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In many industries, the revenue and cost structures of manufacturers are directly a↵ected by the volatility

of purchasing and sales prices in the markets. We analyze the purchasing, production, and sales policies

for a continuous-review discrete material flow production/inventory system with fluctuating and correlated

purchasing and sales prices, exponentially distributed raw material and demand inter-arrival times, and

processing time. The sales and purchasing prices are driven by the random environmental changes that evolve

according to a discrete state space continuous-time Markov process. We model the system as an infinite-

horizon Markov decision process under the average reward criterion and prove that the optimal purchasing,

production, and sales strategies are state-dependent threshold policies. We propose a linear programming

formulation to compute the optimal threshold levels. We examine the e↵ects of the sales price variation,

purchasing price variation, correlation between sales and purchasing prices, customer arrival rate and limited

inventory capacities on the system performance measures, through a range of numerical experiments. We

also examine under which circumstances the use of the optimal policy notably improves the system profit

compared to the use of the buy low and sell high naive policy. We show that using the optimal purchasing,

production, and sales policies allow manufacturers to improve their profits when the purchasing and sales

prices fluctuate.

Key words : Random environment, Price fluctuation, Markov decision process, Linear Programming

1. Introduction

In many industries, manufacturers of standard products purchase raw materials from commodity

markets and sell their products at market prices that are determined by the external market

* It will be published IISE Transactions
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Figure 1 Figure 1(a) Yearly price for tomato paste and tomatoes in California U.S. Figure, from
http://morningstarco.com/statdocs/2016%20Exhibits%20Brochure.pdf. Figure 1(b) Monthly rate of
changes in the price of crude oil and in the price of gasoline, from https://data.worldbank.org/data-
catalog/commodity-price-data.

conditions. As a result, their revenue and cost structures are directly a↵ected by the volatility of

purchasing and sales prices in the markets.

In particular, manufacturers whose products are related to the agricultural, mineral, oil, and

energy sectors make transactions based on the commodity markets and must deal with the price

fluctuations in both sales and purchasing operations. For instance, Figure1(a) shows how tomato

and tomato paste prices change between the years 1965 and 2015. Figure1(b) also depicts the

monthly rate of changes in the price of crude oil and in the price of gasoline between the years

2013 and 2017.

This dependence on market price fluctuations also occurs for industrial goods, such as D-RAM or

white goods (Berling and Mart́ınez-de Albéniz 2011). In addition, manufacturers that execute their

purchasing, production, and sales operations in an international setting with di↵erent currencies

have a similar issue because of the fluctuations in the spot rate of di↵erent currencies. Due to the

high competition in the markets for standard products, manufacturers cannot individually exert

an influence over the selling and purchasing prices. In this environment, reflecting the fluctuations

in the purchasing prices directly on the sales price will not be accepted by the customers since the

prices for the standard products are determined by the market conditions (Berling and Xie 2014).
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To cope with the volatility in the market prices, manufacturers can utilize an operational hedging

strategy in terms of purchasing, production, and sales decisions. However, in the literature, the most

of the production and inventory control models do not consider a need for the operational hedging

strategies that handle the fluctuating market prices. Furthermore, to the best of our knowledge,

none of the existing studies focus on the impacts of the correlation between sales and purchasing

prices on a production/inventory system where the sales and purchasing prices together fluctuate

in a random fashion.

Our aim in this article is developing an analytical model that can be used to determine the

optimal purchasing, production, and sales strategies for a manufacturer with a finite capacity and

explaining how the sales price variation, purchasing price variation, correlation between sales and

purchasing prices, limited raw materials and finished goods inventories, and limited production

capacity a↵ect the performance of a production/inventory system. In this context, we focus on the

following research questions:

• What are the optimal purchasing, production, and sales policies for a production/inventory

system in which the sales and purchasing prices evolve according to the random environment

changes?

• What are the impacts of sales price variation, purchasing price variation, correlation between

sales and purchasing prices, limited raw materials and finished goods inventories, and limited

production capacity on the system performance measures?

• Under which circumstances does the use of the optimal policy significantly improve the profit

compared to the use of the buy low and sell high naive policy where the manufacturer buys

only when the purchasing price is low and sells only when the sales price is high?

In order to answer these questions, we study a continuous-review discrete-material flow produc-

tion/inventory system with raw materials and finished goods inventories and consider that the

sales and purchasing prices are driven by a randomly fluctuating environment. In our study, the

price fluctuations are represented by a discrete state space, continuous time Markov process. The
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demand and raw material arrival processes are characterized as Poisson processes and the produc-

tion system with a limited capacity is modeled as a single server with exponential processing times.

Under this problem setting, we model the system as an infinite-horizon Markov decision process

under the average reward criterion.

To address the first research question, we employ the event-based dynamic programming

approach. With this e↵ort, we analytically prove that the optimal purchasing, production, and sales

strategies are state-dependent threshold policies. We also propose a solution procedure based on a

linear programming formulation to numerically identify the optimal threshold levels for purchasing,

production and sales strategies.

We answer the second question by conducting a range of numerical experiments. As a result, we

observe that the negative correlation between sales and purchasing prices yields a higher average

reward for the manufacturer. The positive correlation between sales and purchasing prices lowers

the average reward for the manufacturer while increases the average inventory and customer service

levels. We notice that a higher variation in either the sales price or purchasing price yields a higher

profit for the manufacturer. Additionally, we conclude that limited raw materials and finished goods

inventories and limited production capacity have considerable e↵ects on the system performance

measures.

Finally, in order to address the last question, we first modify the linear programming formulation

to model the operation of a producer that uses the buy low and sell high naive purchasing and sales

policy but determines the production policy optimally. Then by using numerical experiments, we

show that the high sales price variation, high purchasing price variation, and negative correlation

yield a decrease in the di↵erence between the profits achieved by using the optimal and naive

policies.

We consider deriving the optimal purchasing, production, and sales policies for a production

system operating with randomly fluctuating and correlated purchasing and sales prices and using

the derived policies to show the impacts of sales price variation, purchasing price variation, corre-

lation between sales and purchasing prices, limited raw materials and finished goods inventories,
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and limited production capacity on the system performance measures as the main contributions of

this study.

The rest of this article is organized as follows: Section 2 reviews the related literature and con-

textualizes our contribution. Section 3 contains the model formulation and outlines the analytical

results on the optimal purchasing, production, and sales policies. In Section 3, a linear program-

ming formulation is also presented as a numerical tool to solve the model. Section 4 summarizes

the results of the numerical analysis and the managerial insights derived from the analysis. Finally,

the conclusions and future research directions are provided in Section 5.

2. Literature Review

In the literature, a number of studies typically examine either the impact of fluctuating sales price

or of fluctuating purchasing price on the optimal purchasing, production or sales policies. In most

of these studies, the optimal control models with the di↵erent time and state space representations

are employed. Based on these representations, the current literature is categorized into several

groups and each group is discussed in this review.

The discrete-time discrete-state space models in the literature primarily focus on inventory sys-

tems. As one of the early studies in this literature, Özekici and Parlar (1999) develop an infinite-

horizon inventory model with unreliable suppliers, where the demand, supply, and cost parameters

are a↵ected by a randomly changing environment. In their model, the random changes in the envi-

ronment states are modulated by a time-homogeneous Markov process. The authors show that an

environment-dependent base-stock policy is optimal when the order cost is linear in order quantity.

Additionally, an (s,S) policy is found to be optimal when a fixed cost of ordering is in place. In the

work of Özekici and Parlar (1999), the supplier is either fully available or unavailable based on the

state of the environment. Erdem and Özekici (2002) extend this assumption by considering a case

in which the supplier is always available, but its capacity is random and dependent on the state of

the environment. Papachristos and Katsaros (2008) further the work of Erdem and Özekici (2002)

by introducing a constant lead time and by considering the e↵ect of stochastic ordering of the
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random variables that represent the supplier’s capacity levels on the optimal policy parameters.

Gavirneni (2004) considers an uncapacitated production/inventory system in which the purchasing

cost fluctuates over the time due to the changes in the exchange rate. The purchasing cost fluc-

tuations are modeled with a time-homogeneous Markov chain. The author proves the optimality

of an order up to policy and proposes a simple myopic heuristic for finding the policy parameters.

De Cuypere et al. (2013) study the optimal inventory control policy when the lead time of pur-

chased parts follows a phase-type distribution and the purchasing price is a random variable that

follows a Markovian process. Liu and Yang (2015) focus on a problem in which a make-to-stock

firm periodically controls both the purchasing activity and sales price. The authors consider that

the purchasing price randomly fluctuates according to a Markovian fashion and the demand is a

random variable depending on the sales price. For the considered problem setting, they show that

the optimal purchasing policy is a base-stock type.

In the literature, the continuous-time continuous-state space models are also employed to describe

the fluctuations in sales and/or purchasing prices as Markov di↵usion processes. Wu and Chen

(2010) consider a problem setting where an individual firm controls production and two stages

of inventory specifying the deterministic purchasing, production, and sales rates. The sales and

purchasing prices are modeled as standard Brownian motion processes. Under this problem set-

ting, the authors study the relation between the inventory and short-term price variation. They

also characterize the rational expectations equilibrium for the market in which there are com-

petitive production firms. Berling and Mart́ınez-de Albéniz (2011) examine the optimality of a

price-dependent base-stock policy when the demand is a Poisson process and the purchasing price

evolves either as a geometric Brownian motion or an Ornstein-Uhlenbeck process. Berling and Xie

(2014) propose a heuristic to handle the computational intractability issue raised while obtaining

the parameters for the optimal policy suggested in the work of Berling and Mart́ınez-de Albéniz

(2011). In some of the studies that consider continuous-time continuous-state space framework, the

fluctuations in purchasing or operating costs are defined as a deterministic function of time. Arnold



7

C
o
n
t
r
o
l

D
e
c
is
io
n
s

O
b
j
e
c
t
iv
e

F
u
n
c
t
io
n

P
u
r
c
h
a
s
in
g

P
r
ic
e

S
a
le
s
P
r
ic
e

P
r
o
d
u
c
t
io
n

P
r
o
c
e
s
s

D
e
m
a
n
d

P
r
o
c
e
s
s

R
a
w

M
a
t
e
r
ia
l

P
r
o
c
e
s
s

Study

P
u
rc
h
as
in
g

P
ro
d
u
ct
io
n

S
al
es

P
ri
ci
n
g

R
an

d
om

D
et
er
m
in
is
ti
c

R
an

d
om

D
et
er
m
in
is
ti
c

C
ap

ac
it
at
ed

U
n
ca
p
ac
it
at
ed

R
an

d
om

D
et
er
m
in
is
ti
c

R
an

d
om

D
et
er
m
in
is
ti
c

R
an

d
om

D
et
er
m
in
is
ti
c

Özekici and Parlar (1999) X Min TDOC X X X X
Erdem and Özekici (2002) X Min TDOC X X X X
Gallego and Hu (2004) X Min TDOC X X X X
Gavirneni (2004) X Max LRAR X X X X X
Mohebbi (2006) X X
Papachristos and Katsaros (2008) X Min TDOC X X X X X
Gayon et al. (2009) X X Max LRAR X X X X
Arnold et al. (2009) X Min TDOC X X X
Cao et al. (2009) X X Min TDOC X X X X X
Wu and Chen (2010) X X X Max TDR X X X X X X
Arnold et al. (2011) X Min TDOC X X X X X
Berling and Mart́ınez-de Albéniz
(2011)

X Min TDOC X X X X X

De Cuypere et al. (2013) X Min TDOC X X X X X
Berling and Xie (2014) X Min TDOC X X X X X
Liu and Yang (2015) X X Max LRAR X X X X
This Work X X X Max LRAR X X X X X X

TDOC: Time Discounted Operating Cost, LRAR: Long-Run Average Reward, TDR: Time Discounted

Reward
Table 1 A summary table for the reviewed studies

et al. (2009) study the optimal purchasing and inventory policies for a firm that operates in an envi-

ronment where the ordering cost is zero and the purchasing price, demand, and inventory holding

costs vary over time. Arnold et al. (2011) extend the analysis of Arnold et al. (2009) to a production

model with finite production rate. Cao et al. (2009) consider a production/inventory system whose

operations are subject to the time-dependent deterministic fluctuations in the demand, production

cost, and purchasing cost over time.
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A number of studies have also employed the random environment framework to model the

randomness in the supply and/or demand processes. In the context of this literature, Gallego

and Hu (2004) study the optimal policies for production/inventory systems with finite capacity

and Markov-Modulated demand and supply processes. Mohebbi (2006) focuses on a capacitated

production/inventory system with compound Poisson demand, where both production and demand

processes are subject to independently and randomly changing environmental conditions. The

author derives the limiting distribution of the inventory level and provides a number of numerical

results concerning the system performance measures. Gayon et al. (2009) consider a make-to-stock

production/inventory system in which the customer demand is price-sensitive and its distribution

depends on the state of the random environment. The authors study the e↵ects of di↵erent pricing

strategies on the system profit and derive the optimal replenishment policies for each considered

pricing strategy.

