the first-lag autocorrelations of 0, − 0.1, − 0.2, − 0.3, − 0.5, the coefficient of 
variation equal to 0.5, and the traffic intensity of 0.8. These processes have the same 
distribution. The difference in their queue length distribution is due to the impact of 
autocorrelation. We conjecture that queue length distribution of a process with nega-
tive autocorrelation, is stochastically dominated by queue length distribution of a 
processes with the same distribution and lesser magnitude of autocorrelation.

Table 4  Accuracy of the 
renewal estimation in estimating 
the optimal base-stock level of 
the correlated system

% cases: Scorr = Srenewal

� = 0.50 41.98
� = 0.65 23.07
� = 0.80 12.96
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We conclude that main drivers of the optimal base-stock level of a system with 
correlated arrival (or service) are the autocorrelation structure, coefficient of varia-
tion of arrival and service processes, and traffic intensity of the system. Our numeri-
cal analysis demonstrate that autocorrelation structure, significantly impacts the 
optimal base-stock level. The optimal base-stock level increase as the first-lag auto-
correlation of the arrival (or service) process becomes more positive.

5  Effects of using different renewal processes to approximate 
correlated processes on the performance

In this section, we evaluate the performance of modeling a correlated process by 
using different distributions ignoring autocorrelation. As we saw earlier, ignoring 
autocorrelation in positively (negatively) correlated processes, underestimates (over-
estimates) the optimal base stock level of a production system controlled by base-
stock policy. In this section, we analyze the performance of modeling a correlated 
process by means of its marginal distribution (PH), first-two moments ( PH2 ), and 
first moment (M) in estimating the optimal base-stock level of the system. We con-
sider processes with negative and positive first-lag autocorrelation, and coefficient 
of variation ( cva ) greater and less than one for the arrival process. For simplicity, 
we assume that service times are exponentially distributed and traffic intensity is 
� = 0.8 . The performance measures that we consider are total cost of the system 
(TC), expected inventory ( E[X+] ), expected backlog ( E[X−] ), and probability of not 
having inventory in the system ( Pr[X < 0] ). We let the the inventory holding cost, 
and backlog cost to be h = 1 , and b = 5 , respectively.

Table 5  Range of the base-stock 
levels of systems with different 
coefficient of variation of the 
arrival ( cv

a
 ) and service ( cv

s
 ) 

times ( � = 0.8 , �+
1
∈ [0, 0.7])

cv
s

0.2 0.5 0.8 1.0 1.3 1.8

cv
a

 0.2 2–10 3–11 4–12 5–12 6–13 7–15
 0.5 4–23 4–24 5–25 6–25 7–26 8–28
 0.8 5–35 6–36 7–37 7–38 8–39 10–40
 1.0 6–43 6–44 7–45 8–46 9–47 10–48
 1.3 7–55 8–56 9–57 9–58 10–59 12–60
 1.8 9–75 10–76 11–77 11–78 12–79 14–80
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5.1  Impact of approximating positively correlated arrival process with different 
renewal processes on the performance

5.1.1  The low variability case: cv
a
< 1

We consider an arrival process with cva = 0.5 and first-lag autocorrelation �1 = 0.3 . 
The performance measures of a system with such an arrival process are shown in 
Table 6. Estimating the optimal base-stock level using the marginal distribution and 
first-two moments of the process results in underestimating the optimal base-stock 
level. Controlling the system by a base-stock level calculated using these models 
results in a higher cost, and lower service level. Interestingly, estimating the corre-
lated arrival process by means of exponential distribution results in better estimation 
of the optimal base-stock level. This is due to the fact that coefficient of variation of 
the exponential distribution is greater than coefficient of variation of the correlated 
process. Higher coefficient of variation increases the optimal base-stock level which 

24191494
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results in a better estimation of base-stock level than the exact marginal distribu-
tion. Hence, in positively correlated arrival processes with cva < 1 , employing the 
exact distribution of the process does not necessarily result in a better estimation of 
the optimal base-stock level than the exponential distribution. Figure 5 demonstrates 
the optimal base-stock level of positively correlated systems with cva < 1 and traffic 
intensity � = 0.8 . The optimal base-stock level associated with modeling the cor-
related arrival with exact marginal distribution is equal to that of the a process with 
zero first-lag-autocorrelation. Modeling the arrival process with exponential distri-
bution gives a better approximation of the optimal base-stock level as the first-lag 
autocorrelation increases.

