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A B S T R A C T

As increasingly more shop-floor data becomes available, the performance of a production system can be
improved by developing effective data-driven control methods that utilize this information. We focus on the
following research questions: how can the decision to produce or not to produce at any time be given depending
on the real-time information about a production system?; how can the collected data be used directly in optimizing
the policy parameters?; and what is the effect of using different information sources on the performance of the
system? In order to answer these questions, a production/inventory system that consists of a production stage
that produces to stock to meet random demand is considered. The system is not fully observable but partial
production and demand information, referred to as markings is available. We propose using the marking-
dependent threshold policy to decide whether to produce or not based on the observed markings in addition
to the inventory and production status at any given time. An analytical method that uses a matrix geometric
approach is developed to analyze a production system controlled with the marking-dependent threshold policy
when the production, demand, and information arrivals are modeled as Marked Markovian Arrival Processes. A
mixed integer programming formulation is presented to determine the optimal thresholds. Then a mathematical
programming formulation that uses the real-time shop floor data for joint simulation and optimization (JSO)
of the system is presented. Using numerical experiments, we compare the performance of the JSO approach to
the analytical solutions. We show that using the marking-dependent control policy where the policy parameters
are determined from the data works effectively as a data-driven control method for manufacturing.

1. Introduction

Increasing usage of industrial data collection hardware and soft-
ware has allowed manufacturers to collect extensive shop-floor data.
Developing data-driven production control methods that utilize this
abundant collected data in an effective way can bring significant ben-
efits. Our study is motivated by the need of developing implementable
data-driven control policies that use the selected information to match
supply and demand in an effective way. We aim at answering the
following research questions: how can the decision to produce or not to
produce at any time be given depending on the real-time information about
a production/inventory system?; how can the collected data be used directly
in optimizing the policy parameters?; and what is the effect of using different
information sources on the performance of the system?

In order to investigate these research questions, we consider a
production/inventory system that consists of a production stage that
produces to stock to meet random demand. The system is not fully
observable but partial production and demand information, referred
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to as the markings arrive together with demand or production, or
separately. The production is controlled with the marking-dependent
threshold policy where the decision to produce or not to produce is
given depending on the observed markings in addition to the inven-
tory and production status at any given time. The marking-dependent
threshold policy is an easily implementable policy: if the produc-
tion stage is idle and the inventory position is less than the thresh-
old determined for the last observed values of the markings, pro-
duction of a new item is triggered with the release of the material
into the production stage. Fig. 1 illustrates this production/inventory
system.

We first present an analytical method that uses a matrix analytical
approach to analyze a production/inventory system controlled with
the marking-dependent threshold policy where the demand and in-
formation arrivals and the production times are modeled as Marked
Markovian Arrival Processes (MMAP). The MMAP framework allows
us to model correlated arrivals and general inter-arrival time distribu-
tions. A mixed integer programming (MIP) formulation is developed to
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Fig. 1. A production/inventory system controlled with the marking-dependent
threshold policy.

determine the optimal thresholds for the marking-dependent threshold
policy depending on the markings selected to control the system.

We then propose using the data-driven joint simulation and op-
timization (JSO) approach as an online control method for manu-
facturing systems. We develop the JSO approach by formulating a
mixed integer program to determine the parameters of the threshold
policy by using the shop-floor data together with the existing statistical
information about the processes. The data-driven JSO uses the available
data directly for optimization and does not impose any distributional
assumptions for the processes and does not require independence of the
inter-arrival times.

The analytical method presented in this study allows us to evaluate
the performance of the data-driven approach under different informa-
tion scenarios by comparing the results obtained from different-length
traces with the analytical results. An experimental setup for the release
control of a feeder line where the demand for the feeder is generated
by an unreliable production line with two stations separated by a finite
buffer is used. The release into the feeder work station is controlled
to minimize the expected holding and backlog costs. The effects of
using different markings related to the availability of information on
the machine status and the buffer status are investigated. This system is
analyzed by using the joint simulation and optimization approach with
different markings and with the different-length inter-departure and
processing time data collected from the shop-floor and the available
statistical information. The results are compared with the analytical
results.

There are two main contributions of this study. The first one is
modeling and analysis of a production/inventory system where the
production, demand, and information processes are modeled as Marked
Markovian Arrival Processes and controlled with a multiple-threshold
policy. With the multiple-threshold policy, production is allowed at a
given time when the current inventory position is below the target
threshold level corresponding to the latest observed markings. The
optimal thresholds for this system are determined by using a math-
ematical programming formulation that uses the embedded matrix
geometric solution of the quasi birth and death process. To the best
of our knowledge, this is the first study in the literature that presents a
method to determine the optimal thresholds in a stochastic model of a
controlled queue by using a mathematical programming formulation.
The second one is developing a joint simulation and optimization

method to determine the control parameters based on the shop-floor
data collected from the system. Although there are studies in the lit-
erature that use JSO to design production systems, this study proposes
using JSO as an online control method for the first time. The mixed
integer program presented in this study extends the range of discrete
event models that can be simulated and optimized by using the JSO
approach. Our analytical and numerical results show that the marking-
dependent control policy together with a JSO approach that determines
the policy parameters works effectively as a data-driven control method
for manufacturing.

The remainder of this paper is organized as follows. We review the
pertinent literature in Section 2. Section 3 describes the problem under
study and the control method. Section 4 describes the experimental
setup with the specific production/inventory system used for the nu-
merical experiments. The method for the exact analysis of the system
is given in Section 5. The data-driven joint simulation and optimization
method for this system is given in Section 6. The performance of
the data-driven JSO approach is evaluated by comparing with the
analytical results in Section 7. Finally, the conclusions are given in
Section 8.

2. Literature review

This work is related to two streams of literature: stochastic modeling
and control of production/inventory systems and joint simulation and
optimization.

2.1. Stochastic modeling and control of production/inventory systems

Controlling production to match random supply with random de-
mand has been the subject of numerous studies in the last 40 years.
For a production/inventory system with i.i.d. exponential inter-arrival
and service times, it has been shown that a base-stock policy is optimal
e.g., (Gavish and Graves, 1980; Sobel, 1982). That is, production con-
tinues until the inventory level reaches a threshold. In this study, we
consider demand and service processes that can have correlated inter-
event times. Empirical studies and analytical models of production
systems have shown that the autocorrelation of the inter-event times
in these systems is not negligible (Wein, 1988; Schömig and Mittler,
1995; Tan and Lagershausen, 2017; Wein, 1988; Manafzadeh Dizbin
and Tan, 2019). Manafzadeh Dizbin and Tan (2019) investigate how
correlated inter-event times affect the steady-state behavior of a pro-
duction/inventory system and show, via numerical experiments, how
ignoring autocorrelation can lead to considerable losses.

In order to capture possible inter-dependency in the inter-event
times, we use the framework of Markov arrival processes (MAP) intro-
duced by Neuts (1979). Markov arrival processes are generalizations
of phase-type distribution in the sense that the inter-event times of a
Markov arrival process has phase-type distribution. However, unlike
the phase-type distribution, after an arrival, the information about the
phase of the system is not lost, hence the inter-arrival times might be
dependent. In order to analyze MAPs, quasi birth and death processes
(QBD) are commonly used in the literature. We mainly use the results
of Ost (2013) and Horváth et al. (2010) for QBDs. In order to model
a production system controlled with a marking-dependent threshold
policy that uses partial information about the system status, we use
the Marked MAPs (MMAP) (He and Neuts, 1998). MMAPs have been
mostly used for modeling arrival of different classes of customers. In
this work, we contribute to this literature by proposing using the MMAP
framework to capture different sources of information about the state
of the arrival process in different markings in a control setting.

The number of studies on the production control of systems with
correlated demand and service processes is limited. These studies sug-
gest that state-dependent base-stock policy is an effective control policy
for these systems. Song and Zipkin (1993) prove the optimality of
a state-dependent base-stock policy when production times are i.i.d.
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and the demand is a Markov modulated Poisson process. For sys-
tems with correlated processes that can be modeled with MAPs, Man-
afzadeh Dizbin and Tan (2019) evaluate the performance of the state-
dependent base-stock policy and discuss the optimality of the state-
dependent base-stock policy. Similarly, the studies on the produc-
tion control for systems with partially observable processes also sug-
gest that state-dependent base-stock policy can be used as a control
mechanism (Bertsimas and Paschalidis, 2001; Treharne and Sox, 2002;
Karaesmen et al., 2004; Arifoğlu and Özekici, 2011; Bayraktar and
Ludkovski, 2010).

Our contribution to the literature on stochastic modeling and con-
trol of production/inventory systems is modeling and analysis of a par-
tially observable production/inventory system controlled with a thresh-
old policy that uses limited information about the system and proposing
a solution method that is based on mathematical programming to
determine the optimal thresholds.

2.2. Joint simulation and optimization as a data-driven control method

In this study, we propose using joint simulation and optimization
as a data-driven control method. Data-driven control can be defined
as a control scheme that does not make use of explicit information
about the mathematical model of the input data streams (Akcay et al.,
2011; Hou and Wang, 2013). Data-driven optimization methods have
been developed in close relation to robust optimization (Bertsimas and
Thiele, 2006; Rudin and Vahn, 2018; Gallego and Moon, 1993).