Table 1 compares the studies discussed above and our work in di↵erent aspects. From this

comparison, we note that the existing studies typically focus on either the downstream or upstream

side of a production or inventory system. Since a production/inventory system with raw materials

and finished goods inventories is considered in our work, we study downstream and upstream sides

of the system together. In particular, most of the existing studies ignore the process of purchasing

raw materials to facilitate the analysis. They typically assume that a raw material is always ready

whenever it is required for the production. This assumption generally does not hold in practice

because of the randomness in the delivery times in the supply process, the structure of the market,

and the suppliers’ limited capacities. Unlike most of the existing studies, we include the purchasing

process in the system as a stochastic process.

With this e↵ort, we believe that the model provides a better representation for a manufacturer

operating in agricultural sector. In the agricultural sector, the raw material arrivals are random

because of the harvest times, the geographic location of the suppliers, and weather conditions. In

such a setting, the manufacturer generally decides on whether to buy the harvested raw materials
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or not. If the manufacturer decides not to buy she loses the current purchasing opportunity. When

the raw material is required for the manufacturer she has to wait until the next harvest time. On

the other hand, the manufacturer can reject the arriving customer even if the inventory on hand

is positive because she may use the existing products for future sales at a higher price. This can

be considered as a typical hoarding example in the agricultural sector. In addition, when the raw

material arrivals rate is set to a su�ciently higher value than the other rates in the system the

model allows us to analyze a setting where the raw material is almost always available for the

manufacturer. Because, with this particular setting, the frequency of raw material arrivals increases

thereby increasing the number of raw material purchase opportunities for the manufacturer. As a

natural result of this fact, the system would resemble the one in which the manufacturer is able to

buy a raw material whenever she needs it. Hence, the obtained results can be employed to derive

inferences regarding the system where the raw materials are always available.

Table 1 also shows that the existing studies typically consider a random fluctuation in either

sales or purchasing price. However, in our work, both sales and purchasing prices are subject to

the random environment changes that evolve based on a continuous-time Markov chain. With

this problem setting, we study the impacts of sales and purchasing price variations on the system

performance measures. Additionally, unlike the existing studies, we address the e↵ects of correlation

between sales and purchasing prices on the system. In our work, the demand and raw material

arrivals are considered as two independent Poisson processes. The production capacity is limited

because a single server processes raw materials individually with exponential processing times.

To the best of our knowledge, this is the first attempt to derive the purchasing, production,

and sales policies of a production/inventory system with correlated and fluctuating purchasing and

sales prices, random demand and raw material arrivals and random processing time. With this

e↵ort, we are able to investigate the impacts of limited production capacity and tra�c intensity

on the system performance measures. The use of this modeling technique also allows us to model

the system as an infinite-horizon Markov decision process under the average cost criterion.
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Figure 2 Illustration of the problem

3. The Model and The Main Results

In this section, we describe the problem setting and propose the dynamic programming model

for the problem. Additionally, we derive the optimal purchasing, production, and sales policies

for the manufacturer and the structural characteristics of these optimal control policies. A linear

programming formulation is given to numerically obtain the parameters of the optimal purchasing,

production, and sales policies.

3.1. Problem definition

We consider a discrete-material flow production/inventory system where a single manufacturer

with a limited production capacity operates in a make-to-stock manner to fulfill the demand of a

single item. Figure 2 illustrates the considered system.

When a unit of raw material released into the manufacturing facility, it is processed there and

then placed into the finished goods inventory. The manufacturing facility is capable of processing

one item at a time. For the processing of a unit of raw material, the manufacturer incurs the

production cost of w. The processing time is exponentially distributed at the rate µ.

Each customer arriving at the manufacturer requests only one unit of a finished good. Once a

customer arrives to the facility, the manufacturer decides whether to satisfy the arriving customer

from the finished goods inventory or reject it. That is, in order to keep the existing products for

future sales at a higher price, the manufacturer does not have to satisfy an arriving demand even

though there are some goods in the finished goods inventory. When the arriving demand is satisfied,

the manufacturer receives the market sales price for this transaction. If the arriving demand is

rejected then it is lost without a penalty cost. In the model, it is not necessary to consider a
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penalty cost for rejecting the arriving customer because the manufacturer takes this decision by

considering a risk of the loss in the sales revenue. That is, the sales revenue loss that may arise due

to rejecting the arriving customer can be considered as a penalty cost in the model. Additionally,

a consideration of a penalty cost for rejecting the arriving customer would not change the optimal

strategies and main findings in the model, however, it may decrease the value of expected profit

function.

In order to analyze the purchasing policy in a discrete-material flow system, we model the

system with raw materials arriving to the manufacturing facility individually with exponentially

distributed inter-arrival times with the rate � that is much higher compared to the other rates of

change in the system. Once a unit of raw material arrives to the facility, the manufacturer decides

whether to buy it or not. When the manufacturer decides to buy the arriving raw material, he

pays the market purchasing price for this transaction and a unit of arriving raw material is added

into the raw materials inventory.

The stock level of the raw materials inventory is X1 (t) at time t where X1 (t)2N= {0,1,2, . . .}.

The finished goods inventory level at time t is denoted by X2 (t) where X2 (t)2N= {0,1,2, . . .}. A

holding cost of keeping a unit of raw material in the raw materials inventory is h1 per unit time

whereas a holding cost of storing a unit of finished good in the finished goods inventory is h2 per

unit time. In the models where an upstream and a downstream inventory are used together, it

is usually assumed that h2 > h1 in order to reflect a higher value added for the products in the

downstream inventory. In our model, since the purchasing and market prices fluctuate, we do not

make this restricting assumption.

The manufacturer’s operating environment is subject to random changes that directly a↵ect the

unit prices for the raw materials and finished goods. The environment state evolves according to a

continuous-time homogeneous Markov chain with a transition rate matrix Q. The elements qij in

the transition matrix describe the rate departing from i and arriving in state j 6= i. The state of

the environment at time t is represented by I (t) where I (t)2E= {1,2, . . . ,L}.
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The manufacturer is a price-taker, that is, he cannot individually exert influence over the market

prices of finished goods and raw materials. Therefore, the manufacturer uses the market price when

he sells a finished good or procures a raw material. The market purchasing and sales prices depend

on the state of the environment. Specifically, for the environment I(t) = i 2 E, the market prices

for purchasing and sales transactions are C (I(t))=ci where ci 2C={c1, c2, . . . , cL} and S (I(t))=si

where si 2 S={s1, s2, . . . , sL}, respectively. In the setting where the sales price is lower than the

purchasing price, the manufacturer would prefer not to continue his operations since he cannot

generate a profit. In order to avoid this trivial case, we consider that the lowest possible minimum

sales price is greater than or equal to the highest possible purchasing price, i.e., min{s1, s2, . . . , sL}�

max{c1, c2, . . . , cL}. Specifically, it is profitable to purchase, produce, and sell in all environment

states, but the profit margins are di↵erent.

The manufacturer is always able to observe the state of the environment, raw materials inventory

level, and finished goods inventory level. Based on these observations, he seeks to find the optimal

purchasing, production and sales policies that maximize his average reward per unit time over an

infinite planning horizon.

3.2. Optimal control model

Since the system retains no memory as the time between each transition is exponentially dis-

tributed, the decision epochs in our model can be restricted to times when the state changes. Using

these properties, we can formulate the problem as a Markov decision process (MDP) and restrict

our attention only to the class of stationary Markovian policies (Puterman 2014). For the class

of stationary Markovian policies, the actions at each decision epoch depend solely on the current

state. The current state of the system is therefore described as independent of time t and denoted

by the variable (i,x). In the state variable, i is the state of the environment and it belongs to the

set of E. In addition, x represents the stock levels of the raw materials and finished goods invento-

ries and it belongs to set of F= {(x1, x2) |xk 2N where k 2 {1,2}}. Hence, the state variable, (i,x),

belongs to the state space E⇥N2.
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For any given state, the manufacturer may choose either to purchase a raw material or not to

purchase. These two actions are denoted by 1 and 0, respectively, and the action taken by ub. If an

action ub=1 is taken when the environment state is i, a cost of ci is incurred. He might also choose

either to produce or not to produce. These two actions are represented by 1 and 0, respectively,

and the action taken by up. When an action up = 1 is chosen, he pays a unit production cost w.

When a demand arrives, it may either be immediately satisfied or rejected. These two actions are

denoted by 1 and 0, respectively, and the action taken by ur. If an action ur=1 is taken when the

environment state is i, a revenue of si is accrued.

For each state (i,x), a control policy ` specifies the action u
` (i,x) = (ub, up, ur). Given a policy `

and an initial state (i,x), the manufacturer’s average reward per unit time over an infinite planning

horizon is defined as

v
`(i,x)= lim

T!1

1

T
E`

(i,x)

2

4
TZ

0

S(I(t))dNR(t)�
TZ

0

wdNP (t)�
TZ

0

H(X1(t),X2(t))dt�
TZ

0

C(I(t))dNB(t)

3

5 . (1)

In the above equation, H(X1,X2) = h1X1(t) + h2X2(t) is the total holding cost function, NR(t) is

the number of customers satisfied up to t, NP (t) is the number of products produced up to t, and

NB(t) is the number of raw materials purchased up to t. Additionally, E`

(i,x) denotes the expectation

operation given an initial state (i,x) and a policy `. The objective is to identify a control policy `
⇤

that satisfies v⇤ (i,x) = sup
`

v
` (i,x) for all states.

Following Lippman (1975), we work with a uniformized version of the original problem in which

the transition rate in each state under any action is ⇤= �+�+µ+
P
i

P
j 6=i

qij so that the transition

times between decision epochs form a sequence of i.i.d. exponential random variables, each with

a mean of 1/⇤. The introduction of the uniform transition rate allows us to build a discrete-time

equivalent of the original system, simplifying the analysis considerably. To further simplify the

analysis, we also rescale the time by letting ⇤ = 1. As a result of these e↵orts, we obtain the

following optimality equation:

v(i,x)+g
⇤=�Tbv(i,x)+µTpv(i,x)+�Trv(i,x)+Tev(i,x)�hx. (2)
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In the above equation, h = (h1, h2)
T , g⇤ is the optimal average reward, and v(i,x) denotes the

di↵erential reward between the current reward and the optimal average reward. The operators

Tbf (i,x), Tpf (i,x), Trf (i,x), and Tef (i,x) for any real-valued function f(i,x) are defined as

follows:

Tbf (i,x) = max{f(i,x+ e1)� ci, f(i,x)} , (3)

Tpf (i,x) =

8
>>><

>>>:

max{f(i,x� e1 + e2)�w,f(i,x)} , x1 > 0,

f(i,x) , x1 = 0,

(4)

Trf (i,x) =

8
>>><

>>>:

max{f(i,x� e2)+ si, f(i,x)} , x2 > 0,

f(i,x) , x2 = 0,

(5)

Tef (i,x) =
X

j2E\{i}

qjif(j,x), (6)

where e1 is (1, 0) and e2 is (0, 1).