5.1.2  The high variability case cv
a
> 1

We consider an arrival process with cva = 1.3 and first-lag autocorrelation �1 = 0.3 . 
The performance measures of a system with such an arrival process is shown in 
Table 7. Modeling the arrival process by means of renewal processes result in under-
estimation of the optimal base-stock level of the system. In contrary to the case with 
cva < 1 , the marginal distribution and first-two moments gives a better approxima-
tion of the correlated process than exponential distribution. This result holds for all 
of the cases with cva > 1 that we evaluated.
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Fig. 4  Optimal base-stock level of positively correlated processes with cv
a
< 1 and their estimation with 

the exponential model (exp exponential distribution)
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5.2  Impact of approximating negatively correlated arrival process with different 
renewal processes on the performance

5.2.1  The low variability case cv
a
< 1

We generate negatively correlated MAP from the output process of a production 
line with three stations and zero buffers. We let the distribution of each machine 
to be acyclic PH distribution. The statistical descriptors of this output process is 
shown in the first row of Table 15. Its coefficient of variation and first-lag auto-
correlation are cva = 0.29 , �1 = −0.30 , respectively. We adopt this process as 
the arrival process. The performance measures of a system with such an arrival 
process is given in Table  8. Modeling the arrival process by means of renewal 
processes results in overestimation of the optimal base-stock level of the system. 
Estimating the arrival process by means of its marginal distribution and first-two 
moments results in better estimation of the base-stock level than the exponential 
distribution. This result holds for all of the cases with cva < 1 that we evaluated.

Table 6  Impact of positively correlated arrival process with cv
a
< 1 on the performance measures of a 

production system controlled by base stock policy ( � = 0.8)

S∗ TC Error (%) E[X−] Error (%) E[X+] Error (%) Pr[X < 0] Error (%)

MAP/M/1 8 8.7344 0.8062 4.7035 0.1468
PH/M/1 6 9.1283 5 1.2052 49 3.1024 − 34 0.2195 49
PH

2
/M/1 6 9.1283 5 1.2052 49 3.1024 − 34 0.2195 49

M/M/1 8 8.7344 0 0.8062 0 4.7035 0 0.1468 0

Table 7  Impact of positively correlated arrival process with cv
a
> 1 on performance measures of a pro-

duction system controlled by base stock policy ( � = 0.8)

S∗ TC Error (%) E[X−] Error (%) E[X+] Error (%) Pr[X < 0] Error (%)

MAP/M/1 14 15.8010 1.5021 8.2907 0.1586
PH/M/1 9 17.5352 11 2.6244 75 4.4130 − 47 0.2771 75
PH

2
/M/1 9 17.5352 11 2.6244 75 4.4130 − 47 0.2771 75

M/M/1 8 18.3945 16 2.9343 95 3.7229 − 55 0.3099 95

Table 8  Impact of negatively correlated arrival process with cv
a
< 1 on performance measures of a pro-

duction system controlled by base stock policy ( � = 0.8)

S∗ TC Error (%) E[X−] Error (%) E[X+] Error (%) Pr[X < 0] Error (%)

MAP/M/1 4 4.2646 0 0.4417 0 2.0559 0 0.1535 0
PH/M/1 5 4.3439 2 0.2883 − 35 2.9024 41 0.1001 − 35
PH

2
/M/1 5 4.3439 2 0.2883 − 35 2.9024 41 0.1001 − 35

M/M/1 8 6.0949 43 0.0801 − 82 5.6942 177 0.0278 − 82
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5.2.2  The high variability case cv
a
> 1

We consider an arrival process with cva = 1.3 and first-lag autocorrelation 
�1 = −0.30 . Table 9 shows the performance measures of a system with such an 
arrival process and its renewal approximations. The results demonstrate that mod-
eling negatively correlated arrival process by means of its first-tow moments, and 
marginal distribution does not necessarily result in a better estimation of the opti-
mal base-stock level than exponential distribution.