The joint simulation and optimization method we propose uses
the empirical data together with the available statistical information.
This allows using the JSO approach as a data-driven control method
based on the real-time data collected from the shop-floor combined
with the simulated data by using the bootstrapping approach. Schruben
(2000) was the first to introduce a joint simulation and optimization
formulation that was able to replicate a simulation run of a system.

Most of the joint simulation and optimization formulations make
use of objective functions that ensure that events start and finish at
the correct time instances. The literature that followed this method
was for the most part concerned with scheduling (Helber et al., 2011;
Alfieri and Matta, 2012b). This is because scheduling also aims at
making sure that every event happens as soon as possible. Whereas
minimizing the average cost in an inventory system does not necessarily
schedule events to happen as soon as possible. Chan and Schruben
(2004) argue that finding the exact event times without making use of
the objective function is only possible through adding a large number
of integer variables. Since the exact event times are needed to model
the marking-dependent base-stock policy in a model with both backlog
and inventory costs, our formulation is a mixed integer programming
formulation.

The work of Schruben (2000) has been extended to design and
control of production systems. Alfieri and Matta (2012b) give the math-
ematical programming formulation for simulation of different types
of production systems. Alfieri and Matta (2012b) and Pedrielli et al.
(2015) give formulations for pull control policies however when the
control parameters are variables in the problem, they do not consider
the backlog costs. Alfieri and Matta (2012a) give approximate math-
ematical programming formulations for the aforementioned problems
by using the concept of time buffers. Tan (2015) use joint simu-
lation and optimization approach to model and analyze flow rate
control problems for production systems with continuous and discrete
state space. Hosseini and Tan (2017) extend these results to model a
two-stage continuous flow productions systems with a finite buffer.

We contribute to this stream of literature by proposing JSO as a real-
time control method and providing a joint simulation and optimization
formulation for controlling a system with multiple thresholds. This for-
mulation can be used to determine the parameters of the control policy
by using the collected data with the available statistical information
about the processes.

3. Problem description

We consider a production/inventory system that consists of a pro-
duction stage that produces to stock to meet random demand. Each
demand arrival is demanding one item. If there are available items in
the inventory, the demand is satisfied and leaves the system. Otherwise,
the demand is backlogged until an item is available. The release of
the material into the production process is controlled by a policy that
determines whether or not to produce depending on the information
available at a given time. Fig. 1 depicts the system.

3.1. Model

3.1.1. Production
The production time process can be in one of 𝑤 different states.

At an arbitrary time 𝑡, the state of the production time process is
denoted by 𝜂𝑊 (𝑡) ∈ {1,… , 𝑤}. When the production starts, it cannot be
preempted. 𝑀(𝑡) ∈ {0, 1} indicates if the production stage is working
(1) or idle (0). The production times can be correlated. This general rep-
resentation of the production process allows analyzing various settings
where the release of materials into the production stage is controlled
to match the output of the production stage with the demand.

3.1.2. Demand
The demand arrival process can be in one of 𝑑 different states.

The state of the demand process is denoted by 𝜂𝐷(𝑡) ∈ {1,… , 𝑑}.
The demand inter-arrival times can be correlated. The demand for
the production stage can be generated by another stage in produc-
tion. For example, in the example described in Section 4, the out-
put from an unreliable production line generates the demand for the
production/inventory system.

3.1.3. Inventory position
The difference between the cumulative production and cumulative

demand at time 𝑡 is referred to as the inventory position and denoted
by 𝑋(𝑡). The inventory level and the backlog level are denoted by
𝑋+(𝑡) = max{𝑋(𝑡), 0} and 𝑋−(𝑡) = max{−𝑋(𝑡), 0} respectively. Every
item in the inventory generates a cost of 𝑐+ per unit time, and every
demand waiting in the line generates a backorder cost of 𝑐− per unit
time.

3.1.4. Markings
The information signals referred as the markings arrive as attached

to the demand arrivals or production completions, or arrive separately.
There are 𝐶𝐷 markings for the demand process and 𝐶𝑊 markings for
the production process. The index of the last observed marking from
the information and demand process at time 𝑡 is denoted by 𝑐𝐷(𝑡) ∈
{1,… , 𝐶𝐷}. The index of the last observed marking from the production
time process is denoted by 𝑐𝑊 (𝑡) ∈ {1,… , 𝐶𝑊 }. The markings are
uniquely determined by the demand and production states. The arrival
of information signals can be correlated. The number of markings is
much smaller than the number of states, i.e., 𝐶𝐷 ≪ 𝑑 and 𝐶𝑊 ≪ 𝑤.

Fig. 2 depicts the sample path of the marked trace for the system
described in Section 4. In this example, the output from an unreliable
production line generates the demand for the production/inventory
system. The controller can use up to 4 markings for the demand process:
2 markings for the unreliable station (up or down) or 2 markings for
the buffer level (empty or not empty) or 4 markings for both (down and
empty, up and empty, down and not empty, and up and not empty).

3.1.5. State–space model
The state of the system at time 𝑡 is (𝑋(𝑡), 𝜂𝐷(𝑡), 𝜂𝑊 (𝑡)). We con-

sider the case where the demand and production states 𝜂𝐷(𝑡) and
𝜂𝑊 (𝑡) are not fully observable. Partial information about the system is
available through the inventory status, the production status, and the
marking processes, (𝑋(𝑡),𝑀(𝑡), 𝑐𝐷(𝑡), 𝑐𝑊 (𝑡)). We model the system as a
continuous-time discrete state–space process {(𝑋(𝑡),𝑀(𝑡), 𝑐𝐷(𝑡), 𝑐𝑊 (𝑡)),
𝑡 ≥ 0}.
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Fig. 2. A sample path of the marked trace for the system described in Section 4.

3.2. Production control problem

The optimization problem we consider is deciding on whether to
produce or not depending on the inventory level, the production status,
the marking of the last demand and information arrival, and the
marking of the last production time in order to minimize the average
inventory holding and backlog cost of the system in the long run.

3.2.1. Decision
Let 𝑢𝑙(𝑋(𝑡),𝑀(𝑡), 𝑐𝐷(𝑡), 𝑐𝑊 (𝑡)) denote the decision to produce (𝑢𝑙 =

1) or not to produce (𝑢𝑙 = 0) depending on the inventory position,
the machine status, and the last observed markings for demand and
production at time 𝑡 under policy 𝑙.

3.2.2. Objective
The problem is finding the optimal policy that minimizes the steady-

state average cost 𝜋 in the long run:

𝜋∗ = min
𝑙
𝐽 𝑙

= E
[

1
𝑇

lim
𝑇→∞∫

𝑇

𝑡=0

(

𝑐+𝑋+(𝑡) + 𝑐−𝑋−(𝑡)
)

𝑑𝑡|𝑋(0), 𝜂𝐷(0), 𝜂𝑊 (0)
]

. (1)

3.2.3. Optimal control policy
If the production times are i.i.d. exponential random variables and

the inter-arrival times are i.i.d exponential random variables, then a
base-stock policy that allows production when the inventory position is
less than a threshold would be the optimal policy when the production
and demand states are fully observable (Gavish and Graves, 1980;
Sobel, 1982). Extensions of the basic base-stock model show that a
state-dependent threshold policy is optimal for various systems under
different assumptions (Song and Zipkin, 1993; Treharne and Sox, 2002;
Arifoğlu and Özekici, 2011). For a system with correlated production
and demand processes modeled as MAPs, Manafzadeh Dizbin and Tan
(2019) present the state-dependent threshold policy as the optimal
policy.

The model presented in this study can be considered as a modified
version of this problem where the controller cannot take action at
certain states that are not observable, and the state-space is extended
to include additional states corresponding to the markings. In this

modified system, the state-dependent threshold policy would be the
optimal policy. Since the state space includes the states corresponding
to the markings, the marking-dependent threshold policy is a candidate
for the optimal policy. However, a formal proof of the optimality of the
marking-dependent control policy is not given in this paper.

3.2.4. Marking-dependent threshold policy
We refer to a control policy where the decision to produce or not

depends on the inventory position and a threshold that depends on
the last observed pair of markings as the marking-dependent threshold
policy. Using the marked processes, the marking of each arrival and
the marking of each production time bring some information about the
state of the system. The control policy assigns a threshold to each pair
of markings as opposed to assigning a threshold to the states of the
processes, and production will continue until this threshold is reached.

The marking-dependent threshold policy compares the inventory
position at time 𝑡 with the threshold level set for the last observed mark-
ings of the demand and production processes to trigger production.
Namely, let 𝑆𝑐𝐷 ,𝑐𝑊 be the threshold level for the marking pair (𝑐𝐷, 𝑐𝑊 ),
𝑐𝐷 ∈ {1, 2,… , 𝐶𝐷}, 𝑐𝑊 ∈ {1, 2,… , 𝐶𝑊 }. The arrival of a demand while
the last observed marking pair is (𝑐𝐷, 𝑐𝑊 ) triggers production if there
is no item being produced at that moment and the inventory level is
less than or equal to 𝑆𝑐𝐷 ,𝑐𝑊 . Upon completion of a part, production
is allowed to continue if the inventory level is less than 𝑆𝑐𝐷 ,𝑐𝑊 . If
the inventory level reaches 𝑆𝑐𝐷 ,𝑐𝑊 , the production stops until a new
demand or information signal arrives. The production will not start if
the threshold that corresponds to the newly observed marking pair is
lower than the inventory level. The control policy can be expressed as

𝑢(𝑋(𝑡),𝑀(𝑡), 𝑐𝐷(𝑡), 𝑐𝑊 (𝑡)) =
{

1 if 𝑋(𝑡) < 𝑆𝑐𝐷 ,𝑐𝑊 and 𝑀(𝑡) = 0
0 otherwise .