The operators Tbf (i,x), Tpf (i,x), and Trf (i,x) respectively correspond to the purchasing,

production, and sales decisions whereas Tef (i,x) specifies the environmental changes. The state

trajectory of the system corresponding to a unichain policy is eventually confined to the recurrent

class of states. Because, the state space of the environment is finite and the manufacturer controls

the purchasing, production and sales events. Since the system has this unique property, the average

reward corresponding to all initial states as well as the di↵erential rewards of the recurrent states

are independent of the rewards obtained from the transient states (Bertsekas 1995). This result

assures us that the Bellman’s equation v
⇤ + g

⇤ = Tv
⇤ holds and there exists a unique g

⇤.

3.3. Characterization of the optimal purchasing, production, and sales policies

To define the optimality equation given in the previous section, we have employed the event-based

dynamic programming approach that is originally proposed by Koole (1998). In the optimality

equation, each certain event in the system is represented by a specific event operator. Representing

each event with a specific event operator allows us to analyze the propagation of value function
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properties through the propagation properties of the event operators. Specifically, if the event

operators have some structural properties under the given assumptions, then the value function of

the system constructed by using these operators also has the same structural properties.

By using the structure of the event-based dynamic programming approach and the results

obtained in the works of Altman et al. (2000) and Koole (2004), we establish that the optimal pur-

chasing, production, and sales policies for the manufacturer are state-dependent threshold policies.

In Theorem 1, 3, and 5, we propose the details related to the optimal purchasing, production, and

sales policies, respectively. We also establish the monotonicity properties of the optimal purchasing,

production, and sales policies in Theorem 2, 4, and 6. In the Appendix A, we present a detailed

discussion on the proofs of the theorems.

Theorem 1. The optimal purchasing policy for the manufacturer is a state-dependent thresh-

old policy. That is, for any given state (i0, (x0
1, x

0
2)), there exists a corresponding threshold level,

Z
⇤
b
(i0, x0

2). It is optimal to buy if x0
1 <Z

⇤
b
(i0, x0

2) and to do nothing otherwise, i.e.,

u
⇤
b
(i0, (x0

1, x
0
2)) =

8
>>><

>>>:

1, if x0
1 <Z

⇤
b
(i0, x0

2) ,

0, if x0
1 �Z

⇤
b
(i0, x0

2) .

(7)

To clarify the theorems, we use a problem instance analyzed optimally by using the approach

given in Section 3.4 and characterize its optimal purchasing, production, and sales policies. In

Figure 3(a), we give the optimal purchasing policy for one of the environment states considered

in the example denoted with the environment state i
00. Let us consider the state where there are

2 units in the raw material and 2 units in the finished goods inventories, i.e., the state (i00, (2,2)).

Theorem 1 implies that the purchasing threshold level for the given state is one of the points at

(i00, (x1,2)) where x1 2N. Figure 3(a) shows that the corresponding threshold level is Z⇤
b
(i00,2)=5.

Theorem 1 also implies that for all the points at (i00, (x1,2)) where x1 2N, the purchasing threshold

level is Z⇤
b
(i00,2)=5. That is, for any given point (i00, (x1,2)) where x1 2N , it is optimal to purchase

if x1 < 5 and not to purchase if x1 � 5.
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(a) (b)

(c)

Figure 3 An illustration of the optimal 3(a) purchasing, 3(b) production, and 3(c) sales strategies derived for a
particular environment state

With the introduced problem instance, we observe that for any fixed i and x2, there exists a cor-

responding threshold level for purchasing decision and it is not optimal to buy a raw material when

the raw materials inventory level for a given state is above a certain threshold level. To discuss this

implication in more detail, let us modify the manufacturer’s maximization problem into an equiva-

lent minimization problem. In the modified version of the problem, the operator related to purchas-

ing decision is defined as T 0
b
v
0 (i,x) =min{v0(i,x+ e1)+ ci, v

0(i,x)} where v0 (i,x) =�v (i,x). Also,

let us define an operator rv
0 (i,x) = v

0 (i,x+ e1)� v
0 (i,x). Intuitively, for the modified problem,

rv
0 (i,x) represents the benefit of having an extra raw material in the raw materials inventory

when the environment state is i. T 0
b
v
0 (i,x) implies that it is optimal not to buy a raw material in

state (i,x) if rv
0 (i,x)>�ci. With the results obtained in the works of Koole (2004) and Altman

et al. (2000), we also prove that the benefit of an extra item in the raw materials inventory is

non-decreasing in x1 for each environment state i when v
0 (i,x) is multimodular. Whenever this
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benefit exceeds above a certain value, more specifically above the purchasing cost -ci, it will remain

above -ci. This fact guarantees the existence of a threshold level for the purchasing decision. A

similar discussion can also be adapted to Theorem 3 and Theorem 5.

Theorem 2. The optimal purchasing policy for the manufacturer is non-increasing in x1 and

x2. That is, Z⇤
b
(i, x2) that defines the purchasing threshold level for any given state (i,x) is non-

increasing in x2.

Let us consider the state where there are 2 units in the raw material and 5 units in the finished

goods inventories, i.e., the state (i00, (2,5)). Theorem 2 implies that for any given state (i00, (2, x00
2))

where x00
2 > 5 the inequality u

⇤
b
(i00, (2,5))� u

⇤
b
(i00, (2, x00

2)) holds. In Figure 3(a), we observe that the

optimal purchasing policy in the state (i00, (2,5)) satisfies the given inequality, i.e., u⇤
b
(i00, (2,5)) =

1� u
⇤
b
(i00, (2,6)) = 1� u

⇤
b
(i00, (2,7)) = 1� u

⇤
b
(i00, (2,8)) = 0. Let us also consider that Z⇤

b
(i00,5) and

Z
0⇤
b
(i00, x00

2) are the purchasing threshold levels for the state (i00, (2,5)) and any one of the states

that satisfies (i00, (2, x00
2)) where x

00
2 > 5. Theorem 2 implies that Z

⇤
b
(i00,5)�Z

0⇤
b
(i00, x00

2) holds due

to the implication on the optimal purchasing policy and Equation (3). For instance, in Figure

3(a), the purchasing threshold levels for the states (i00, (2,5)) and (i00, (2,6)) are Z
⇤
b
(i00,5) = 4 and

Z
0⇤
b
(i00,6)=3.

Theorem 3. The optimal production policy for the manufacturer is a state-dependent thresh-

old policy. That is, for any given state (i0, (x0
1, x

0
2)) where x

0
1 + x

0
2 = k, there exists a correspond-

ing threshold level, Z
⇤
p
(i0, (x0

1, x
0
2)). It is optimal to produce if x

0
1 > Z

⇤
p
(i0, (x0

1, x
0
2)) and x

0
2 < k �

Z
⇤
p
(i0, (x0

1, x
0
2)) and to stay idle otherwise, i.e.,

u
⇤
p
(i0, (x0

1, x
0
2)) =

8
>>><

>>>:

1, if x0
1 >Z

⇤
p
(i0, (x0

1, x
0
2)) and x

0
2 < k�Z

⇤
p
(i0, (x0

1, x
0
2)) ,

0, if x0
1 Z

⇤
p
(i0, (x0

1, x
0
2)) and x

0
2 � k�Z

⇤
p
(i0, (x0

1, x
0
2)) .

(8)

In Figure 3(b), we give the optimal production policy for one of the environment states, i00, con-

sidered in the example. Let us consider the state where there are again 2 parts in the raw materials

inventory and 2 parts in the finished goods inventory, i.e., the state (i00, (2,2)). Theorem 3 implies
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that the production threshold level for the given state is one of the points at (i00, (x1,4�x1)) where

x1 2N. Specifically, we can find the corresponding threshold value in Figure 3(b) by searching the

line passing through the point (i00, (2,2)) with a slope of -1. Figure 3(b) shows that the production

threshold level for the given state is Z⇤
p
(i00, (2,2))=0. Theorem 3 also implies that for all the points

at (i00, (x1, x2)) where x1 +x2 = 4, the production threshold level is Z⇤
p
(i00, (x1, x2))=0. That is, for

any given (i00, x1, x2) where x1 + x2 = 4, it is optimal to produce if x1 > 0 and x2 < 4, and not to

produce if x1  0 and x2 � 4.

Theorem 4. The optimal production policy for the manufacturer is non-decreasing in x1 and

non-increasing in x2. That is, Z⇤
p
(i, (x1, x2)) that defines the production threshold level for the given

state (i, (x1, x2)) is non-increasing in x2.

Let us consider the state where there are only 2 parts in the finished goods inventory, i.e., the

state (i00,0,2). Theorem 4 implies that for any given state (i00, (0, x00
2)) where x

00
2 > 2 the inequal-

ity u
⇤
p
(i00, (0,2)) � u

⇤
p
(i00, (0, x00

2)) holds. From Theorem 4, we also know that for any given state

(i00, (x00
1 ,2)) where x

00
1 > 0 the inequality u

⇤
p
(i00, (0,2))  u

⇤
p
(i00, (x00

1 ,2)) holds. In Figure 3(a), we

observe that the optimal production policy obtained in the state (i00, (0,2)) satisfies the given

both inequalities, i.e., u⇤
p
(i00, (0,2)) = 0  u

⇤
p
(i00, (1,2)) = 1  u

⇤
p
(i00, (2,2)) = 1 and u

⇤
p
(i00, (0,2)) =

0� u
⇤
p
(i00, (0,3)) = 0� up (i00, (0,4)) = 0. Let us also consider that Z⇤

p
(i00, (0,2)) and Z

0⇤
p
(i00, (0, x00

2))

are the production threshold levels for the state (i00, (0,2)) and any one of the states that satis-

fies (i00, (0, x00
2)) where x

00
2 > 2. Theorem 4 implies that Z

⇤
p
(i00, (0,2)) Z

0⇤
p
(i00, (0, x00

2)) holds due to

the implication on the optimal production policy and Equation (4). For instance, in Figure 3(b),

the production threshold levels for the states (i0, (0,2)) and (i0, (0,3)) are Z
⇤
p
(i00, (0,2)) = 0 and

Z
0⇤
p
(i00, (0,3)) = 0.

Theorem 5. The optimal sales policy for the manufacturer is a state-dependent threshold policy.

That is, for any given state (i0, (x0
1, x

0
2)), there exists a corresponding threshold level, Z⇤

r
(i0, x0

1). It

is optimal to sell if x0
2 >Z

⇤
r
(i0, x0

1), and to do nothing otherwise, i.e.,

u
⇤
r
(i0, (x0

1, x
0
2)) =

8
>>><

>>>:

1, if x0
2 >Z

⇤
r
(i0, x0

1) ,

0, if x0
2 Z

⇤
r
(i0, x0

1) .

(9)
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In Figure 3(c), we give the optimal sales policy for one of the environment states considered in the

example, say, the environment state i
00. Let us consider that (i00, (1,2)) is the given state. Theorem

5 implies that the sales threshold level for the given state is one of the points at (i00, (1, x2)) where

x2 2N. Figure 3(c) shows that the corresponding threshold level is Z
⇤
r
(i00,1) = 3. Theorem 5 also

implies that for all the points at (i00, (1, x2)) where x2 2N, the sales threshold level is Z⇤
r
(i0,1) = 3.

That is, for any given point (i00, (1, x2)) where x2 2N, it is optimal to sell if x2 > 3 and not to sell

if x2  3.

Theorem 6. The optimal sales policy for the manufacturer is non-decreasing in x1 and x2. That

is, Z⇤
r
(i, x1) that defines the sales threshold level for the given state (i, (x1, x2)) is non-increasing

in x1.