Estimating the arrival process by an exponential distribution gives a better 
approximation than using the first-two moments or marginal distribution of the 
process. This result is similar to the result of estimating the optimal base-stock 
level of a positively correlated arrival process with cva < 1 by its mean. Figure 6 
demonstrates the optimal base-stock level of positively correlated systems with 
cva > 1 and traffic intensity � = 0.8 . The optimal base-stock level associated with 
modeling the correlated arrival with exact marginal distribution is equal to that 
of the a process with zero first-lag-autocorrelation. Modeling the arrival process 

Table 9  Impact of negatively correlated service process with cv
a
< 1 on performance measures of a pro-

duction system controlled by base stock policy ( � = 0.8)

S∗ TC Error (%) E[X−] Error (%) E[X+] Error (%) Pr[X < 0] Error (%)

MAP/M/1 7 7.2548 0 0.6719 0 3.8956 0 0.1475 0
PH/M/1 9 7.6795 6 0.4093 − 39 5.6330 45 0.0898 − 39
PH

2
/M/1 9 7.6795 6 0.4093 − 39 5.6330 45 0.0898 − 39

M/M/1 8 7.3701 2 0.5244 − 22 4.7481 22 0.1151 − 22
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Fig. 6  Optimal base-stock level of negatively correlated processes with cv
a
≥ 1 and their estimation with 

exponential model
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with exponential distribution gives a better approximation of the optimal base-
stock level as the first-lag autocorrelation decreases.

Finally, it worth mentioning that, estimating the arrival process by means of 
its first-two moments and marginal distribution results in the same optimal base-
stock levels in our numerical experiments.

6  Fitting MAP to data from shop‑floor

6.1  Performance of MAP‑fitting methods

In this section we evaluate the performance of MAP-fitting methods that fit a MAP 
into data collected from shop-floor. We use processing, cycle, and inter-arrival time 
data of different equipments collected from shop-floor. We use the methods imple-
mented in Bause et al. (2010), and Horváth and Telek (2017) in fitting MAP. The 
goodness-of-fit of these methods have been investigated thoroughly in the telecom-
munications literature (Kriege and Buchholz 2010) for processes with positive auto-
correlations. Their performance is shown to be satisfactory for data traces observed 
in telecommunications literature. However, their goodness-of-fit has not been inves-
tigated for negatively correlated processes since such autocorrelation structures are 
not observed in the telecommunications literature. Our numerical analysis demon-
strates that fitting inter-event data with monotone increasing negative autocorrela-
tions may result in less accurate fitted MAPs (Dizbin 2016).

Figure 7 demonstrates the distribution and autocorrelation structure of the pro-
cessing time of 1756 lots processed in a specific equipment. Some of the statistical 
descriptors of the data and fitted MAP is given in Table 10. The fitted MAP captures 
the distribution shape and autocorrelation structure with an acceptable accuracy.

Figure 8 demonstrates the distribution and autocorrelation structure of the cycle 
time of 3908 lots in a specific equipment. Some of the statistical descriptors of the 
data and fitted MAP are given in Table 11. The fitted MAP captures the distribution 
shape and first-five lag autocorrelation with an acceptable accuracy.

Figure  1 demonstrates the distribution and autocorrelation structure of the 
inter-arrival time of 1068 lots to a specific equipment. The statistical descriptors 
of the data and fitted MAP is given in Table 1. The arrival process demonstrates 
a zigzag autocorrelation structure. The fitted MAP captures the distribution shape 
and autocorrelations structure with an acceptable accuracy. We note that we were 
not able to fit a MAP that captures the autocorrelation structure of processes with 
monotone increasing negative autocorrelations with acceptable accuracy.

6.2  Setting the base‑stock level by using shop‑floor data

In this section, we evaluate the performance of setting the base-stock level by fit-
ting a MAP to simulated inter-arrival data. In this evaluation, we first fit a MAP into 
inter-event times. Then, we use the fitted MAP, denoted by ̂MAP , to calculate the 
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optimal base-stock level by employing Eq. (2). For simplicity, we assume that pro-
cessing time is exponentially distributed with rate 1.25.

We first simulate 10,000 inter-arrival times for a given correlated process. Any of 
the MAP fitting methods reviewed in Sect. 2.3 can be used to fit a MAP into inter-
event data.