(2)

3.2.5. Parameters of the marking-dependent threshold policy
The parameters of the marking-dependent threshold policy are the

thresholds corresponding to different markings. The threshold set 𝑆 =
{𝑆𝑐𝐷 ,𝑐𝑊 }, 𝑐𝐷 ∈ {1, 2,… , 𝐶𝐷}, 𝑐𝑊 ∈ {1, 2,… , 𝐶𝑊 } includes 𝐶𝐷 × 𝐶𝑊
thresholds of the control policy. We define the lowest and the highest
threshold levels as 𝑆 = min

𝑐𝐷 ,𝑐𝑊
𝑆𝑐𝐷 ,𝑐𝑊 and 𝑆 = max

𝑐𝐷 ,𝑐𝑊
𝑆𝑐𝐷 ,𝑐𝑊 respectively.
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With much fewer parameters compared to a state-dependent thresh-
old policy and as a policy that does not require full observability
of the system, the marking-dependent threshold policy can easily be
implemented in a production system. The implementation requires
determining the markings that will be collected from the shop floor
and setting the threshold for each marking. Once the thresholds are
determined, the real-time production decision can be given by compar-
ing the inventory level with the thresholds corresponding to the last
observed markings.

For given marked traces from a system, there are two alternatives
for determining the best threshold levels. The first alternative is fitting
stochastic processes to the traces and then using the fitted processes in
the analytical method presented in Section 5. The second alternative is
using the data-driven JSO that directly uses the data in optimization
presented in Section 6. While we make the assumption that the process
{(𝑋(𝑡),𝑀(𝑡), 𝑐𝐷(𝑡), 𝑐𝑊 (𝑡)), 𝑡 ≥ 0} can be modeled as a Marked Markovian
Arrival Process in Section 5, we do not impose any assumptions for this
process for the data-driven JSO method presented in Section 6. The
analytical model presented in Section 5 also allows us to evaluate the
performance of the data-driven method presented in Section 6. We use
the specific system given in Section 4 to illustrate the application of
these two different approaches.

4. Example

Before describing the general model and the solution methodologies
in detail, we first introduce a specific system to show the operation of
the marking-dependent threshold policy in a production system. Note
that the analytical method presented in Section 5 and the data-driven
method described in Section 6 can be applied to a wider range of
models and are not restricted to the assumptions of the specific system
presented in this section.

We consider a setting where the downstream of a production system
is fed by two upstream flows and the release into one flow is controlled
to minimize the holding and backlog to synchronize the flows. This
is similar to a setting where the release of the material into a feeder
line is synchronized with the flow of the main assembly line. Fig. 3
illustrates this production line together with the workstation that forms
the production/inventory system.

The output of the upstream flow of the main assembly line is
synchronized with the parts supplied by the feeder station denoted by
WS1. WS1 has exponential processing time with rate 𝜇1. The release
of material to WS1 is controlled with a marking-dependent threshold
policy.

The demand stream to the work station WS1 is generated by a
two-machine line with one unreliable machine WS2, and one reliable
machine WS3 and a finite inter-station buffer of size 𝑞. The processing
times of WS2 and WS3 are exponentially distributed random variables
with rates 𝜇2 and 𝜇3. The throughput of the line is denoted with 𝑇𝑃 .

The unreliable machine WS2 has operation-dependent failures and
the failure time is exponentially distributed with rate 𝛾𝜇2. If a break-
down occurs, the repair process starts. The repair time follows an
Erlang distribution with 𝑟 phases each with rate 𝜆. The phase of the
repair process is not observable.

The markings collected from the shop-floor are related to the repair
status of WS2, whether the repair process is in progress or not, and
the buffer status, whether the buffer is empty or not at the time of a
demand arrival.

The inventory status of the buffer is recorded as empty or not empty
as a marking. Fig. 2 depicts a sample realization for this case. With each
arrival (Fig. 2b), the controller receives a marking that can include the
corresponding machine availability status (Fig. 2c) and/or the buffer
status (Fig. 2d). According to the production completion times and
demand arrivals, the corresponding inventory sample path is shown in
Fig. 2a, where the dashed lines represent the threshold levels and the
solid line represents the inventory level. In Fig. 2, if both the machine

availability and the buffer status is included in the marking, then there
are 𝐶𝐷 = 4 markings. If only the machine availability or the buffer
status is used, then 𝐶𝐷 = 2. If only the inter-arrival time is used by the
controller and no additional information is used, then 𝐶𝐷 = 1.

In Section 7, we use this experimental setup to evaluate the data-
driven JSO and compare its performance with the analytical solution.
We will also discuss the effect of using different markings for control.

5. Exact analysis of the production/inventory system controlled
by using marking-dependent threshold policy

In order to analyze the production/inventory system, we first de-
velop the quasi birth and death process representation of the system
with MMAP production times and MMAP demand arrivals for the
given values of the threshold for each marking pair. We then use the
matrix geometric method to determine the steady-state probabilities.
The steady-state probabilities give us the expected cost of the sys-
tem. Finally, by using a mathematical programming formulation, we
determine the set of the threshold levels for each marking pair that
minimizes the expected cost.

5.1. Marked MAP representation for arrival processes with partial informa-
tion

In order to model an arrival process along with the associated partial
information, we use the Marked MAP (MMAP) representation. A MMAP
describes a MAP whose arrivals are marked.

5.1.1. Marked Markovian arrival processes
A MAP 𝐴 is described by the matrices (𝐀𝟎,𝐀𝟏), where 𝐀𝟎 records

the transitions that do not result in an arrival and 𝐀𝟏 records the
transitions that result in an arrival. The infinitesimal generator matrix
of the process 𝐴 is 𝐀𝟎 + 𝐀𝟏.

MMAPs are extensions of MAPs that allow for different types of
arrivals (He and Neuts, 1998). A MMAP 𝐴 is described by the matrices
(

𝐀𝟎,𝐀𝟏1,… ,𝐀𝟏𝐶
)

, where 𝐀𝟎 records the transitions that do not result
in an arrival and 𝐀𝟏𝑐 records the transitions that result in an arrival
marked 𝑐. The infinitesimal generator matrix of the process 𝐴 is 𝐀𝟎 +
∑𝐶
𝑐=1 𝐀𝟏𝑐 .

5.1.2. Model of part arrivals with markings
We consider information arrivals at different times not necessarily

coupled with part arrival times. Let 𝐿 =
(

𝐋𝟎,𝐋𝟏1,… ,𝐋𝟏𝐶 ,𝐋𝟐1,… ,𝐋𝟐𝐶
)

denote the MMAP that captures the dynamics of the information and
part arrivals. The transition rates corresponding to a part arrival cou-
pled with the information marked 𝑖 are captured in 𝐋𝟏𝑖. The transition
rates corresponding to an arrival of the information marked 𝑖 without
a part arrival are captured in 𝐋𝟐𝑖.

5.1.3. Model of production
Production happens one item at a time with a production time that

evolves according to a MMAP. Once the production of an item starts,
it cannot be interrupted until completion. We assume that the state of
the production time process does not change during the idle periods.

The MMAP describing the production time process is denoted by
𝑊 =

(

𝐖𝟎,𝐖𝟏1,… ,𝐖𝟏𝐶𝑊
)

. The number of states in 𝑊 is 𝑤. Since
a production cannot be interrupted, arrival of information about the
production time process without completion of a production cannot
be used for the control of the system. For this reason, entries of
𝐖𝟐1,… ,𝐖𝟐𝐶𝑊 are zero without loss of generality. For notational
convenience, 𝐖𝟐1,… ,𝐖𝟐𝐶𝑊 have been dropped from the definition of
𝑊 .



International Journal of Production Economics 226 (2020) 107607

6

S. Khayyati and B. Tan

Fig. 3. A production line with an unreliable machine. The output of this line is used as the information and demand process in the numerical experiments.

5.1.4. Model of demand arrivals with markings
Similarly, we also assume that a unit of demand arrives according to

a MMAP. Information about the demand process arrive with or without
the arrival of a demand. Let 𝐷 =

(

𝐃𝟎,𝐃𝟏1,… ,𝐃𝟏𝐶𝐷 ,𝐃𝟐1,… ,𝐃𝟐𝐶𝐷
)

denote the MMAP of information and demand. The transition rates
corresponding to a demand arrival marked 𝑖 are captured in 𝐃𝟏𝑖. The
transition rates corresponding to arrival of demand information marked
𝑖 without a demand arrival are captured in 𝐃𝟐𝑖.

5.2. Evaluation of the production/inventory system for given thresholds

The process of shortfalls is not affected if all the thresholds are
increased by a constant value. Therefore, in order to analyze the process
{(𝑋(𝑡),𝑀(𝑡), 𝑐𝐷(𝑡), 𝑐𝑊 (𝑡)), 𝑡 ≥ 0} for given thresholds, we focus on the
shortfall from the largest threshold 𝑆. The shortfall increases when a
part is produced and decreases when a demand arrives and stays the
same for all other transitions that do not change the inventory position.
We define the number of shortfalls from the largest threshold value as
𝑌 (𝑡) = 𝑆 −𝑋(𝑡) and analyze the process {(𝑌 (𝑡),𝑀(𝑡), 𝑐𝐷(𝑡), 𝑐𝑊 (𝑡)), 𝑡 ≥ 0}
as a QBD.