Let us consider the state where there are only 3 units in the finished goods inventories, i.e., the

state (i00, (0,3)). Theorem 6 implies that for any given state (i00, (x00
1 ,3)) where x

00
1 > 0 the inequality

u
⇤
r
(i00, (0,3)) u

⇤
r
(i00, (x00

1 ,3)) holds. In Figure 3(c), we observe that the optimal sales policy obtained

in the state (i00, (0,3)) satisfies the given inequality, i.e., u
⇤
r
(i00, (0,3)) = 0  u

⇤
r
(i00, (1,3)) = 0 

u
⇤
r
(i00, (2,3)) = 1. Let us also consider that Z

⇤
r
(i00,0) and Z

0⇤
r
(i00, x00

1) are the sales threshold levels

for the state (i00, (0,3)) and any one of the states that satisfies (i00, (x00
1 ,3)) where x

00
1 > 0. Theorem

6 implies that Z⇤
r
(i00,0)�Z

0⇤
r
(i00, x00

1) holds due to the implication on the optimal sales policy and

Equation (5). For instance, in Figure 3(a), the sales threshold levels for the states (i00, (0,3)) and

(i00, (2,3)) are Z
⇤
r
(i00,0) = 3 and Z

0⇤
b
(i00,2) = 2.

3.4. Linear programming formulation for the optimal control model

We use a linear programming formulation to validate the optimal purchasing, production, and sales

policies derived in the previous section, as well as to numerically compute the policy parameters.

The main advantage of this approach is that it derives the steady state probabilities for the system

without an extra e↵ort (Bertsekas 1995). This fact allows us to readily examine the e↵ects of

system parameters on the performance measures. All of the sets and indices used in the linear

programming formulation are listed in below.
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Sets & Indices

ub: Purchasing decision, ub2B={0,1} x1: Raw materials inventory level, x12X1={0,1, . . . ,M1}

up: Production decision, up2 P={0,1} x2: Finished goods inventory level, x22X2={0,1, . . . ,M2}

ur: Sales decision, ur2R={0,1} i: Environment state, i2E={1,2, . . . ,L}

x : Inventory levels state, x2 F0 = {(x1, x2) |xk 2Xk where k 2 {1,2}}
Table 2 Sets and indices used in the linear programming formulation

As a computational requirement of the linear programming approach, we should restrict the state

spaces for the stock levels of the raw materials and finished goods inventories (Nadar et al. 2014).

Therefore, we describe two new parameters M1 and M2 that are inventory truncation levels for the

raw materials and finished goods inventories, respectively. These two truncation levels are chosen

su�ciently high so that the globally optimal reward does not change with a further increase in

one of them. With these e↵orts, the variables that denote the stock levels of the raw materials and

finished goods inventories belong the sets x1 2X1 = {0,1,2, . . . ,M1} and x2 2X2 = {0,1,2, . . . ,M2},

respectively. As a result, x that represents the inventory levels in the state variable belongs to the

set F0, i.e., x2 F0 = {(x1, x2) |xk 2Xk where k 2 {1,2}}.

The decision variable for the LP formulation is denoted by Yi,x,ub,up,ur
. The variable gives us

the long-run fraction of the time that the system is in state (i,x) when the actions ub, up, and ur

are taken. With this decision variable and the sets and indices introduced in the above, the LP

formulation for the problem is given as follows:

max �=
X

i2E

X

x2F0

X

ub2B

X

up2P

X

ur2R

Yi,x,ub,up,ur
(�ursi��ubci�µupw�x1h1�x2h2) , (10)

subject to

X

ub2B

X

up2P

X

ur2R

 
Yi,x,ub,up,ur

�ub�Yi,x�e1,ub,up,ur
�upµYi,x+e1�e2,ub,up,ur

�ur�Yi,x+e2,ub,up,ur

�
X

j2E\{i}

qjiYj,x,ub,up,ur
�
⇣
1�ub��upµ�ur��

X

j2E\{i}

qij

⌘
Yi,x,ub,up,ur

!
=0, 8i2E,8x2 F0

, (11)

X

i2E

X

x2F0

X

ub2B

X

up2P

X

ur2R

Yi,x,ub,up,ur
= 1, (12)
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Yi,x,ub,up,ur
= 0,8i2E,8x2 {(x1, x2) |x1 = 0, x2 2X2} ,8ub 2B, up 2 {1} ,8ur 2R, (13)

Yi,x,ub,up,ur
= 0,8i2E,8x2 {(x1, x2) |x1 2X1, x2 = 0} ,8ub 2B,8up 2 P, ur 2 {1} , (14)

Yi,x,ub,up,ur
= 0,8i2E,8x2 {(x1, x2) |x1 2 {�1,M1 +1} , x2 2X2} ,8ub 2B,8up 2 P,8ur 2R, (15)

Yi,x,ub,up,ur
= 0,8i2E,8x2 {(x1, x2) |x1 2X1, x2 2 {�1,M2 +1}} ,8ub 2B,8up 2 P,8ur 2R, (16)

Yi,x,ub,up,ur
� 0,8i2E,8x2 F0

,8ub 2B,8up 2 P,8ur 2R. (17)

The objective function defined in Equation (10) is to maximize the long-run average reward of

the manufacturer. Constraint (11) is the balance equations that satisfy the flow into state (i,x)

equals the flow out of state (i,x). Since the decision variables constitute a probability mass function,

they must be non-negative real numbers and their summation must be equal to 1. Constraint (17)

satisfies the condition on the non-negativity of the decision variables. Constraint (12) ensures that

the sum of the decision variables equals to 1. Constraint (13) stipulates that production is not

possible when the raw materials inventory is empty. Constraint (14) ensures that an incoming

demand cannot be satisfied if there is no stock in the finished goods inventory. When x1 is 0 or M1

in the vector x, Constraint (11) yields the decision variables that are out of the state space due

to Yi,x�e1,ub,up,ur
and Yi,x+e1�e2,ub,up,ur

. Constraint (15) eliminates these trivial decision variables

from the formulation. Since a similar situation is observed when x2 is 0 or M2 in the vector x,

Constraint (16) is also included into the formulation. In another words, Constraints (15) and (16)

prevent probability leakage from the outside of the state space.

We analytically investigate the structure of the above linear programming problem by

defining the number of decision variables and the number of constraints. Except the non-

negativity constraint, the numbers of variables and constraints are 8L (M1 +1) (M2 +1) and 1 +

L (M1 +1) (M2 +1) + 20L ((M1 +1)+ (M2 +1)), respectively. Since the number of variables and

constraints polynomially grow as the size of state space increases, the size of the LP problem

mostly stays at a manageable level. We also numerically examined the e↵ect of the size of the state

space on the computation time. For the examination, we used GAMS modeling environment with
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CPLEX 12.5 LP solver on a computer that has 2.7 GHz Intel core i5 processor and 8 GB RAM.

The results confirmed our analytical findings and showed that the LP formulation manage to find

the solution in less than one and half minute when the state space size is less than 2 million. We

believe that a model including 2,000,000 states is su�ciently precise to deal with the fluctuating

sales and purchasing prices in a production/inventory setting. For instance, this structure allows

us to analyze a case in which there exist 400 di↵erent sales and purchasing prices combinations

and truncation levels are 71.

4. Numerical Analysis

In this section, we examine the e↵ects of variations in the purchasing and sales prices, the correlation

between purchasing and sales prices, tra�c intensity, and limited inventory capacities on the system

performance measures through a range of numerical experiments. Before presenting results, we

primarily introduce the long-run measures regarding the dynamics of the operating environment

and manufacturing system and justify the chosen parameters.

4.1. The long-run measures regarding the dynamics of the operating environment

and manufacturing system

In the numerical analysis, we consider the long-run average reward (�), customer service level (↵),

average stock level in the raw materials inventory (E [x1]), and average stock level in the finished

goods inventory (E [x2]) as the system performance measures. The definitions of these performance

measures are given as follows:

�=
X

i2E

X

x2F0

X

ub2B

X

up2P

X

ur2R

Yi,x,ub,up,ur
(�ursi��ubci�µupw�x1h1�x2h2) , (18)

↵=
X

i2E

X

x2F0

X

ub2B

X

up2P

X

ur2{1}

Yi,x,ub,up,ur
, (19)

E [x1] =
X

i2E

X

x2F0

X

ub2B

X

up2P

X

ur2R

x1Yi,x,ub,up,ur
, (20)

E [x2] =
X

i2E

X

x2F0

X

ub2B

X

up2P

X

ur2R

x2Yi,x,ub,up,ur
. (21)

In all the numerical instances, we examine a special setting where the sales and purchasing prices

change only at High (H) and Low (L) states. In this setting, the sales prices in the low and high
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states are denoted by sL and sH whereas the purchasing prices in the low and high states are

represented as cL and cH . To model such a setting with the framework introduced in this study, we

map each possible binary combination of the purchasing and sales prices to a certain environment

state. So, we define four di↵erent environment states and list them in below:

1 = Purchasing and sales prices are High (HH), c1 = cH and s1 = sH ,

2 = Purchasing price is Low and sales price is High (LH), c2 = cL and s2 = sH ,

3 = Purchasing price is High and sales price is Low (HL), c3 = cH and s3 = sL,

4 = Purchasing and sales prices are Low (LL), c4 = cL and s4 = sL.

With the considered setting, we can characterize the long-run probability distribution associated

with the environment states by solving Equations (22) and (23), simultaneously:

⇧T
Q = 0, (22)

⇧1 = 1. (23)

⇧T is the vector including the long-run probability distribution associated with the environment

states, i.e., ⇧T = [⇡1 ⇡2 ⇡3 ⇡4]. With this vector, we define the long-run expectation and variance

of the purchasing price as in the following equations and respectively denote them by E[C] and

Var[C]:

E[C] = cH (⇡1 +⇡3)+ cL (⇡2 +⇡4) , (24)

Var[C] = (cH � cL)
2 (⇡1 +⇡3) (⇡2 +⇡4) . (25)

Thus, the coe�cient of variation for the purchasing price is defined as CVC =
p
Var[C]/E[C]. The

long-run expectation and variance of the sales price are respectively defined in below and denoted

by E[S] and Var[S]:

E[S] = sH (⇡1 +⇡2)+ sL (⇡3 +⇡4) , (26)

Var[S] = (sH � sL)
2 (⇡1 +⇡2) (⇡3 +⇡4) . (27)
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With the above expressions, the coe�cient of variation for the sales price is CVS =
p

Var[S]/E[S].

Additionally, the correlation between purchasing and sales prices, ⇢CS, is obtained as follows:

⇢CS =
⇡4⇡1 �⇡2⇡3p

(⇡1 +⇡3) (⇡2 +⇡4)
p
(⇡1 +⇡2) (⇡3 +⇡4)

. (28)

From Equation (28), we observe that when ⇡2⇡3 > ⇡4⇡1 there is a negative correlation between

purchasing and sales prices. The same equation also implies that for a positive correlation between

purchasing and sales prices, ⇡2⇡3 < ⇡4⇡1 condition should be satisfied. When ⇡2⇡3 = ⇡4⇡1 holds

there is no correlation between these two market prices.

The correlation between sales and purchasing prices can only be manipulated with the transition

matrix since it is a function of the long-run probability distribution of the environment states.

Hence, in the numerical examples, we form the transition matrices in such a way that the specified

correlation coe�cients are obtained. While forming the transition matrices, we follow a two-step

procedure. The procedure allows the correlation coe�cient to set the specified level while keeping

the expectations and variances of the sales and purchasing prices at the same levels. Thus, for the

numerical instances being examined in the same group, we are able to observe the direct e↵ects

of the correlation coe�cient on the system. If the transition matrices are not formed in this way,

the expectations and variances of the sales and purchasing prices change each time the correlation

coe�cient changes. In such a case, the analysis would yield biased and incorrect results. To initiate

the procedure, E[C], Var[C], E[S], Var[S], ⇢CS, sH , sL, cH , cL, and the average time spent in each

environment state, Ti where i2 {1,2,3,4}, should be given as the input parameters. The details of

the procedure are discussed in the Appendix B.

4.2. Parameter settings

In the numerical analysis, we study four di↵erent scenarios and list the parameters of each scenario

in Table 3. In Scenario 1, 2, and 3, we consider a structure where � > µ > � and normalize the

demand and raw material arrival rates according to the production rate. With this structure,

the manufacturer has a su�cient capacity and number of raw material purchasing opportunities

to satisfy the arriving demand. This structure allows us to directly observe the impacts of the



25

fluctuating and correlated purchasing and sales prices on the system when Scenario 1, 2, and 3

are considered. To obtain the correlation coe�cients considered in the scenarios, we utilize the

average amounts of time spent in the environments given in Table 4. One can notice that average

time spent in each environment state is typically set to a large value compared to the average

interarrival times assigned for the production, demand, and raw material processes. This implies

that times to change the environment states are much longer than the ones for the other processes.