Fig. 7  The observed and fitted distribution and autocorrelations ( �
k
 ) of processing time of a specific 

equipment at the Robert Bosch Reutlingen semiconductor manufacturing plant

Table 10  Statistical descriptors of a processing time of an equipment and its fitted MAP

Moments Autocorrelation (lag)

1 2 3 1 2 3 4 5

Real 1.00 1.40 2.39 0.1606 0.0472 0.0209 0.0074 0.0628
̂MAP (Bause 
et al. 2010)

1.00 1.40 2.41 0.1588 0.0653 0.0262 0.0106 0.0043
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In this study, we use the simplest fitting method among the available methods, 
which fits a MAP with the same first-two moments and first-lag autocorrelation to 
inter-event data (Horváth 2013). We adopt such a ̂MAP to demonstrate the potential 
of employing MAPs in estimating the optimal base-stock level by using shop-floor 
inter-event data. Employing more sophisticated fitting methods can result in more 
accurate estimated optimal base-stock level. We compare the performance of ̂MAP 
in estimating the optimal base-stock level, by comparing it to the optimal base-stock 

Fig. 8  The observed and fitted distribution and autocorrelations ( �
k
 ) of cycle time of a specific equip-

ment at the Robert Bosch Reutlingen semiconductor manufacturing plant

Table 11  Statistical descriptors of the cycle time of an equipment and its fitted MAP

Moments Autocorrelation (lag)

1 2 3 1 2 3 4 5

Real 1.00 1.80 4.77 0.3498 0.3020 0.2474 0.2263 0.2184
̂MAP (Bause 
et al. 2010)

1.00 1.80 4.72 0.3501 0.3025 0.2532 0.2225 0.2012
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level of the original MAP, and exact marginal distribution of the process. Dizbin 
(2016) compares the performance of using different fitting methods.

6.2.1  Performance of fitted MAP in setting the base‑stock level of a positively 
correlated inter‑arrival times

In this part, we evaluate performance of the fitted MAP in estimating the optimal 
base-stock level of a system with positively correlated arrival process. The D0 and 
D1 matrices of the arrival MAP is given below. The statistical properties of the real 
MAP, simulated inter-arrival data, and ̂MAP are given in Table 12. The simulated 
data with 10,000 arrivals captures the statistical properties of the real MAP closely. 
̂MAP captures the first two moments and first-lag autocorrelation of the simulated 

data accurately. However, the higher lags are different from simulated data and orig-
inal MAP. Notice that the higher lags of the fitted MAP decay more rapidly than the 
real and simulated MAP. One can employ methods such as Horváth et al. (2005), 
and Bause et al. (2010), or EM-based algorithms which employ more information 
from data in building MAP to build more accurate ̂MAP.

The performance measures of systems with original MAP, ̂MAP and exact 
marginal distribution (PH) are given in Table 13. The optimal base-stock level of 
a system with MAP arrival and exponential distribution is 10. ̂MAP estimates the 
optimal-base-stock level to be 9. Controlling the system with base-stock level of 
9 results in almost the same total cost and less service level for the system. Esti-
mating the optimal base-stock level by means of its exact marginal distribution, 
results in base-stock level equal to 7. Controlling the system with base-stock level 
of 7 results in 6% higher cost for the system.

D0 =

⎡⎢⎢⎣

−1.2609 0 0.03589

0.0028 −1.2921 1.1972

0 0 −1.2922

⎤⎥⎥⎦
D1 =

⎡⎢⎢⎣

1.1973 0.0277 0

0 0 0.0921

0.1544 1.1378 0

⎤⎥⎥⎦

Table 12  Statistical descriptors of real, simulated, and fitted MAP of a positively correlated process with 
coefficient of variation less than one

Moments Autocorrelation (lag)

1 2 3 1 2 3 4 5

Real 1.00 1.90 5.23 0.0948 0.0695 0.0591 0.0496 0.0416
Simulation 1.00 1.93 5.38 0.1095 0.0632 0.0629 0.0684 0.0390
Horváth (2013) 1.00 1.93 5.31 0.1095 0.0607 0.0337 0.0187 0.0104
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6.2.2  Performance of fitted MAP in setting the base‑stock level of a negatively 
correlated inter‑arrival times

We generate negatively correlated inter-event data from the output process of a 
production line with three stations and no buffers in between. The service time 
at each station is uncertain and follows acyclic PH distribution with the moments 
given in Table 14. The generator matrix of this production line consists of 1920 
states. We fit a MAP with with 13 states to simulated data from this production 
line. The statistical properties of the real production line, simulated data, and 
̂MAP is given in Table 15. Simulated data almost captures the statistical proper-

ties of the production line. ̂MAP captures the first three moments and first-lag 
autocorrelation of the simulated data accurately. However, the higher lags differ 
substantially from that of the simulated data.