5.2.1. Model for the shortfalls
The state space structure of the process {(𝑌 (𝑡),𝑀(𝑡), 𝑐𝐷(𝑡), 𝑐𝑊 (𝑡)), 𝑡 ≥

0} is given in Fig. 4. Let 𝐐 denote the CTMC generator matrix
of the system, and in addition, let 𝐐̄𝑌 ,𝑌 ′ denote the sub-block of 𝐐
corresponding to transitions from shortfall level 𝑌 to shortfall level 𝑌 ′.

Table 1
Description of the notation used in the matrix geometric analysis.

Notation Description

𝐈𝑛 Identity matrix of size 𝑛 × 𝑛
𝐞𝑖,𝑛 Row vector of length 𝑛 with 1 for 𝑖th entry and 0 elsewhere
𝐉𝑖,𝑗,𝑛 Square matrix of size 𝑛 × 𝑛, with a single entry with value one in

row 𝑖 and column 𝑗
𝟏𝑛,𝑚 𝑛 × 𝑚 matrix of ones
𝟎𝑛,𝑚 𝑛 × 𝑚 matrix of zeros
𝛿{𝑥} Binary indicator function specifying if statement 𝑥 is correct or not
𝑥𝑇 Transpose of 𝑥
⊗ Kronecker product

With these submatrices, 𝐐 has the structure given in Eq. (3). In
this Quasi Birth and Death process, the size of each block of the
corresponding CTMC for a given level of the shortfall will be 𝑛×𝑛 where
𝑛 = 2𝐶𝐷𝐶𝑊 𝑑𝑤.

𝐐 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐐̄0,0 𝐐̄0,1
𝐐̄1,0 𝐐̄1,1 𝐐̄1,2

𝐐̄2,1 𝐐̄2,2 𝐐̄2,3
⋱ ⋱ ⋱

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (3)

The sub-blocks of 𝐐 can be specified for the cases where the shortfall
increases by one, stays the same, or decreases by one. The notation
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Fig. 4. State-space structure of the process of shortfalls.

used in the determination of the sub-matrices for each case is given in
Table 1.

The first sub-block 𝐐̄𝑌 ,𝑌+1 is related to the transitions that increase
the level of shortfalls. Therefore, only demand arrivals appear in this
sub-matrix:

𝐐̄𝑌 ,𝑌+1 =
[

1 0
0 0

]

⊗
𝐶𝐷
∑

𝑖1=1

𝐶𝑊
∑

𝑗1=1

𝐶𝐷
∑

𝑖2=1

𝐶𝑊
∑

𝑗2=1
𝛿{

𝑆−(𝑌+1)≥𝑆𝑖2 ,𝑗2
}𝐉𝑖1𝑗1 ,𝑖2𝑗2 ,𝐶𝐷𝐶𝑊

⊗
(

𝛿{𝑗1=𝑗2}𝐃𝟏𝑖2 ⊗ 𝐈𝑤
)

+
[

0 1
0 0

]

⊗
𝐶𝐷
∑

𝑖1=1

𝐶𝑊
∑

𝑗1=1

𝐶𝐷
∑

𝑖2=1

𝐶𝑊
∑

𝑗2=1
𝛿{

𝑆−(𝑌+1)<𝑆𝑖2 ,𝑗2
}𝐉𝑖1𝑗1 ,𝑖2𝑗2 ,𝐶𝐷𝐶𝑊

⊗
(

𝛿{𝑗1=𝑗2}𝐃𝟏𝑖2 ⊗ 𝐈𝑤
)

+
[

0 0
1 0

]

⊗ 𝟎𝐶𝐷𝐶𝑊 𝑑𝑤,𝐶𝐷𝐶𝑊 𝑑𝑤

+
[

0 0
0 1

]

⊗

(𝐶𝐷
∑

𝑖=1

((

𝐞𝑖,𝐶𝐷 ⊗ 𝟏𝐶𝐷
)

⊗ 𝐈𝐶𝑊 ⊗ 𝐃𝟏𝑖 ⊗ 𝐈𝑤
)

)

,

𝑌 ≥ 0.

The first term in the above equation refers to transitions from states
where the machine is idle to states where the machine is still idle.
(𝑖1, 𝑗1) denotes the marking pair before the arrival, and (𝑖2, 𝑗2) refers
to the marking pair after the arrival. Hence, making a transition to
an idle state depends on the inventory level 𝑆̄ − (𝑌 + 1) being greater
than or equal to the threshold for the current marking pair 𝑆𝑖2 ,𝑗2 . The
second term is the counterpart of the first term for the transition to a
working state. The third term is zero because if the machine is working,
an increase in the shortfall level cannot make it idle. The fourth term

records the transitions that only affect the last observed marking pair.
They change the last observed marking from the demand process.

The second sub-block 𝐐̄𝑌 ,𝑌 includes the transitions that do not affect
the number of shortfalls:

𝐐̄𝑌 ,𝑌 = 𝛿{𝑌 >0}

([

0 0
0 1

]

⊗ 𝐈𝐶𝐷 ⊗ 𝐈𝐶𝑊 ⊗ 𝐈𝑑 ⊗𝐖𝟎
)

+
(

𝐈2 ⊗ 𝐈𝐶𝐷 ⊗ 𝐈𝐶𝑊 ⊗ 𝐃𝟎⊗ 𝐈𝑤
)

+
[

1 0
0 0

]

⊗
𝐶𝐷
∑

𝑖1=1

𝐶𝑊
∑

𝑗1=1

𝐶𝐷
∑

𝑖2=1

𝐶𝑊
∑

𝑗2=1
𝛿{

𝑆−𝑌≥𝑆𝑖2 ,𝑗2
}𝐉𝑖1𝑗1 ,𝑖2𝑗2 ,𝐶𝐷𝐶𝑊

⊗
(

𝛿{𝑗1=𝑗2}𝐃𝟐𝑖2 ⊗ 𝐈𝑤
)

+
[

0 1
0 0

]

⊗
𝐶𝐷
∑

𝑖1=1

𝐶𝑊
∑

𝑗1=1

𝐶𝐷
∑

𝑖2=1

𝐶𝑊
∑

𝑗2=1
𝛿{

𝑆−𝑌 <𝑆𝑖2 ,𝑗2
}𝐉𝑖1𝑗1 ,𝑖2𝑗2 ,𝐶𝐷𝐶𝑊

⊗
(

𝛿{𝑗1=𝑗2}𝐃𝟐𝑖2 ⊗ 𝐈𝑤
)

+
[

0 0
1 0

]

⊗ 𝟎𝐶𝐷𝐶𝑊 𝑑𝑤,𝐶𝐷𝐶𝑊 𝑑𝑤

+
[

0 0
0 1

]

⊗

(𝐶𝐷
∑

𝑖=1

((

𝐞𝑖,𝐶𝐷 ⊗ 𝟏𝐶𝐷
)

⊗ 𝐈𝐶𝑊 ⊗ 𝐃𝟐𝑖 ⊗ 𝐈𝑤
)

)

,

𝑌 ≥ 0.

These transitions include the phase changes in the processes that
do not result in any arrivals and also the information arrivals received
without a demand arrival. The first set of transitions in the above
equation are recorded in the first two terms. The other terms are
similar to the previous equation, i.e. the arrival of an information signal
can cause an idle machine to start working but cannot stop a working
machine.
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The last sub-block 𝐐̄𝑌 ,𝑌−1 includes the transitions that take place
when a part is produced:

𝐐̄𝑌 ,𝑌−1 =
[

1 0
0 0

]

⊗ 𝟎𝐶𝐷𝐶𝑊 𝑑𝑤,𝐶𝐷𝐶𝑊 𝑑𝑤

+
[

0 1
0 0

]

⊗ 𝟎𝐶𝐷𝐶𝑊 𝑑𝑤,𝐶𝐷𝐶𝑊 𝑑𝑤

+
[

0 0
1 0

]

⊗
𝐶𝐷
∑

𝑖1=1

𝐶𝑊
∑

𝑗1=1

𝐶𝐷
∑

𝑖2=1

𝐶𝑊
∑

𝑗2=1
𝛿{

𝑆−(𝑌−1)≥𝑆𝑖2 ,𝑗2
}𝐉𝑖1𝑗1 ,𝑖2𝑗2 ,𝐶𝐷𝐶𝑊

⊗
(

𝛿{𝑖1=𝑖2}𝐈𝑑 ⊗𝐖𝟏𝑗2
)

+
[

0 0
0 1

]

⊗
𝐶𝐷
∑

𝑖1=1

𝐶𝑊
∑

𝑗1=1

𝐶𝐷
∑

𝑖2=1

𝐶𝑊
∑

𝑗2=1
𝛿{

𝑆−(𝑌−1)<𝑆𝑖2 ,𝑗2
}𝐉𝑖1𝑗1 ,𝑖2𝑗2 ,𝐶𝐷𝐶𝑊

⊗
(

𝛿{𝑖1=𝑖2}𝐈𝑑 ⊗𝐖𝟏𝑗2
)

, 𝑌 ≥ 1.

In the above equation, the first two terms are zero because pro-
duction cannot be completed if the machine is not working. The third
term records the transitions to an idle state, depending on the threshold
for the last observed marking pair 𝑆𝑖2 ,𝑗2 . The fourth term records
transitions to a working state, from a working state, following the same
pattern.