Hence, the manufacturer is able to deduce and adjust to an environmental change in a relatively

short time period.

Scenario
The invariant parameters in

the scenario

The changing parameters in

the scenario

Scenario 1 µ=1.00 �=1.50 �=0.80 w=0.10 CVS 2 {0.30,0.20,0.10}

h1=0.04 h2=0.04 E[S]=1.80 E[C]=1.10 sH 2 {2.35,2.20,2.00}, sL 2 {1.25,1.40,1.55}

CVC=0.10 cH=1.20 cL=1.00 ⇢CS 2 {�0.90,0.80, . . . ,0.80,0.90}

Scenario 2 µ=1.00 �=1.50 �=0.80 w=0.10 CVC 2 {0.30,0.20,0.10}

h1=0.04 h2=0.04 E[C]=1.50 E[S]=2.40 cH 2 {2.00,1.80,1.65}, cL 2 {1.00,1.20,1.35}

CVS=0.10 sH=2.65 sL=2.15 ⇢CS 2 {�0.90,0.80, . . . ,0.80,0.90}

Scenario 3 µ=1.00 �=1.50 w=0.10 h1=0.04 �2 {0.80,0.90, . . . ,2.50}

h2=0.04 E[S]=1.90 E[C]=1.20 CVS=0.20 ⇢CS 2 {�0.60,0,0.60}

CVC=0.15 sH=2.30 sL=1.50 cH=1.40

cL=1.00

Scenario 4 h1=0.04 h2=0.04 w=0.10 E[S]=1.90 �2 {0.60,0.70, . . . ,2.20}

E[C]=1.20 CVS=0.20 CVC=0.15 sH=2.30 µ2 {1.00,1.60}, � 2 {1.60,1.00}

sL=1.50 cH=1.40 cL=1.00 ⇢CS=0 M1 +M2 2 {2,3, . . . ,10}
Table 3 The scenarios specified to analyze the e↵ects of the parameters on the system performance measures

In each scenario, we set the long-run averages of purchasing and sales prices in such a way

that the relative di↵erence between these two parameters does not exceed 60%. We believe that

this structure would provide a better representation for a production/inventory system in practice
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because it avoids the non-realistic environments where the long-run profit margins for the man-

ufacturer are too low or high. While setting the values of the parameters whose impacts on the

system would be analyzed, we utilize the specified coe�cient of variation for the corresponding

parameter and normalize all the market prices according to the lowest purchasing price consid-

ered in the corresponding scenario. In all scenarios, we ensure that the lowest sales price is higher

than the highest purchasing price. Otherwise, the manufacturer would prefer not to operate in

the setting where the sales price is lower than the purchasing price, and so, the results would be

trivial. Additionally, in all the scenarios, we consider that the holding costs for the raw material

and finished goods inventories equal each other and set them as not-exceeding 4% of the long-run

average of the purchasing prices.

⇢CS

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T1 50 50 50 50 50 50 50 50 50 50 41 33 27 21 17 13 9 6 3

T2 700 450 283 200 150 117 93 75 61 50 50 50 50 50 50 50 50 50 50

T3 700 450 283 200 150 117 93 75 61 50 50 50 50 50 50 50 50 50 50

T4 50 50 50 50 50 50 50 50 50 50 41 33 27 21 17 13 9 6 3

Table 4 The average time spent in environment state i for the given correlation coe�cient between sales and
purchasing prices

From the preliminary numerical analysis results, we have observed that the truncation levels

between 20 and 25 are typically su�ciently large to reach the optimal solution for the system

parameters used. We have employed this observation while solving the problem instances generated

with Scenario 1, 2 and 3. More specifically, we have primarily solved each problem instance by using

two di↵erent truncation level settings, i.e., M1 =M2 = 25 and M1 =M2 = 26. Later on, for each

problem instance, we have compared the results obtained with these two settings. The comparison

results indicate that none of the reward functions in the problem instances improves when we

change the truncation levels from 25 to 26. Accordingly, the setting whereM1 =M2 = 25 guarantees

that we obtain the globally optimal solution for each problem instance in all the scenarios.
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Figure 4 The impacts of the correlation between sales and purchasing prices and sales price variation on 4(a) the
manufacturer’s profit, 4(b) the average service level, 4(c) the average stock level in the raw materials
inventory, and 4(d) the average stock level in the finished goods inventory

4.3. E↵ects of the correlation between sales and purchasing prices and sales price

variation on the system

To analyze the impacts of the correlation between sales and purchasing prices and sales price

variation on the system, we use Scenario 1 given in Table 3. With this scenario, for each CVS value,

we generate 19 problem instances and depict the corresponding result in Figure 4.

Figure 4(a) shows that the manufacturer’s profit increases with the sales price variability. When

the sales price variability is high the profit margin per unit obtained in state 3 considerably declines.

Therefore, in state 3, the manufacturer reduces the raw material purchases by lowering the threshold

values regarding the purchasing decision. So, as Figures 4(c) and 4(d) indicate, the average stock



28

levels in the raw materials and finished goods inventories decrease as the sales price variability

increases. Figure 4(b) also indicates that the average service level reduces due a decrease in the

average stock levels in the raw materials and finished goods inventories. Since the average stock

levels in the raw materials and finished goods inventories decrease the manufacturer saves on the

purchasing and inventory holding costs. Additionally, the profit margin in state 3 is the lowest one

among the other states, because the sales price is low and the purchasing price is high. As a result,

the revenue loss due to less stock in state 3 is easily compensated by the sales in the other states

and the savings from purchasing and inventory holding costs. These facts reveal the main rationale

behind the increase in manufacturer’s profit with an increase in sales price variability.

Figure 4(a) also shows that when the correlation between sales and purchasing prices shifts from

toward -0.90 to 0.90 the manufacturer’s profit decreases. In the case where the correlation between

sales and purchasing prices is negative, the manufacturer reduces the raw material purchases in

state 3 and saves on the purchasing and inventory holding costs. Figure 4(a) also implies that the

amount of savings obtained in the negative correlation case increases as the variability of sales price

increases. Lowering the raw material purchases in state 3 yields a decrease in the average service

level, average stock level in the raw materials inventory, and average stock level in the finished

goods inventory (see Figures 4(b), 4(c), and 4(d)). However, when the correlation proceeds from

the negative values to the positive values the manufacturer starts to actively use four environment

states. Hence, when the correlation is positive we observe an increase in the average service level,

average stock level in the raw materials inventory, and average stock level in the finished goods

inventory. An increase in these measures leads to a decrease in the amount of savings obtained

from purchasing and inventory holding costs so that the manufacturer’s profit reduces.

4.4. E↵ects of the correlation between sales and purchasing prices and purchasing

price variation on the system

To analyze the impacts of the correlation between sales and purchasing prices and purchasing price

variation on the system, we employ Scenario 2 given in Table 3. With this scenario, for each CVC

value, we generate 19 problem instances and depict the corresponding result in Figure 5.
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Figure 5 The impacts of the correlation between sales and purchasing prices and purchasing price variation on
5(a) the manufacturer’s profit, 5(b) the average service level, 5(c) the average stock level in the raw
materials inventory, and 5(d) the average stock level in the finished goods inventory

Figure 5(a) indicates that the manufacturer’s profit decreases when we shift the correlation

between purchasing and sales prices from toward -0.90 to 0.90. When there is a negative correlation

between sales and purchasing prices the manufacturer reduces the raw material purchases in state 3.

Figures 5(c) and 5(d) show that reducing the raw material purchases in state 3 declines the average

stock levels in the raw materials and finished goods inventories. With this policy, the manufacturer

saves on the purchasing and inventory holding costs and increases his profit. Figure 5(a) shows that

the amount of savings increases as the variation of the purchasing price rises. In addition, since the

average stock levels in the raw materials and finished goods inventories decrease in the case where
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the correlation between sales and purchasing prices is negative, the average service level declines

(see Figure 5(b)).

When the correlation between purchasing and sales prices shifts from toward the negative values

to the positive values the manufacturer considerably increases the raw material purchases in state

2. Since the purchasing price is low in state 2 the manufacturer aims to save on the purchasing

costs by implementing this policy. Figure 5(a) shows that the amount of this saving slightly rises

when the purchasing price variation is high and the correlation coe�cient is between 0.4 and 0.7. In

Figures 5(c) and 5(d), we also observe that this policy causes a significant increase in the average

stock levels in the raw materials and finished goods inventories when the correlation coe�cient is

between 0.4 and 0.7. Figure 5(b) indicates that since the average stock levels in both inventories

increases with the positive correlation coe�cient the average service level rises. The manufacturer

could not raise the raw material stocks to the level that he aims because the average time spent in

state 2 notably reduces when the correlation coe�cient is greater 0.7. Hence, we observe that when

the correlation coe�cient is greater 0.7 the manufacturer’s profit, average stock level in the raw

materials inventory, and average stock level in the finished goods inventory decrease (see Figures

5(a), 5(c), and 5(d)).

4.5. E↵ects of the correlation between sales and purchasing prices and tra�c

intensity on the system

To examine the e↵ects of the correlation between sales and purchasing prices and tra�c intensity

on the system, we utilize Scenario 3 given in Table 3. With this scenario, for each ⇢CS value, we

generate 18 problem instances and depict the corresponding result in Figure 6.

Figure 6(a) shows that the manufacturer’s profit increases when the demand arrival rate raises.

An increase in the demand arrival rate yields a higher number of customers arriving at the system.

To satisfy the increasing demand, the manufacturer increases the raw material purchases. Hence,

in Figure 6(c), we notice that the average stock level in the raw materials inventory rises when the

demand arrival rate increases. In Figure 6(d), we observe that since the manufacturer’s production

capacity is limited the average stock level in the finished goods inventory decreases with an increase
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Figure 6 The impacts of the correlation between sales and purchasing prices and tra�c intensity on 6(a) the
manufacturer’s profit, 6(b) the average service level, 6(c) the average stock level in the raw materials
inventory, and 6(d) the average stock level in the finished goods inventory

in the demand arrival rate. As Figure 6(b) shows, the decreasing average stock level in the finished

goods inventory due to an increase in the demand arrival rate yields a decrease in the average

service level.

Figure 6(a) also indicates that the negative correlation between sales and purchasing prices leads

to a slight increase in the manufacturer’s profit. For each di↵erent correlation coe�cient, the other

performance measures, the average service level, average stock level in the raw materials inventory,

and average stock level in the finished goods inventory, almost follow a similar pattern (see Figures

6(b), 6(c), and 6(d)). So, we conclude that the impacts of limited production and supply capacities
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on the system dominates the impact of the correlation between purchasing and sales prices on the

system.

4.6. E↵ects of limited finished goods and raw materials inventories on the system

In practice, the manufacturer can restrict the capacities of the finished goods and raw materials

inventories due to limited financial and physical resources. In such a case, the manufacturer must

foresee the e↵ects of the limited finished goods and raw materials inventories on the system and

decides how to allocate the limited capacity to the inventories so as to maximize the profit. By con-

sidering this fact, in this section, we discuss how the capacitated finished goods and raw materials

inventories a↵ect the system.

To analyze the impacts of limited finished goods and raw materials inventories on the system,

we utilize Scenario 4 given in Table 3. For each combination of given production, raw material

arrival, and demand arrival rates, we generate a set of problem instances by ranging the sum of

M1 and M2 from 2 to 10. With this setting, we limit the capacities of the finished goods and

raw materials inventories and obtain 306 problem instances for both µ < � and µ > � cases. For

each given M1+M2 value in a particular problem set, we obtain how the manufacturer assigns its

limited capacity to the finished goods and raw material inventories by optimizing the profit. Thus,

in each problem set, we are able to calculate the averages of the capacities allocated to the raw

materials and finished goods inventories. We depict these results in Figure 7.