The performance measures of systems with real process, ̂MAP , and exact mar-
ginal distribution is shown in Table 16. The optimal base-stock level of the sys-
tem is 4. Estimating the optimal base-stock level by using ̂MAP , and exact mar-
ginal distribution results in a base-stock level of 5. Controlling the system with 
this base-stock level results in 2% higher cost. Exact marginal distribution gives 
as good estimation of the base-stock level as ̂MAP due to low coefficient of vari-
ation of the real MAP, and zig-zag autocorrelation structure of the higher lags of 
̂MAP . If the coefficient of variation of the arrival process increases, performance 

Table 13  Estimating the optimal base-Stock level of a positively correlated process

S∗ TC Error (%) E[X+] Error (%) E[X−] Error (%) Pr[X < 0] Error (%)

MAP/M/1 10 10.7850 0.9586 5.9919 0.1435
̂MAP/M/1 9 10.7973 0 1.1273 18 5.1606 − 14 0.1687 18

PH/M/1 7 11.3881 6 1.5591 63 3.5924 − 40 0.2334 63

Table 14  Moment of the 
processing time for a production 
line with three stations

Station 1 2 3

E[T] 1.0 1.0 0.8
E[T2] 1.1 1.2 0.85

Table 15  Real, simulated, and fitted statistical descriptors of a negatively correlated process with coef-
ficient of variation less than one

Moments Autocorrelation (lag)

1 2 3 1 2 3 4 5

Real 1.00 1.29 1.99 − 0.3033 − 0.0500 − 0.0049 − 0.0004 0.0000
Simulation 1.00 1.30 2.01 − 0.3015 − 0.0473 − 0.0042 − 0.0045 − 0.0059
Horváth (2013) 1.00 1.30 2.01 − 0.3015 0.1962 − 0.1277 0.0831 − 0.0541
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of the exact marginal distribution in estimating the optimal base-stock level will 
decrease.

7  Summary of findings

In this section, we summarize our findings based on the numerical experiments 
reported in the preceding sections:

1. In systems with negatively correlated arrival or service process, ignoring auto-
correlation can lead to overestimation of the optimal base-stock level. In other 
words, renewal approximation of a negatively correlated process overestimates 
the optimal base stock level, and consequently the total cost of the system.

2. The overestimation of optimal base-stock level in negatively correlated process 
is due to impact of negative autocorrelation on the stationary queue length prob-
ability distribution.

3. In systems with positively correlated arrival or service process, ignoring auto-
correlation can lead to underestimation of the optimal base-stock level. In other 
words, renewal approximation of a positively correlated process underestimates 
the optimal base stock level, and consequently the total cost of the system.

4. The underestimation of optimal base-stock level in positively correlated process 
is due to impact of positive autocorrelation on the stationary queue length prob-
ability distribution.

5. The queue length distribution of a system with positively correlated arrivals sto-
chastically dominates the same process with less magnitude of autocorrelation. In 
other words, positive correlation increases the probability of having higher queue 
length in the system as opposed to negative autocorrelation which increases the 
probability of having lower queue lengths.

6. Capturing the inter-departure time distribution more accurately while ignoring 
the autocorrelations does not necessarily improve the accuracy of the results. 
Modeling the correlated arrival process with a PH distribution does not neces-
sarily result in more accurate estimation of the optimal control parameter. For 
instance, modeling a positively correlated arrival with a coefficient of variation 
less than one, with an exponential distribution may result in better estimates of 
the base-stock level than PH distribution.