5.2.2. The matrix geometric method
We determine the steady-state probabilities of the shortfall process

by using the matrix geometric method (Ost, 2013). In order to use the
matrix geometric method, the repeating levels and the boundary levels
are specified, and 𝐐 is represented in the format given in Eq. (4).

𝐐 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐁0,0 𝐁0,1

𝐁1,0 𝐁1,1 𝐀0
𝐁2,1 𝐀1 𝐀0

𝐀2 𝐀1 𝐀0
⋱ ⋱ ⋱

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(4)

When 𝑌 > 𝑆 − 𝑆 + 1, the sub-blocks are not dependent on 𝑌 . For
these values of the shortfall, the boundary and repeating sub-matrices
can be specified as given in Eqs. (5)–(10).

𝐁0,0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐐̄0,0 𝐐̄0,1
𝐐̄1,0 𝐐̄1,1 𝐐̄1,2

𝐐̄2,1 𝐐̄2,2 𝐐̄2,3
⋱ ⋱ ⋱

𝐐̄𝑆−𝑆+1,𝑆−𝑆 𝐐̄𝑆−𝑆+1,𝑆−𝑆+1 𝐐̄𝑆−𝑆+1,𝑆−𝑆+2
𝐐̄𝑆−𝑆+2,𝑆−𝑆+1 𝐐̄𝑆−𝑆+2,𝑆−𝑆+2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5)

𝐁0,1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝟎𝑛
⋮
𝟎𝑛

𝐐̄𝑆−𝑆+2,𝑆−𝑆+3

⎤

⎥

⎥

⎥

⎥

⎦

(6)

𝐁1,0 =
[

𝟎𝑛 ⋯ 𝟎𝑛 𝐐̄𝑆−𝑆+3,𝑆−𝑆+2

]

(7)

𝐁1,1 = 𝐐̄𝑆−𝑆+3,𝑆−𝑆+3 (8)

𝐁2,1 = 𝐐̄𝑆−𝑆+4,𝑆−𝑆+3 (9)

𝐀0 = 𝐐̄𝑆−𝑆+5,𝑆−𝑆+6,𝐀1 = 𝐐̄𝑆−𝑆+5,𝑆−𝑆+5,𝐀2 = 𝐐̄𝑆−𝑆+5,𝑆−𝑆+4 (10)

Since 𝐁0,0 depends on the threshold levels, the equations related to
𝐁0,0 must be solved for a given set of threshold levels.

5.2.3. Determining the steady-state probabilities
Given the aforementioned sub-matrices, the steady-state distribu-

tion can be calculated by using the successive substitution method. Let
the steady-state probabilities form the vector 𝐩. The elements of 𝐩 are
organized in sub-vectors according to the representation of 𝐐 in Eq. (4):
𝐩 =

(

𝐛, 𝐯0, 𝐯1, 𝐯2,…
)

.
The balance equations where 𝐩𝐐 = 0 and 𝐩𝟏 = 1 can be written

according to the partitioning of 𝐐 as

𝐛𝐁0,0 + 𝐯0𝐁1,0 = 𝟎, (11)

𝐛𝐁0,1 + 𝐯0𝐁1,1 + 𝐯1𝐁2,1 = 𝟎, (12)

𝐯𝑗𝐀0 + 𝐯𝑗+1𝐀1 + 𝐯𝑗+2𝐀2 = 𝟎, 𝑗 = 0, 1, 2,… , (13)

𝐛𝟏 +
∞
∑

𝑗=1
𝐯𝑗𝟏 = 1. (14)

The solution to the matrix difference equation given in Eq. (13) is
obtained by the matrix geometric structure as

𝐯𝑗 = 𝐯0𝐑𝑗 , 𝐑 ∈ R𝑛×𝑛. (15)

where matrix 𝐑 can be calculated independently of 𝐯0 by successive
iterations with

𝐑 = −
(

𝐀0 + 𝐑2𝐀2
)

𝐀−1
1 , (16)

starting from 𝐑 = 𝟎𝑛, until convergence (Ost, 2013). Given matrix 𝐑, 𝐩
is obtained by solving the linear equations (11)–(14). Finally, when the
steady-state distribution 𝐩 is obtained, the average cost of the system
can be calculated as

𝜋(𝑆) =
∞
∑

𝑥=0

𝑛(𝑥+1)
∑

𝑖=1+𝑛𝑥
𝑝𝑖

(

𝑐+
[

𝑆 − 𝑥
]+

+ 𝑐−
[

𝑥 − 𝑆
]+

)

, (17)

where 𝑝𝑖 is the 𝑖th element of 𝐩 and 𝐩𝐫𝐨𝐛(𝑋 = 𝑥) =
∑𝑛(𝑥+1)
𝑖=1+𝑛𝑥 𝑝𝑖.

5.3. Mathematical programming formulation to determine the optimal
thresholds

The method described in the preceding section yields the steady-
state performance measures of the system for the given threshold values.
In this section, we present a mathematical programming formulation to
determine the optimal thresholds for the marking-dependent threshold
policy. At every given inventory level and the last observed marking
pair, if the machine is idle, there is a choice of starting production or
doing nothing. Since the thresholds are non-negative and the transition
rates between the repeating levels do not depend on the threshold
levels, this problem can be restated as choosing among the possible
options for the boundary state transitions of a QBD in order to minimize
the steady-state cost of the system.

In other words, depending on the choice, some transitions will be
added or eliminated from 𝐁0,0. Hence, the possible options for the
boundary state transitions recorded in 𝐁0,0 are a function of a set of
actions that the controller can take. In order to determine the thresholds
in a computationally efficient way, we formulate the problem as a MIP
problem.

We first introduce the MIP formulation for a more general prob-
lem where the objective is deciding on adding or eliminating transi-
tions between the boundary states of a QBD in order to minimize the
steady-state cost generated by the QBD.

Let 𝑦𝑘 ∶ 𝑘 ∈ {1,… , 𝐾} denote the binary actions that the controller
can take. In the case of the marking-dependent threshold policy, 𝑦𝑘
values correspond to the decision to continue production for different
inventory levels and marking pairs. If 𝑦𝑘 = 1, certain transitions are
allowed and if 𝑦𝑘 = 0, these transition are prohibited. Hence, 𝐁0,0 =
𝐁0
0,0 +

∑𝐾
𝑘=1 𝑦𝑘𝐁

𝑘
0,0, where 𝐁0

0,0 is the boundary transition matrix if 𝑦𝑘 =
0,∀𝑘 and 𝐁𝑘0,0 denotes the transitions that depend on 𝑦𝑘 = 1.
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Any admissible action must correspond to a well-defined transition
matrix. Note that 𝐁𝑘0,0 can have negative off-diagonal values. These
negative values represent the transitions that are prohibited when
𝑦𝑘 = 1. However, 𝐁0,0 cannot have off-diagonal negative values at any
feasible point. This must be reflected in the constraints on 𝑦𝑘 values.
These constraints along with other operational constraints on the binary
variables can be represented as 𝐄𝐲 ≥ 𝐠, where 𝐲 denotes the vector
of binary variables, 𝐄 is a matrix with 𝐾 columns, and 𝐠 is a column
vector of appropriate size. Then the problem can be expressed as given
in Eqs. (18)–(24):

min 𝐟𝐩𝑇 (18)

𝐩 =
[

𝐛 𝐯0 𝐯1 𝐯2 ⋯
]

(19)

𝐟 =
[

𝐟𝐛 𝐟𝐯0 𝐟𝐯1 𝐟𝐯2 ⋯
]

(20)

𝐛𝟏𝑚,1 + 𝐯0
(

𝐈𝑛 − 𝐑
)−1𝟏𝑛,1 = 1 (21)

[

𝐛 𝐯0
]

[

𝐁0
0,0 +

∑𝐾
𝑘=1 𝑦𝑘𝐁

𝑘
0,0 𝐁0,1

𝐁1,0 𝐁1,1 + 𝐑𝐀2

]

= 𝟎1,𝑚+𝑛 (22)

𝑦𝑘 ∈ {0, 1}𝐾 (23)

𝐄𝐲 ≥ 𝐠, (24)

where the size of 𝐁0
0,0 is denoted by 𝑚 and the size of 𝐀0 (referred to as

the block size) is denoted by 𝑛. The vector of cost rates for each state
of the CTMC is denoted by 𝐟 . The cost rates for the boundary states
is denoted by 𝐟𝐛, and 𝐟𝐯0 , 𝐟𝐯1 ,… denote the cost rates for the repeating
states. Since 𝐑 does not depend on the actions of the controller, it is
calculated prior to solving the problem and treated as a parameter in
this formulation.