Figure 7(a) shows that the manufacturer allocates more capacity to the finished goods inventory

than to the raw materials inventory when �< µ < � holds. Figure 7(a) also indicates that as the

demand rate increases the average amount of capacity allocated to the raw materials inventory

increases. With an increase in the demand arrival rate, the production and raw material processes

relatively slow down. This fact forces the manufacturers to hedge against a starvation risk in

the raw materials inventory. As a result, the average amount of capacity allocated to the raw

materials inventory increases whereas the average amount of capacity allocated to the finished

goods inventory decreases.



33

0.6 1 1.4 1.8 2.2
Demand arrival rate ( )

32%

38%

44%

50%

56%

62%

68%

(a)

0.6 1 1.4 1.8 2.2
Demand arrival rate ( )

35%

40%

45%

50%

55%

60%

65%

(b)

0.6 1 1.4 1.8 2.2
Demand arrival rate ( )

35%

40%

45%

50%

55%

60%

65%
Average percentage of total capacity 
assigned to the raw material inventory

Average percentage of total capacity
assigned to the finished good inventory

Figure 7 The averages of the percentages for total capacity assigned to the raw materials and finished goods
inventories 7(a) when µ= 1.00< �= 1.60 7(b) when µ= 1.60> �= 1.00

Figure 7(b) implies that the manufacturer allocates a higher capacity to the finished goods

inventory up to the point where �=�=1.20. At the point where �=�=1.20, the average amount of

capacity allocated to the raw materials inventory almost equals the average amount of capacity

allocated to the finished goods inventory. Figure 7(b) shows that when the demand arrival rate is

greater than 1.20 the average amount of capacity allocated to the raw materials inventory becomes

to be higher than the average amount of capacity allocated to the finished goods inventory. The

main rationale behind this trend is similar to that observed in the first version of the basic problem.

When the demand arrival rate is greater than 1.20, the purchasing process would be the bottleneck

of the system because of having the smallest rate compared to the demand arrival and production

rates. This fact forces the manufacturer to avoid a starvation risk in the raw materials inventory.

Consequently, an increase in the demand arrival rate leads to an increase in the average amount of

capacity allocated to the raw materials inventory and a decrease in the average amount of capacity

allocated to the finished goods inventory. With this analysis, we conclude that the manufacturer

gives a priority to increase the capacity of inventory that is close to the system’s bottleneck in

terms of rates.
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The impacts of limited finished goods and raw materials inventories on the system are also

examined with the sales price variation, purchasing price variation, and correlation between sales

and purchasing prices. However, we observe that the impacts of limited finished goods and raw

materials inventories on the system are not a↵ected by the sales price variation, purchasing price

variation, and correlation between sales and purchasing prices. Due to the sake of clarity, we do

not include these analyses in the current work.

4.7. Benefits of using the optimal policy to the profit when compared to the Buy

Low and Sell High policy

The manufacturers which are subject to the random fluctuations in purchasing and sales prices

may be inclined to adopt the Buy Low and Sell High naive policy where the manufacturer buys

the raw materials only when the purchasing price is low and sells the finished goods only when the

sales price is high. Although it is very easy to implement this policy, the naive policy leads to a

profit loss for the manufacturer. By considering this fact, in this section, we discuss how much the

manufacturer can improve the profit by using the optimal policy instead of using the naive one.

For the discussion, we consider Scenario 1, 2, and 3 given in Table 3. As done in the previous

sections, the optimal control policies for the considered scenarios are numerically obtained by using

the linear programming formulation introduced in Equations (10) - (17). In addition, the naive

policies for the considered scenarios are numerically derived by adding two extra constraints to the

original linear programming formulation. These two constraints are presented as follows:

Yi,x,ub,up,ur
= 0,8i2 {1,3} ,8x2 F0

, ub 2 {1} ,8up 2 P,8ur 2R, (29)

Yi,x,ub,up,ur
= 0,8i2 {3,4} ,8x2 F0

, ub 2B,8up 2 P,8ur 2 {1} . (30)

Equation (29) implies that the manufacturer buys the raw materials only when the purchasing

price is low. Equation (30) stipulates that the manufacturer sells the finished goods only when the

sales price is high. For each scenario, we obtain the relative di↵erence between the manufacturer’s

profit obtained with the use of the optimal policy and the manufacturer’s profit obtained with

the use of the naive policy. The results regarding Scenario 1, 2, and 3 are respectively depicted
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Figure 8 The benefit obtained by using the optimal policy instead of the naive policy 8(a) when Scenario 1 is
considered 8(b) when Scenario 2 is considered 8(c) when Scenario 3 is considered

in Figures 8(a), 8(b), and 8(c). In the figures, a higher di↵erence means that the manufacturer

obtains a higher profit by using the optimal policy.

Figures 8(a) and 8(b) show that the positive impact of using the optimal policy on the profit

decreases when the correlation between sales and purchasing prices shifts from toward 0.90 to

-0.90. In the setting where the correlation coe�cient is negative, the manufacturer that follows

the optimal policy reduces the raw material purchases in state 3 to save on the purchasing and

inventory holding costs. Thus, the optimal policy shows a notable similarity to the naive policy in

which the manufacturer halts the raw material purchases in state 3. The similarity that emerges
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between the naive and optimal policies with the negative correlation coe�cient leads to a decrease

in the positive impact of using the optimal policy on the profit.

Figure 8(a) indicates that an increase in the sales price variation yields a decrease in the positive

impact of using the optimal policy on the profit. The main rationale behind this trend is similar to

that observed in the negative correlation case. The manufacturer that follows the optimal policy

reduces the raw material purchases in state 3 with an increase in the sales price variation. This

result implies that as the sales price variation increases the optimal policy resembles the naive

policy in which the manufacturer stops purchasing the raw materials in state 3. The resemblance

that emerges between the naive and optimal policies with the high sales price variation yields a

decrease in the positive impact of using the optimal policy on the profit. In addition, Figure 8(b)

shows that the positive impact of using the optimal policy on the profit decreases with an increase

in the purchasing price variation. The main reason behind this trend is similar to that observed in

the negative correlation and high sales price variation cases. Figure 8(c) implies that there is no

significant impact of the tra�c intensity rate on the di↵erence between the manufacturer’s profit

obtained with the use of the naive policy and the manufacturer’s profit obtained with the use of

the optimal policy.

4.8. Managerial insights

In this section, we summarize our key findings that provide managerial insights into how the

sales price variation, purchasing price variation, correlation between sales and purchasing prices,

limited raw materials and finished goods inventories, and limited production capacity a↵ect the

considered system. We also give an insight into under which circumstances the use of the optimal

policy significantly improves the profit when compared to the use of the naive policy in which the

manufacturer buys only when the purchasing price is low and sells only when the sales price is

high. A detailed list regarding these managerial insights is given below:

1. The negative correlation between sales and purchasing prices yields an increase in the manufac-

turer’s profit. In the negative correlation, the manufacturer lowers the average stock levels in
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the raw materials and finished goods inventories. Therefore, the average service level decreases.

Decreasing average stock levels in the raw materials and finished goods inventories yield a

saving in the purchasing and inventory holding costs. The amount of saving obtained due to

the negative correlation leads to an increase in the manufacturer’s profit.

2. The positive correlation between sales and purchasing prices leads to a decrease in the man-

ufacturer’s profit. When the sales and purchasing prices are positively correlated, the manu-

facturer increases the average stock levels in the raw materials and finished goods inventories.

Therefore, the average service level increases. Increasing the stock levels in the raw materials

and finished goods inventories yield higher purchasing and inventory holding costs. This fact

results a decrease in the manufacturer’s profit when the correlation is positive.

3. The manufacturer’s profit rises with an increase in the sales price variation. The main rationale

behind this fact is that the increasing sales price variation allows the manufacturer to achieve

a significant amount of savings in the purchasing and holding costs. As a result of this fact,

when the correlation is negative and the sales price is high the manufacturer obtains the

highest profit in the numerical instances.

4. The manufacturer’s profit rises with an increase in the purchasing price variation. The main

rationale behind this fact is similar to that observed in the negative correlation and high sales

price variation cases. Specifically, when the purchasing price variation is high the manufacturer

follows a policy that increases the profit by achieving a saving in the purchasing and inventory

holding costs.

5. The manufacturer’s profit increases as the demand arrival rate increases. With an increase in

the demand arrival rate, the number of customers arriving at the system per unit time rises.

As a result, the revenue obtained from the sales rises thereby increasing the profit. To satisfy

the increasing demand, the manufacturer raises the average stock level in the raw materials

inventory. However, due to the limited production capacity, the average stock level in the

finished goods inventory decreases with an increase in the demand arrival rate.
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6. When the manufacturer has a limited capacity for assigning both raw materials and finished

goods inventories, if the demand arrival rate is the smallest one between the raw material

arrival and production rates, increasing the capacity of the finished goods inventory provides a

higher profit for the manufacturer. If the raw material arrival rate is the smallest one between

the demand arrival and production rates, increasing the capacity of the raw materials inventory

yields a higher profit for the manufacturer. By following this policy, the manufacturer aims to

avoid starvation that could arise in the inventory that is close to the bottleneck of the system.

7. The negative correlation between the sales and purchasing prices leads to a notable decrease

in the di↵erence between the profits achieved by using the optimal and naive policies. An

increase either in the sales price variation or in the purchasing price variation also yields a

decrease in the positive impact of using the optimal policy on the profit. These observations

can be explained by the fact that the high sales price variation, high purchasing price variation,

and negative correlation force the manufacturer to follow a policy that is similar to the naive

policy.

5. Conclusion

We analyze the purchasing, production, and sales policies for a continuous-review discrete material

flow production/inventory system with fluctuating and correlated purchasing and sales prices,

exponentially distributed raw material and demand inter-arrival times, and processing time. The

sales and purchasing prices are driven by the random environmental changes that evolve according

to a discrete state space continuous-time Markov process. We model the system as an infinite-

horizon Markov decision process under the average reward criterion.

We prove that the optimal purchasing, production, and sales strategies are state-dependent

threshold policies. To numerically determine the optimal threshold levels and to validate the ana-

lytic results, we propose a solution procedure based on a linear programming formulation. We

investigate the e↵ects of sales price variation, purchasing price variation, correlation between sales

and purchasing prices, limited raw materials and finished goods inventories, and limited production
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capacity on the system performance measures, through a range of numerical experiments. Based

on the numerical results, we provide managerial insights regarding the e↵ects of these parameters

on the system.

The negative correlation between the sales and purchasing prices, high sales price variation,

and high purchasing price variation leads to an increase in the profit. The main rationale behind

the increase in the profit is that these parameter specifications allow the manufacturer to save

on the purchasing and inventory holding costs. When the capacity that can be assigned to the

raw materials and the finished goods inventories is limited, if the raw materials arrival rate is the

smallest compared to the production and the demand arrival rates, increasing the capacity of the

raw materials inventory yields a higher profit for the system. However, if the demand arrival rate

is the smallest, increasing the capacity of the finished good inventory yields a higher profit for the

system. By using this policy, the manufacturer avoids starvation in the inventory that is close to

the system’s bottleneck.

We examine under which circumstances the use of the optimal policy considerably improves the

profit compared to the use of the naive buy low and sell high policy where the manufacturer buys

only when the purchasing price is low and sells only when the sales price is high. The negative

correlation between sales and purchasing prices, high sales price variation, and high purchasing

price variation lead to a decrease in the positive impact of using the optimal policy on the profit.

The main rationale behind this result is that the optimal policies derived with these parameter

specifications resemblance the naive policy.

This study can be extended in several ways. In this study, we use exponentially distributed raw

material and demand arrival rates and processing time. Markov arrival processes can be used to

model correlated arrivals and service times. Second, this work provides the basic perspective for the

optimal purchasing, production, and sales policies by considering a setting where the manufacturer

produces a single product with a reliable machine. Studying the problem with multiple products

and unreliable machine assumptions could be an interesting topic for future research. Third, this
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work can be extended by incorporating the pricing decision into the model. Extending this work to

a setting with pricing decision would allow us to examine the impacts of di↵erent pricing strategies

on the system.