Table 16  Estimating the optimal base-stock level of a negatively correlated process

S∗ TC Error (%) E[X+] Error (%) E[X−] Error (%) Pr[X < 0] Error (%)

MAP/M/1 4 4.2646 0.4417 2.0559 0.1535
̂MAP/M/1 5 4.3439 2 0.2883 − 35 2.9024 41 0.1001 − 35

PH/M/1 5 4.3439 2 0.2883 − 35 2.9024 41 0.1001 − 35
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7. MAP fitting methods allows setting the base-stock level in a way that performs 
at least as the performance obtained by using the exact marginal distribution. 
Employing more sophisticate fitting methods can result in more accurate esti-
mated optimal base-stock levels.

8  Conclusions

In this paper, our objective is controlling a production system by using shop-floor 
inter-event data such as the inter-arrival, inter-departure, and service completion 
times. Although, empirical studies show that inter-event times of a production sys-
tem are correlated, most of the analytical studies for the analysis and control of pro-
duction systems ignore correlation. We use Markovian arrival processeses (MAP) 
to model shop-floor inter-event data because of their ability in estimating any inter-
event process arbitrarily close enough (Asmussen and Koole 1993). We present 
a comprehensive review of MAPs and the existing MAP fitting methods to build 
MAPs from inter-event shop-floor data for the manufacturing systems literature.

We analyze the impact of autocorrelation on the optimal base-stock level by 
using the structural properties of the MAPs. Our analysis show that ignoring 
autocorrelation in modeling inter-arrival and service times of production-inven-
tory systems can lead to misleading results.

We present the effectiveness of the existing MAP fitting methods as they are 
used to build MAP models from the inter-event time data and then used to deter-
mine the base-stock levels. Our analysis show that even using the simplest MAP 
fitting method gives at least as good estimation of the optimal base-stock level as 
the exact marginal distribution. Employing more sophisticate fitting methods can 
result in more accurate estimated optimal base-stock levels.

We conjecture that queue length distribution of a system with positively cor-
related arrivals, stochastically dominates queue length distribution of a processes 
with the same distribution an lesser magnitude of autocorrelation. In addition, the 
queue length distribution of a system with negatively correlated arrivals, is sto-
chastically dominated by the queue length distribution of a process with the same 
distribution an lesser magnitude of autocorrelation. The analytical demonstration 
of this statement requires an investigation regarding the behavior of geometric 
matrix R (or its determinant) as a function of the autocorrelation or covariance of 
the arrival or service processes of the system.

We conclude by stating that MAP is suitable process to model shop-floor inter-
event data. There exist numerous MAP fitting methods which can be employed to 
fit a MAP into the shop-floor inter-event data. MAP can capture the correlation 
in inter-arrival and service times which affect the optimal base-stock level of the 
system, significantly. Our findings on the effects of autocorrelation on the system 
can be summarized as follows:

1. The autocorrelation structure should be taken into account while designing a 
production system.
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2. Positively (Negatively) correlated systems need a larger (smaller) buffer size in 
comparison with the correlated processes with lower magnitude of first-lag auto-
correlation. In other words, the expected inventory in front of a service station 
increases (decreases) as a function of the positive (negative) autocorrelation.

3. Positive autocorrelation may increase the average cycle time of the products in 
the system.

4. The arrival of products into the system can be modulated in order to control the 
correlation in inter-arrival times. For instance, if low buffer levels is needed in 
front of a line creating negative autocorrelation may decrease the optimal buffer 
level.

We developed an estimation-then-optimization framework for controlling a pro-
duction line in which production decision can be taken by employing full statisti-
cal properties of the shop-floor inter-event data. A possible research direction is to 
adopt model free methods instead of estimation-then-optimization approach in set-
ting the base-stock level. Model-free methods decrease the model misspecification 
errors at a cost of computational complexity. Integrating MAPs into a model-free 
method may reduce their computational costs and result in more efficient algorithms 
in estimating the optimal base-stock levels. More information from shop-floor such 
as the state of the machines, and quality of the products can be modeled by using 
model-free methods.

Our results are presented here for single-product problems. Our framework can 
be extended to a multi-product problem by adopting marked MAP. Buchholz et al 
(2010), Horváth and Okamura (2013) propose methods to fit a marked MAP into 
data. These methods can be adopted in controlling a production line with multiple 
products by using shop-floor inter-event data. Further research directions include 
performance of the base-stock policy in controlling a system with correlated arrival 
or service processes.
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