This formulation contains quadratic constraints in Eqs. (22) and
infinite number of variables. Given that 𝐑 is calculated before solv-
ing the problem, the infinite number of variables can be reduced to
finite variables using the matrix geometric relations. In addition, the
quadratic constraints can be linearized using additional variables. Let
(

𝐮+𝑘 − 𝐮−𝑘
)𝑇 = 𝑦𝑘

(

𝐁𝑘0,0
)𝑇

𝐛𝑇 denote the contribution of 𝑦𝑘 to the steady-
state Eqs. (22). Hence, the problem can be reformulated as the MIP
given in Eqs. (25)–(34).

min
[

𝐟𝐛
(

∑∞
𝑗=0 𝐑

𝑗
(

𝐟𝐯𝑗
)𝑇

)𝑇 ] [ 𝐛𝑇
𝐯0𝑇

]

(25)
[

𝟏1,𝑚
(

(

𝐈𝑛 − 𝐑
)−1𝟏𝑛,1

)𝑇
] [

𝐛𝑇
𝐯0𝑇

]

= 1 (26)

𝐁0
0,0

𝑇 𝐛𝑇 +
𝐾
∑

𝑘=1

(

𝐮+𝑘 − 𝐮−𝑘
)𝑇 + 𝐁1,0

𝑇 𝐯0𝑇 = 𝟎𝑚,1 (27)

[

𝐁0,1
𝑇 𝐁1,1

𝑇 +
(

𝐑𝐀2
)𝑇

]

[

𝐛𝑇
𝐯0𝑇

]

= 𝟎𝑛,1 (28)

(

𝐁𝑘0,0
)𝑇

𝐛𝑇 ≤
(

𝐮+𝑘 − 𝐮−𝑘
)𝑇 +

(

1 − 𝑦𝑘
)

𝐌 1 ≤ 𝑘 ≤ 𝐾 (29)

(

𝐁𝑘0,0
)𝑇

𝐛𝑇 ≥
(

𝐮+𝑘 − 𝐮−𝑘
)𝑇 −

(

1 − 𝑦𝑘
)

𝐌 1 ≤ 𝑘 ≤ 𝐾 (30)

𝐮+𝑘
𝑇 ≤ 𝑦𝑘𝐌 1 ≤ 𝑘 ≤ 𝐾 (31)

𝐮−𝑘
𝑇 ≤ 𝑦𝑘𝐌 1 ≤ 𝑘 ≤ 𝐾 (32)

𝑦𝑘 ∈ {0, 1}𝐾 (33)

𝐄𝐲 ≥ 𝐠 (34)

The big-M values in the 𝐌 vectors in Eqs. (29) and (31) can
be set to 𝐌 =

∑𝑚
𝑖=1 𝐞𝑖,𝑚

𝑇 max
{

𝐁𝑘0,0𝐞𝑖,𝑚
𝑇
}

and in Eqs. (30) and (32)

Table 2
Number of variables and constraints of the MIP.

Variables Constraints

Continuous Binary

(2𝐾 + 1)𝑚 + 𝑛 𝐾 (4𝐾 + 1)𝑚 + 𝑛 + 1 (in addition to 𝐄𝐲 ≥ 𝐠)

to 𝐌 = −
∑𝑚
𝑖=1 𝐞𝑖,𝑚

𝑇 min
{

𝐁𝑘0,0𝐞𝑖,𝑚
𝑇
}

. When 𝐁𝑘0,0 matrices are sparse,
this setting eliminates a considerable chunk of the variables prior to
solving the model using their respective big-M values. In addition,
after eliminating these variables, a large number of constraints will
be eliminated as well because their relevance depended on the ability
of the eliminated variables to take positive values. The number of
variables and constraints in this formulation is given in Table 2.

Given the general formulation (25)–(34), in order to solve the
problem of choosing the optimal thresholds for the marking-dependent
threshold policy, the relevant binary variables have to be defined and
𝐁0
0,0,𝐁

𝑘
0,0 must be specified accordingly. The steps for forming these

matrices are given in Appendix A.
In summary, given the MMAP representations of the demand and

production 𝐷,𝑊 , the costs 𝑐−, 𝑐+, we first determine the matrix 𝐑
using successive substitution using Eq. (16). Then, we use an esti-
mate for the upper bound for the thresholds, denoted by 𝑋̄ to build
𝐁0
0,0,𝐁

𝑘
0,0,𝐁1,0,𝐁0,1,𝐁1,1,𝐀2 using the method given in this subsection

and Section 5 using Eqs. (6)–(10) and (73)–(74) in Appendix A. Finally,
all this information is given as parameters to the MIP formulation given
in Eqs. (25)–(34). Then, the solution of the MIP problem is converted
to the optimal threshold levels using Eq. (71) in Appendix A.

6. Data-driven control of the production/inventory system by us-
ing marking-dependent threshold policy

Implementing the analytical method presented in Section 5 as a real-
time control policy requires estimating the MMAP representations for
the production, demand, and information inter-event times by using the
historical data.

Alternatively, the parameters for the marking-dependent threshold
policy can be determined by simulating a system controlled with the
marking-dependent threshold policy and then using a simulation opti-
mization approach. We give the outline of the discrete event simulation
algorithm for the production inventory system presented in this study
in Appendix B.

In this section, we present a mathematical programming approach
for joint simulation and optimization of a production system that is
controlled with the marking-dependent threshold policy.

6.1. Data

The data-driven JSO approach uses a trace of information and
demand arrival times, their markings, the indicators for demand and
information, a trace of the production times and their markings gath-
ered from the facility together with the available statistical information
about the random variables. The collected traces can also be used to
generate additional replications by using the bootstrapping methods.
In this study, the details of combining collected and generated traces
with the simulated data are not given and we use a general definition of
a trace that combines collected, generated, and simulated arrival times.

The information and demand inter-arrival times are denoted as  =
{𝜏1, 𝜏2,…}. The time of the 𝑖th arrival is denoted with 𝑎𝑖 =

∑𝑖
𝑘=1 𝜏𝑖 and

the first arrival happens at time 𝜏1. The corresponding markings at the
moment of these arrivals are denoted by 𝛼𝑖 ∈ {1,… , 𝐶𝐷}. An indicator
vector 𝛯 = {𝜉𝑖} is used to distinguish a demand arrival coupled with
information (𝜉𝑖 = 1) and an information arrival without the demand
(𝜉𝑖 = 0) for the 𝑖th arrival. The trace of the observed production
times is denoted as 𝐺 = {𝑔1, 𝑔2,…} and their markings are denoted
by 𝛽𝑘 ∈ {1,… , 𝐶𝑊 }.
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Table 3
Description of parameters and variables.

Domain Description

Parameter

𝑐+ R+ Inventory cost for one item in inventory in
unit time

𝑐− R+ Backlog cost for one customer waiting for a
unit time

𝑎𝑖 R+ The time of the 𝑖’th arrival of information
𝜉𝑖 {0, 1} Indicator for arrivals of demand alongside

information
𝑔𝑘 R+ The 𝑘’th process time
𝛼𝑖 {1,… , 𝐶𝐷} The marking of the information and

demand process observed at 𝑎𝑖
𝛽𝑘 {1,… , 𝐶𝑊 } The marking of the production time process

observed at 𝐹𝑘
M – A big enough value

Variable

𝛥+𝑖 R+ The amount of time that product 𝑖 is
produced earlier than customer 𝑖 arriving

𝛥−𝑖 R+ The amount of time that product 𝑖 is
produced later than customer 𝑖 arriving

𝑋1
𝑖 Z Inventory position exactly after 𝑎𝑖

𝑋2
𝑖 Z Inventory position exactly after 𝐹𝑘

𝑅𝑘 R+ Beginning of 𝑘’th production
𝐹𝑘 R+ Completion of 𝑘’th production
𝑈 𝑎
𝑖 B Indicates if production starts at 𝑎𝑖

𝑈𝑓
𝑘 B Indicates if production resumes at 𝐹𝑘

𝑀𝑖 B Indicates if the machine is working exactly
before 𝑎𝑖

𝑆𝑐𝐷 ,𝑐𝑊 N Threshold level for the marking pair (𝑐𝐷 , 𝑐𝑊 )
𝑂1
𝑖,𝑘 B 𝑎𝑖 > 𝐹𝑘 → 𝑂1

𝑖,𝑘 = 1
𝑂2
𝑖,𝑘 B 𝑎𝑖 < 𝐹𝑘 → 𝑂2

𝑖,𝑘 = 1
𝑂3
𝑖,𝑘 B 𝑂3

𝑖,𝑘 = 1 → 𝑎𝑖 = 𝐹𝑘
𝑂4
𝑖,𝑘 B 𝑎𝑖 > 𝑅𝑘 → 𝑂4

𝑖,𝑘 = 1
𝑂5
𝑖,𝑘 B 𝑎𝑖 < 𝑅𝑘 → 𝑂5

𝑖,𝑘 = 1
𝑂6
𝑖,𝑘 B 𝑂6

𝑖,𝑘 = 1 → 𝑎𝑖 = 𝑅𝑘
𝑂7
𝑘 B 𝑂7

𝑘 = 1 → 𝑅𝑘 = 𝐹𝑘−1
𝑂8
𝑘 B 𝑅𝑘 > 𝑓𝑘−1 → 𝑂8

𝑘 = 1

6.2. Joint simulation and optimization representation

In this section, we give the joint simulation and optimization formu-
lation for the problem of determining the optimal marking-dependent
thresholds 𝑆𝑐𝐷 ,𝑐𝑊 for each marking pair that minimize the average total
cost for given traces. Table 3 gives a short description of the variables
and parameters of the problem.

The full mathematical programming formulation of the problem for
one replication is given in Eqs. (35)–(66).