Appendix A:

While deriving the optimal control policies for the purchasing, production, and sales decisions, we use a

general framework that is proposed by Koole (2004) to derive convexity results and related properties on the

value functions. To able to use this framework in our study, we first convert the manufacturer’s maximization

problem into an equivalent minimization problem as follows:

v
0(i,x)+g

⇤=�T
0
b
v
0(i,x)+µT

0
p
v
0(i,x)+�T

0
r
v
0(i,x)+Tev

0(i,x)+hx, (31)

where v
0 (i,x) = �v (i,x). The operators T

0
b
f (i,x), T

0
p
f (i,x), and T

0
r
f (i,x) for any real-valued function

f(i,x) are

T
0
b
f (i,x) = min{f(i,x+ e1)+ ci, f(i,x)} , (32)

T
0
p
f (i,x) =

8
>>><

>>>:

min{f(i,x� e1 + e2)+w,f(i,x)} , x1 > 0,

f(i,x) , x1 = 0,

(33)

T
0
r
f (i,x) =

8
>>><

>>>:

min{f(i,x� e2)� si, f(i,x)} , x2 > 0,

f(i,x) , x2 = 0.

(34)

With the modified version of the problem, we consider that the optimal value function satisfies a certain

property for all states as specified in the following paragraph. Let V be a set of real-valued functions defined

on Z3 such that if v0 (i,x)2 V , then

v
0 (i,x)+ v

0 (i,x+ d+ d
0) v

0 (i,x+ d)+ v
0 (i,x+ d

0) , (35)

for all x 2 Z2 and d, d
0 2D = {e1, e2 � e1,�e2} with d 6= d

0. The inequality defined in Equation (35) implies

the multimodularity with respect to both x1 and x2.

In Lemma 1, we extend the relation between multimodularity and component-wise convexity.

Lemma 1. If v0 (i,x)2 V, then it also satisfies the inequality below:

2v0 (i,x+ ek) v
0 (i,x)+ v

0 (i,x+2ek) , 8x2Z2
. (36)
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Lemma 1 implies that if v0 (i,x) satisfies the inequalities for the multimodularity, it is evidently component-

wise convex. The proof related to this result is given in below.

Proof of Lemma 1: When any real-valued function f(x) defined on N2 satisfies the inequalities for

the multimodularity (MM), it evidently satisfies the inequalities for both the superconvexity (SuperC) and

supermodularity (Super). Because SuperC and Super consist of exactly the same equations with the MM .

For detailed definitions of SuperC and Super, we refer to reader the work of Koole (2004). In particular,

this proposition implies the following relationship:

MM = SuperC \Super. (37)

In addition, any real-valued function f(x) defined on N2 satisfying the inequalities SuperC and Super is

also component-wise convex (CC). Mathematically, it can be written as follows:

SuperC \Super⇢CC. (38)

As a result, we can obtain Lemma 1 by combining these two results presented in above. Specifically, for a

fixed environment state i, if any real-valued function v (i,x) defined on N3 is multimodular with respect to

x1 and x2, then it is also component-wise convex with respect to x1 and x2. Mathematically, this relationship

can be shown as follows:

MM = SuperC \Super⇢CC. (39)

Q.E.D.

In Lemma 2, the relation between multimodularity and joint convexity is described.

Lemma 2. If v0 (i,x)2 V, then it is jointly convex with respect to both x1 and x2.

Proof of Lemma 2: Lemma 2 is a direct result obtained from the work of Altman et al. (2000). The

author proves that if any real-valued function f(x) defined on Nm is multimodular, then it is evidently jointly

convex. For more detailed discussion, we refer to reader the work of Altman et al. (2000). Q.E.D.

Lemma 3 establishes that for each environment i, the operator T preserves multimodularity, component-

wise convexity, and joint convexity properties with respect to x1 and x2.

Lemma 3. If v
0 (i,x) 2 V, then Tv

0 (i,x) 2 V where Tv
0 (i,x) = �T

0
b
v
0(i,x)+µT

0
p
v
0(i,x)+�T

0
r
v
0(i,x) +

Tev
0(i,x)+hx. Furthermore, Tv0 (i,x)2 V also preserves the properties proposed in Lemma 1 and Lemma 2.
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Proof of Lemma 3: The operators, T 0
b
f (i,x), T 0

p
f (i,x), and T

0
r
f (i,x) are variations to the operators

introduced in the work of Koole (2004). In his work, it is already shown that these operators preserve

the multimodularity and component-wise convexity when any real-valued function f (i,x) is multimodular.

For more detailed discussion, we refer to reader the work of Koole (2004). The operator described for

the environment transitions, Tef (i,x), is just a linear combination of any real-valued function f (i,x). By

assumption, the holding cost is defined as linear. With these facts, we can conclude that the operator T

where Tv
0 (i,x) = �T

0
b
v
0(i,x)+µT

0
p
v
0(i,x)+�T

0
r
v
0(i,x)+ Tev

0(i,x)+hx preserves the multimodularity, joint

convexity, and component-wise convexity. Because, it is a linear combination of the operators that preserve

the multimodularity, joint convexity, and component-wise convexity. Q.E.D.

Lemma 3 implies by the value iteration principle that the optimal value function v
0⇤ (i,x) is jointly convex

and satisfies the inequalities for component-wise convexity. Since the optimal value function satisfies both

joint and component-wise convex and the event operators preserve these convexity properties, there exists a

corresponding threshold level for purchasing, production, and sales decisions. Hence, we are able to give the

proofs that establish the optimality of threshold policies for purchasing, production, and sales decisions.

Proof of Theorem 1: Let v
0⇤ (i,x) 2 V . Due to Lemma 1, we can say that v

0⇤ (i,x) is convex with

respect to x1 for each i and x2, i.e.,

v
0⇤ (i,x+ e1)� v

0⇤ (i,x)� v
0⇤ (i,x)� v

0⇤ (i,x� e1) . (40)

If it is optimal to buy in a state (i,x), from Equation (32) we have:

v
0⇤ (i,x+ e1)+ ci < v

0⇤ (i,x) () v
0⇤ (i,x+ e1)� v

0⇤ (i,x)<�ci. (41)

Then, by convexity, we have:

� ci > v
0⇤ (i,x+ e1)� v

0⇤ (i,x)� v
0⇤ (i,x)� v

0⇤ (i,x� e1) , (42)

implying that it has to be optimal to buy in state (i,x� e1), as well. Therefore, whenever an optimal policy

is to buy in a state (i,x) where x= (x1, x2), it is optimal to buy in all states (i,ex) where ex= (ex1, x2) and

ex1 <x1. A similar discussion can also be adapted to show that if an optimal policy does not buy in a state

(i,x) where x= (x1, x2), it continues not to buy in all states (i,bx) where bx= (bx1, x2) and bx1 � x1. These two

statements together imply the existence of an optimal purchasing threshold level. Specifically, for any given

state (i0,x0) where (x0
1, x

0
2), the purchasing threshold level is defined as

Z
⇤
b
(i0, x0

2) = argmin
x1

{(i0, (x1, x
0
2)) |u⇤

b
(i0, (x1, x

0
2)) = 0} , (43)
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where u
⇤
b
(i0, (x1, x

0
2)) is the optimal purchasing decision in the state (i0, (x1, x

0
2)). The above problem gives

us a unique level, Z⇤
b
(i0, x0

2), and it is optimal to buy if the raw materials inventory level for the given state

is smaller than Z
⇤
b
(i0, x0

2) and to do nothing otherwise. Q.E.D.

Proof of Theorem 2: In the proof of Theorem 1, we observe that if an optimal policy does not buy

in a state (i,x) where x= (x1, x2), it continues not to buy in all states (i,bx) where bx= (bx1, x2) and bx1 � x1.

This result directly implies that the optimal purchasing policy for the manufacturer is non-increasing in x1.

Let v0⇤ (i,x)2 V . From Equation (39), we know that if any real-valued function v
0⇤ (i,x) is multimodular

with respect to x1 and x2, then it evidently satisfies the inequalities for supermodularity. So, we have:

v
0⇤ (i,x+ e1 + e2)� v

0⇤ (i,x+ e2)� v
0⇤ (i,x+ e1)� v

0⇤ (i,x) . (44)

If it is optimal not to buy in a state (i,x), from Equation (32) we have:

v
0⇤ (i,x+ e1)� v

0⇤ (i,x)>�ci. (45)

Then, we obtain:

v
0⇤ (i,x+ e1 + e2)� v

0⇤ (i,x+ e2)� v
0⇤ (i,x+ e1)� v

0⇤ (i,x)>�ci, (46)

implying that it has to be optimal not to buy in state (i,x+ e2), as well. Therefore, whenever an optimal

policy is not to buy in a state (i,x) where x= (x1, x2), it is optimal not to buy in all states (i,x00) where

x
00 = (x1, x

00
2 ) and x

00
2 > x2. This result means that the optimal purchasing policy for the manufacturer is

non-increasing in x2. Specifically, u⇤
b
(i, (x1, x2))� u

⇤
b
(i, (x1, x

00
2 )) holds for any given two states (i, (x1, x2))

and (i, (x1, x
00
2 )) where x

00
2 >x2. Let Z⇤

b
(i, x2) and Z

0⇤
b
(i, x0

2) are the purchasing threshold levels for the states

(i, (x1, x2)) and (i, (x1, x
0
2)) where x

0
2 > x2. By using the previous result and Equation (7), we can conclude

that Z
⇤
b
(i, x2)� Z

0⇤
b
(i, x0

2). This result implies Z
⇤
b
(i, x2) that defines the purchasing threshold level for the

given state (i,x) where x=(x1, x2) is non-increasing in x2. Q.E.D.

Proof of Theorem 3: Let v
0⇤ (i,x) 2 V . Due to Lemma 1 and 2, we can say that v

0⇤ (i,x) is convex

in (e2 � e1) , i.e.,

v
0⇤ (i,x� e1 + e2)� v

0⇤ (i,x)� v
0⇤ (i,x)� v

0⇤ (i,x+ e1 � e2) . (47)

If it is optimal to produce in a state (i,x), from Equation (33) we have:

v
0 (i,x� e1 + e2)+w< v

0 (i,x) () �w> v
0 (i,x� e1 + e2)� v

0 (i,x) . (48)
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Then, by convexity in (e2 � e1), we have:

�w> v
0⇤ (i,x� e1 + e2)� v

0⇤ (i,x)� v
0⇤ (i,x)� v

0⇤ (i,x+ e1 � e2) , (49)

implying that it has to be optimal to produce in state (i,x+ e1 � e2), as well. Therefore, whenever an

optimal policy is to produce in a state (i, (x1, x2)), it is optimal to produce in all states (i, (x̀1, x̀2)) where

x̀1 > x1 and x̀2 < x1 + x2 � x̀1. A similar discussion can also be adapted to show that if an optimal policy

does not produce in a state (i, (x1, x2)), it continues not to produce in all states (i, (x̌1, x̌2)) where x̌1  x1

and x̌2 � x1 + x2 � x̌1. These statements together mean the existence of an optimal threshold level for the

production decision. Specifically, for any given state (i0, (x0
1, x

0
2)), the purchasing threshold level is defined as

Z
⇤
p
(i0, (x0

1, x
0
2))=argmax

x1

�
(i0, (x1, x

0
1 +x

0
2 �x1)) |u⇤

p
(i, (x1, x

0
1 +x

0
2 �x1)) = 0

 
, (50)

where u⇤
p
(i, (x1, x

0
1 +x

0
2 �x1)) is the optimal production decision in state (i, (x1, x

0
1 +x

0
2 �x1)). For any given

line x
0
1+x

0
2=k and environment i0, the above problem gives us a unique level, Z⇤

p
(i0, (x0

1, x
0
2)). That is, it is

optimal to produce if x0
1 >Z

⇤
p
(i0, (x0

1, x
0
2)) and x2 < k�Z

⇤
p
(i0, (x0

1, x
0
2)) and to stay idle otherwise. Q.E.D.

Proof of Theorem 4: Let v0⇤ (i,x)2 V . From Equation (39), we know that if any real-valued function

v
0⇤ (i,x) is multimodular with respect to x1 and x2, then it evidently satisfies the inequalities for supercon-

vexity. So, we have:

v
0⇤ (i,x)+ v

0⇤ (i,x+ e2) v
0⇤ (i,x� e1 + e2)+ v

0⇤ (i,x+ e1) . (51)

By manipulating the above inequality, we obtain:

v
0⇤ (i,x+ e2)� v

0⇤ (i,x+ e1) v
0⇤ (i,x� e1 + e2)� v

0⇤ (i,x) . (52)

If it is optimal to produce in a state (i,x), from Equation (33) we have:

v
0 (i,x� e1 + e2)� v

0 (i,x)<�w. (53)

Then, we obtain:

v
0⇤ (i,x+ e2)� v

0⇤ (i,x+ e1) v
0⇤ (i,x� e1 + e2)� v

0⇤ (i,x)<�w, (54)

implying that it has to be optimal to produce in state (i,x+ e1), as well. Therefore, whenever an optimal

policy is to produce in a state (i,x) where x = (x1, x2), it is optimal to produce in all states (i, x̀) where

x̀ = (x̀1, x2) and x̀1 > x1. This result means that the optimal production policy for the manufacturer is
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non-decreasing in x1. Specifically, u⇤
p
(i, (x1, x2)) u

⇤
p
(i, (x̀1, x2)) holds for any given two states (i, (x1, x2))

and (i, (x̀1, x2)) where x̀1 >x1. A similar analysis can also be adapted to prove that the optimal production

policy for the manufacturer is non-increasing in x2. Let Z⇤
p
(i, (x1, x2)) and Z

0⇤
p
(i, (x1, x̌2)) are the production

threshold levels for the states (i, (x1, x2)) and (i, (x1, x̌2)) where x̌2 > x2. By using the previous results and

Equation (8), we can conclude that Z⇤
p
(i, (x1, x2))Z

0⇤
p
(i, (x1, x2)). This result implies Z⇤

p
(i, (x1, x2)) that

defines the production threshold level for the given state (i,x) where x=(x1, x2) is non-increasing in x2.

Q.E.D.

Proof of Theorem 5: Let v
0⇤ (i,x) 2 V . Due to Lemma 1, we can say that v

0⇤ (i,x) is convex with

respect to x2 for each i and x1, i.e.,

v
0⇤ (i,x+ e2)� v

0⇤ (i,x)� v
0 (i,x)� v

0⇤ (i,x� e2) . (55)

If it is optimal to sell in a state (i,x), from Equation (35) we have:

v
0⇤ (i,x� e2)� si < v

0⇤ (i,x) () �si < v
0⇤ (i,x)� v

0⇤ (i,x� e2) . (56)

Then, by convexity, we have:

v
0⇤ (i,x+ e2)� v

0⇤ (i,x)� v
0⇤ (i,x)� v

0⇤ (i,x� e2)>�si, (57)

meaning that it has to be optimal to sell in state (i,x+ e2), as well. Hence, whenever an optimal policy is to

sell in a state (i,x) where x= (x1, x2), it is optimal to sell in all states (i, ẋ) where ẋ= (x1, ẋ2) and ẋ2 >x2.

For a fixed i and x1, a similar discussion can also be adapted to show that if it is not optimal to sell in a

certain state, it continues not to sell in all states that have a lower level of the finished goods inventory. These

two statements together imply the existence of an optimal threshold level for the sales decision. Specifically,

for any given state (i0,x0) where (x0
1, x

0
2), the sales threshold level is defined as

Z
⇤
r
(i0, x0

1) = argmin
x2

{(i0, (x0
1, x2)) |u⇤

r
(i0, (x0

1, x2)) = 1} , (58)

where u⇤
r
(i0, (x0

1, x2)) is the optimal sales decision in state (i0, (x0
1, x2)). The above problem gives us a unique

level, Z⇤
r
(i0, x0

1), and it is optimal to sell if the level of the finished goods inventory is greater than Z
⇤
r
(i0, x0

1)

and not to sell otherwise. Q.E.D.

Proof of Theorem 6: In the proof of Theorem 5, we observe that whenever an optimal policy is to

sell in a state (i,x) where x= (x1, x2), it is optimal to sell in all states (i, ẋ) where ẋ= (x1, ẋ2) and ẋ2 >x2.

This result directly implies that the optimal sales policy for the manufacturer is non-increasing in x2.
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Let v0⇤ (i,x)2 V . From Equation (39), we know that if any real-valued function v
0⇤ (i,x) is multimodular

with respect to x1 and x2, then it evidently satisfies the inequalities for supermodularity. So, we have:

v
0⇤ (i,x+ e1 � e2)� v

0⇤ (i,x+ e1) v
0⇤ (i,x� e2)� v

0⇤ (i,x) . (59)

If it is optimal to sell in a state (i,x), from Equation (34) we have:

v
0⇤ (i,x� e2)� v

0⇤ (i,x)< si. (60)

Then, we obtain:

v
0⇤ (i,x+ e1 � e2)� v

0⇤ (i,x+ e1) v
0⇤ (i,x� e2)� v

0⇤ (i,x)< si, (61)

implying that it has to be optimal to sell in state (i,x+ e1), as well. Therefore, whenever an optimal policy is

to sell in a state (i,x) where x= (x1, x2), it is optimal to sell in all states (i, ẍ) where ẍ= (ẍ1, x2) and ẍ1 >x1.

This result means that the optimal sales policy for the manufacturer is non-decreasing in x1. Specifically,

u
⇤
r
(i, (x1, x2))  u

⇤
r
(i, (ẍ1, x2)) holds for any given two states (i, (x1, x2)) and (i, (ẍ1, x2)) where ẍ1 > x1.

Let Z
⇤
r
(i, x1) and Z

0⇤
r
(i, ẍ1) are the sales threshold levels for the states (i, (x1, x2)) and (i, (ẍ1, x2)) where

ẍ1 > x1. By using the previous result and Equation (9), we can conclude that Z
⇤
r
(i, x1) � Z

0⇤
r
(i, ẍ1). This

result implies Z
⇤
r
(i, x1) that defines the sales threshold level for the given state (i,x) where x=(x1, x2) is

non-increasing in x1. Q.E.D.

Appendix B:

In this section, we introduce the procedure forming the transition matrices that are necessary to obtain the

specified correlation coe�cients between sales and purchasing prices. In the procedure, we suppose that E[C],

Var[C], E[S], Var[S], ⇢CS , sH , sL, cH , and cL are given as the input parameters. Additionally, the average

time spent in each environment state is given. For the environment state i, it is denoted by Ti.

In the first step,by using the parameters E[C], Var[C], E[S], Var[S], ⇢CS , sH , sL, cH , and cL, we construct

and solve the following linear equation system:
2

6666666664

E[S]

E[C]

⇢CS

p
Var[C]Var[S] +E[C]E[S]

1

3

7777777775

=

2

6666666664

sH sH sL sL

cH cL cH cL

sHcH cLsH cHsL cLsL

1 1 1 1

3

7777777775

2

6666666664

⇡1

⇡2

⇡3

⇡4

3

7777777775

. (62)
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3=HL 4=LL

q12
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q34

q43

q24q42q31 q13

Figure 9 Illustration for the structure of the transition matrix considered in the numerical examples

The solution of the above equation system yields the long-run probabilities of being in each environment

state. It has a unique solution for the given parameters as far as sH 6= sL and cH 6= cL hold.

In the second step, we substitute the solution of the above equation system into Equation (22). With

this e↵ort, we can define a transition matrix ensuring that E[C], Var[C], E[S], Var[S], and ⇢CS are the

same as given at the beginning of the procedure. Since the time between each transition is exponentially

distributed, the transition matrix should not allow the sales and purchasing prices to change at the same

time. Therefore, the transition matrix always preserves the structure illustrated in the transition diagram in

Figure (9). Specifically, it implies that q23=q32=q14=q41=0 in all the numerical instances. The exponentially

distributed transition times also imply that the average time spent in environment state i can be defined as

Ti =
1

qii
where qii =

P
j2E\{i}

qij . This relationship allows us to characterize the diagonal elements of the transition

matrix since the average time spent in each environment state is already given. By considering these facts,

we simplify the equation system obtained with Equation (22) as follows:

⇡2q21

⇡1
+

⇡3q31

⇡1
=

1

T1
, (63)

⇡1q12

⇡2
+

⇡4q42

⇡2
=

1

T2
, (64)

⇡1q13

⇡3
+

⇡4q43

⇡3
=

1

T3
, (65)

⇡2q24

⇡4
+

⇡3q34

⇡4
=

1

T4
. (66)

Let suppose that q12 and q21 equal a and b, respectively. Since the sum of the elements in a row of the

transition matrix equals zero, q13 is 1/T1 � a and q24 is 1/T2 � b. By substituting q21 = b into Equation

(63), we define the transition rate from state 3 to 1 as q31 = (⇡1 � bT1⇡2)/T1⇡3. Replacing q12 = a into

Equation (64) yields the transition rate from state 4 to 2, that is, q42 = (⇡2 � a⇡1T2)/T2⇡4. The values of

q13 and q24 are also substituted into Equations (65) and (66), respectively. With this e↵ort, we find that
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q34 = (T2⇡4 �T4⇡2)/T1T4⇡3 + ⇡2b/⇡3 and q43 = (T1⇡3 �T3⇡1)/T1T3⇡4 + ⇡1a/⇡4. So, for the given a and b

values, the solution of the above equation system is expressed as follows:

Q=

2

666666666666664

� 1

T1
a

1

T1
� a 0

b � 1

T2
0

1

T2
� b

⇡1 � bT1⇡2

T1⇡3
0 � 1

T3

T2⇡4 �T4⇡2

T1T4⇡3
+

⇡2b

⇡3

0
⇡2 � a⇡1T2

T2⇡4

T1⇡3 �T3⇡1

T1T3⇡4
+

⇡1a

⇡4
� 1

T4

3

777777777777775

. (67)

As a transition matrix, the o↵-diagonal elements of Q should be non-negative and the sum of each row

should be zero. These facts respectively imply the following conditions on a, b, and Ti :

a2
✓
max

⇢
0,

T1⇡3 �T3⇡1

⇡1T1T3

�
,min

⇢
1

T1
,

⇡2

⇡1T2

�◆
, (68)

b2
✓
max

⇢
0,

T4⇡2 �T2⇡4

⇡2T1T4

�
,min

⇢
1

T2
,

⇡1

⇡2T1

�◆
, (69)

⇡1

T1
+

⇡4

T4
=

⇡2

T2
+

⇡3

T3
and Ti > 0, where i2 {1,2,3,4} . (70)

As far as the above conditions are satisfied for the input parameters, the matrix defined in Equation (67)

will be a proper transition matrix ensuring that E[C], Var[C], E[S], Var[S], and ⇢CS are the same as given

at the beginning of the procedure.

We follow the above-mentioned procedure to form the transition matrices that are used to obtain the

specified correlation coe�cients between sales and purchasing prices. All the input parameters used to initiate

this procedure are specified at the beginning of each subsection within the Numerical Analysis section. For

each given correlation coe�cient, we construct the equation system defined in Equation (62) and solve it.

While forming the equation system for the specified correlation coe�cients, we keep the expectations and

variances of the sales and purchasing prices at the same levels for the numerical examples to be examined in

the same group. Hence, we avoid the case in which the expectations and variances of the sales and purchasing

prices change each time the correlation coe�cient changes. Subsequently, for each correlation coe�cient, we

substitute the obtained solution into Equation (67) and define the corresponding transition matrix. While

defining the transition matrices for the specified correlation coe�cients, we consider that T1 = T4, T2 = T3,

a= 1/2T1, and b= 1/2T2. This setting allows the conditions defined in Equations (68), (69), and (70) to be
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immediately satisfied. As a result of this e↵ort, we define the transition matrices so as to give the desired

correlation coe�cients.
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