6.2.1. Objective function
The objective is minimizing the total inventory and backlog costs

for all the demand arrivals. Since there are no lost sales in this model,
when the system starts with no items in the inventory, the item that
takes 𝑔∑

𝑙≤𝑖 𝜉𝑙 time units to produce will be given to the customer
arriving at 𝑎𝑖 if 𝜉𝑖 = 1. If 𝜉𝑖 = 0, then arrival 𝑖 does not produce
any inventory or backlog cost directly. Hence let 𝑅𝑘 be the time that
the 𝑘th production starts and 𝐹𝑘 be the time that it ends, then the
total cost produced by arrival 𝑖 will be 𝜉𝑖

(

𝑐−
[

𝐹𝑘 − 𝑎𝑖
]+ + 𝑐+

[

𝑎𝑖 − 𝐹𝑘
]+
)

where 𝑘 =
∑

𝑙≤𝑖 𝜉𝑙. As a result, the total cost of the system will

be ∑

𝑖 𝜉𝑖

(

𝑐−
[

𝐹∑
𝑙≤𝑖 𝜉𝑙 − 𝑎𝑖

]+
+ 𝑐+

[

𝑎𝑖 − 𝐹∑𝑙≤𝑖 𝜉𝑙

]+
)

. Since this objective

function is not linear, we linearize it by introducing variables 𝛥+𝑖 =
[

𝑎𝑖 − 𝐹∑𝑙≤𝑖 𝜉𝑙

]+
and 𝛥−𝑖 =

[

𝐹∑
𝑙≤𝑖 𝜉𝑙 − 𝑎𝑖

]+
that represent the earliness and

lateness for each item. Then, the objective is minimizing the sum of
the total earliness and lateness with respect to the cost rates 𝑐− and
𝑐+ as given in Eqs. (35). The equations used to linearize the objective
function are expressed in Eqs. (36)–(38).

min 𝑧 =
∑

𝑖
𝜉𝑖
(

𝑐+𝛥+𝑖 + 𝑐−𝛥−𝑖
)

(35)

subject to

𝛥+𝑖 − 𝛥−𝑖 = 𝑎𝑖 − 𝐹𝑘 ∀𝑖, 𝑘 ∶
∑

𝑙≤𝑖
𝜉𝑙 = 𝑘 (36)

𝛥+𝑖 ≤ 𝑂1
𝑖,𝑘M ∀𝑖, 𝑘 ∶

∑

𝑙≤𝑖
𝜉𝑙 = 𝑘 (37)

𝛥−𝑖 ≤
(

1 − 𝑂1
𝑖,𝑘

)

M ∀𝑖, 𝑘 ∶
∑

𝑙≤𝑖
𝜉𝑙 = 𝑘 (38)

6.2.2. Marking-dependent threshold policy
The marking-dependent threshold policy can be enforced by using

two rules. These rules make use of the inventory level and the state of
the machine at each decision epoch. The first rule is that if the machine
is not working at the moment of an arrival and the inventory level
is less than the threshold level, production must start. Let 𝑀𝑖 denote
the status of the machine at time 𝑎𝑖, where 𝑀𝑖 = 1 indicates that the
machine has been working when 𝑖th arrival happens. Let 𝑋1

𝑖 denote the
inventory position exactly after 𝑎𝑖. Let 𝑈𝑎

𝑖 denote the decision made at
𝑎𝑖, where 𝑈𝑎

𝑖 = 1 if production starts at 𝑎𝑖 and 𝑈𝑎
𝑖 = 0 otherwise. If the

inventory position exactly after 𝑎𝑖, is less than the threshold 𝑋1
𝑖 < 𝑆𝛼𝑖 ,

either the machine must be already working meaning 𝑀𝑖 = 1 or it must
start working meaning 𝑈𝑎

𝑖 = 1. This relation is expressed in Eq. (39).
Fig. 6(c) illustrates this relation. Otherwise, if the inventory position
is more than or equal to the threshold level, regardless of whether the
machine is idle or not, a new production cannot be initiated. Eq. (40)
expresses this relation as depicted in Fig. 6(d).

𝑈𝑎
𝑖 +𝑀𝑖 ≥ 𝑂2

𝑖,𝑘+1 + 𝑂
1
𝑖,𝑘 − 2 +

𝑆𝛼𝑖 ,𝛽𝑘 −𝑋
1
𝑖

M
∀𝑖, 𝑘 (39)

𝑈𝑎
𝑖 ≤ 2 − (𝑂2

𝑖,𝑘+1 + 𝑂
1
𝑖,𝑘) + 1 −

𝑋1
𝑖 − 𝑆𝛼𝑖 ,𝛽𝑘 + 1

M
∀𝑖, 𝑘 (40)

The second rule is that after the completion of a production, if the
inventory level is less than the threshold level set by the last arrival,
then the production must be resumed. Let 𝑋2

𝑘 denote the inventory
position exactly after 𝐹𝑘. Let 𝑈𝑓

𝑘 denote the decision made at 𝐹𝑘, where
𝑈𝑓
𝑘 = 1 means production will be resumed immediately. To enforce the

second rule, the last arrival before 𝐹𝑘 must be identified. For a pair 𝑖
and 𝑘, 𝑎𝑖 is the last arrival before 𝐹𝑘 if 𝑎𝑖 < 𝐹𝑘 < 𝑎𝑖+1. Using the dummy
variables given in Table 3, this can be expressed as 𝑂2

𝑖,𝑘 + 𝑂1
𝑖+1,𝑘 = 2.

Hence production must continue if 𝑋2
𝑘 < 𝑆𝛼𝑖 and 𝑂2

𝑖,𝑘 + 𝑂1
𝑖+1,𝑘 = 2.

This relation is expressed in Eq. (41). Fig. 6(f) illustrates this relation.
Given 𝑂2

𝑖,𝑘+𝑂
1
𝑖+1,𝑘 = 2, if 𝑋2

𝑘 ≥ 𝑆𝛼𝑖 , production cannot be resumed. This
relation is expressed in Eq. (42) and in Fig. 6(g).

𝑈𝑓
𝑘 ≥ 𝑂2

𝑖,𝑘 + 𝑂
1
𝑖+1,𝑘 − 2 +

𝑆𝛼𝑖 ,𝛽𝑘 −𝑋
2
𝑘

M
∀𝑖, 𝑘 (41)

𝑈𝑓
𝑘 ≤ 2 − (𝑂2

𝑖,𝑘 + 𝑂
1
𝑖+1,𝑘) + 1 −

𝑋2
𝑘 − 𝑆𝛼𝑖 ,𝛽𝑘 + 1

M
∀𝑖, 𝑘 (42)

6.2.3. The inventory and the machine status
Since the control policy uses the inventory position as an input to

operate, we express the inventory position as a function of the arrival
and production processes. Since the inventory position at each arrival
together with the production completion capture the inventory process,
we define the variables 𝑋1

𝑖 and 𝑋2
𝑘 as the inventory position exactly

after 𝑎𝑖 and 𝐹𝑘. Hence 𝑋1
𝑖 can be calculated as the number of items

produced before the 𝑖th arrival subtracted by ∑

𝑙≤𝑖 𝜉𝑖. Let 𝑂1
𝑖,𝑘 be a

binary dummy variable that is 1 if 𝐹𝑘 ≤ 𝑎𝑖. Then the relation in Eq. (43)
adjusts the inventory position. Similarly, with the appropriate dummy
variable, 𝑋2

𝑘 is adjusted in Eq. (44). Fig. 5 illustrates these equations.

𝑋1
𝑖 =

∑

𝑘
𝑂1
𝑖,𝑘 −

∑

𝑙≤𝑖
𝜉𝑙 ∀𝑖 (43)

𝑋2
𝑘 = 𝑘 −

∑

𝑖
𝜉𝑖𝑂

2
𝑖,𝑘 ∀𝑘 (44)
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Fig. 5. (a) Inferring the inventory position exactly after completion of a production using dummy variables 𝑂2
𝑖,𝑘. (b) Inferring the inventory level exactly after an arrival using

dummy variables 𝑂1
𝑖,𝑘.

The decision to start production also depends on whether the ma-
chine is working or not. Let 𝑀𝑖 denote the state of the machine exactly
before 𝑎𝑖, where 𝑀𝑖 = 1 indicates that the machine is already working
when 𝑖th demand arrives. For the machine to be working at 𝑎𝑖, there
must exist a 𝑘 such that 𝑅𝑘 < 𝑎𝑖 < 𝐹𝑘 holds. Eqs. (45)–(46) enforce this
relation. Fig. 6(a)–(b) illustrates these relations.

𝑀𝑖 ≥ 𝑂2
𝑖,𝑘 + 𝑂

4
𝑖,𝑘 − 1 ∀𝑖, 𝑘 (45)

𝑀𝑖 ≤ 2 − 𝑂1
𝑖,𝑘 − 𝑂

5
𝑖,𝑘+1 ∀𝑖, 𝑘 < | | (46)

6.2.4. Other constraints
Eq. (47) prevents the starting of a production from appearing as if

the machine has been already working. Eqs. (48) and (49) express that
only one item can be produced at a time and item 𝑖 takes 𝑔𝑖 time units
to produce. Eqs. (50)–(51) give the relation between the production
decisions and the dummy variables. Inequalities (52)–(64) express the
relation between the dummy variables and the arrival and production
times 𝑎𝑖, 𝑅𝑘 and 𝐹𝑘. Eq. (65) ensures that every production is either
triggered by the completion of the previous production or the arrival
of a demand. Eq. (66) ensures that no arrival triggers a production out
of order.

𝑀𝑖 +
∑

𝑘
𝑂6
𝑖,𝑘 ≤ 1 ∀𝑖 (47)

𝑅𝑖 ≥ 𝐹𝑖−1 ∀𝑖 > 1 (48)

𝐹𝑖 = 𝑅𝑖 + 𝑔𝑖 ∀𝑖 (49)

𝑈𝑎
𝑖 =

∑

𝑘
𝑂6
𝑖,𝑘 ∀𝑖 (50)

𝑈𝑓
𝑘 = 𝑂7

𝑘+1 ∀𝑘 < | | (51)

𝑂1
𝑖,𝑘 ≤ 1 +

(

𝑎𝑖 − 𝐹𝑘
)

M
∀𝑖, 𝑘 (52)

𝑂2
𝑖,𝑘 ≤ 1 −

(

𝑎𝑖 − 𝐹𝑘
)

M
∀𝑖, 𝑘 (53)

𝑂1
𝑖,𝑘 ≥

(

𝑎𝑖 − 𝐹𝑘
)

M
∀𝑖, 𝑘 (54)

𝑂2
𝑖,𝑘 ≥ −

(

𝑎𝑖 − 𝐹𝑘
)

M
∀𝑖, 𝑘 (55)

𝑂1
𝑖,𝑘 + 𝑂

2
𝑖,𝑘 + 𝑂

3
𝑖,𝑘 = 1 ∀𝑖, 𝑘 (56)

Table 4
Number of variables and constraints of the MIP representation of data-driven JSO.

Variables Constraints

Continuous Binary Integer

4| | 6| |

2 + 5| | 2| | + 𝐶 17| |

2 + 6| | + 3
∑

𝑖 𝜉𝑖

𝑂4
𝑖,𝑘 ≤ 1 +

(

𝑎𝑖 − 𝑅𝑘
)

M
∀𝑖, 𝑘 (57)

𝑂5
𝑖,𝑘 ≤ 1 −

(

𝑎𝑖 − 𝑅𝑘
)

M
∀𝑖, 𝑘 (58)

𝑂4
𝑖,𝑘 ≥

(

𝑎𝑖 − 𝑅𝑘
)

M
∀𝑖, 𝑘 (59)

𝑂4
𝑖,𝑘 ≥ −

(

𝑎𝑖 − 𝑅𝑘
)

M
∀𝑖, 𝑘 (60)

𝑂4
𝑖,𝑘 + 𝑂

5
𝑖,𝑘 + 𝑂

6
𝑖,𝑘 = 1 ∀𝑖, 𝑘 (61)

𝑂7
𝑘 ≤ 1 −

(

𝑅𝑘 − 𝑓𝑘−1
)

M
∀𝑖, 𝑘 > 1 (62)

𝑂7
𝑘 ≤ 1 +

(

𝑅𝑘 − 𝑓𝑘−1
)

M
∀𝑖, 𝑘 > 1 (63)

𝑂7
1 = 0 (64)

𝑂7
𝑘 +

∑

𝑖
𝑂6
𝑖,𝑘 ≥ 1 ∀𝑖 (65)

𝑂6
𝑖,𝑘 ≤ 1 −

∑

𝑗<𝑖,𝑙>𝑘 𝑂
6
𝑗,𝑙

M
∀𝑖, 𝑘 (66)

Table 4 gives the number of variables and constraints in this for-
mulation. The number of the constraints and binary variables is not
affected by 𝐶𝐷 and 𝐶𝑊 and the main contributor to the complexity
of the problem is the trace length. Since the number of variables
increases with the square of the trace length, using the mathematical
programming formulation to determine the optimal thresholds requires
significant computing power and memory. For the cases where the
computing power is not sufficient to implement JSO, the discrete event
simulation formulation given in Appendix B with a search algorithm
can be used.
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Fig. 6. Configurations of event times and their corresponding variables and decisions. (a) Since ∃𝑘 ∶ 𝑅𝑘 < 𝑎𝑖 < 𝐹𝑘 the machine is working at 𝑎𝑖, this is reflected in 𝑀𝑖 = 1. (b)
Since ∃𝑘 ∶ 𝐹𝑘 < 𝑎𝑖 < 𝑅𝑘+1 the machine is idle at 𝑎𝑖, this is reflected in 𝑀𝑖 = 0. (c) If the machine is idle and the inventory position is less than the threshold after an arrival, a new
production starts, this is reflected in 𝑈 𝑎

𝑖 = 1. (d) If the inventory position is not less than the threshold after an arrival, regardless of the status of the machine new production
will not start, this is reflected in 𝑈 𝑎

𝑖 = 0. (e) After completion of a product, if the inventory position is less than the threshold, production continues. Arrival 𝑖 is the last arrival
before 𝐹𝑘 if 𝑎𝑖 < 𝐹𝑘 < 𝑎𝑖+1. (f) After completion of a product, if the inventory position is not less than the threshold set by the last arrival, production stops..

7. Analysis of the example

In this section, we analyze the specific system introduced in Sec-
tion 4 by using the methods presented in Sections 5 and 6. We
evaluate the system for a range of parameter values under different
information scenarios: the buffer size 𝐵, the processing rate of the
unreliable machine WS2, the processing rate of the reliable machine
WS3, the number of the repair phases 𝑟, the rate of the repair phases 𝜆,
the failure probability 𝛾, the ratio of the production rate to the arrival
rate 𝜇1∕𝑇𝑃 , and the ratio of the backlog cost to inventory cost 𝑐−∕𝑐+

are varied as shown in Table 5. 5576 different cases are used to analyze
the system in four different information availability scenarios. In this
experimental setup, the information about the demand is only recorded
at the arrival instances.

In this system, 𝑞𝑟+ 2𝑟+ 𝑞 + 3 states are required to model the infor-
mation and demand processes. Therefore, the optimal state-dependent
threshold policy that uses all the information will have up to 36 thresh-
olds for 36 states. Even for the case where all the states are fully observ-
able, determining all the optimal thresholds by using the information
traces collected in real time is not computationally tractable.
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Table 5
The range of parameters used in the numerical experiments.

Buffer size 𝑞 {1, 2, 3}
The processing rate of the unreliable machine 𝜇2 {1, 2, 3}
The processing rate of the reliable machine 𝜇3 {1, 2, 3}
The number of the repair phases 𝑟 {2, 4, 6}
The rate of each repair phase 𝜆 {0.5, 0.7, 0.9}
Breakdown probability 𝛾 {0.01, 0.05, 0.09}
The production rate to throughput ratio 𝜇1∕𝑇𝑃 {1.5, 2, 2.5}
The backlog cost rate to inventory cost rate ratio 𝑐−∕𝑐+ {2, 3, 4, 5}

Table 6
Percentage difference of average cost using optimal analytical solution with one or both
of the sources of information with respect to using the analytical solution with none

of the sources of information:
|

|

|

𝜋∗𝑎,𝑏−𝜋
∗
0,0

|

|

|

𝜋∗0,0
.

Parameter
level

Available information

Only buffer
status (two
thresholds)

Only machine
status (two
thresholds)

Both the
machine and
buffer statuses
(four thresholds)

|𝜋∗0,1−𝜋
∗
0,0 |

𝜋∗0,0

|𝜋∗1,0−𝜋
∗
0,0 |

𝜋∗0,0

|𝜋∗1,1−𝜋
∗
0,0 |

𝜋∗0,0

Buffer size 𝑞
1 2.14 4.57 5.46
2 2.81 4.24 5.68
3 3.10 3.89 5.72

Rate of
unreliable
machine 𝜇2

1 2.39 3.23 5.10
2 2.78 4.61 6.00
3 2.81 4.98 5.78

Rate of reliable
machine 𝜇3

1 2.15 3.07 3.89
2 3.20 5.13 6.84
3 2.94 5.41 7.38

Number of
repair phases 𝑟

2 2.04 2.43 3.80
4 2.85 4.98 6.35
6 3.67 7.05 8.39

Rate of repair
phases 𝜆

0.5 3.18 5.65 7.01
0.7 2.61 4.17 5.53
0.9 2.33 3.37 4.73

Breakdown
probability 𝛾

0.01 2.05 2.56 4.01
0.05 3.07 5.29 6.68
0.09 3.05 5.47 6.67

Service rate to
throughput
rate ratio 𝜇1

𝑇𝑃

1.5 0.94 1.31 1.73
2 2.40 3.85 5.03
2.5 3.68 5.97 7.93

Backlog cost
rate to
inventory cost
rate ratio 𝑐−

𝑐+

2 2.53 5.33 6.56
3 2.51 4.04 5.54
4 2.57 3.69 5.03
5 3.07 3.73 5.13

Average 2.66 4.25 5.61

7.1. Evaluation methodology

In our evaluation methodology, we first use the analytical method
presented in Section 5 to analyze the production/inventory system with
the given production and demand processes and with the given mark-
ings selected for control. We determine the optimal marking-dependent
thresholds and the optimal cost by using the MIP formulation given in
Section 5.3.

In order to compare the performance of the data-driven approach
with the exact evaluation, we generate different-length traces for the
given system parameters and the selected markings. We then use the
JSO approach described in Section 6.2 for short traces and the DES
approach given in Appendix B with a search algorithm for long traces.
We denote the set of the thresholds determined by the JSO formulation
given the information scenario specified by 𝑎 and 𝑏 and trace length | |

as 𝑆JSO(a,b,| |).
As another benchmark, we use the same demand and informa-

tion arrival trace to fit an exponential or a phase type distribution

that matches the first three moments. We set a threshold based on
these fitted distribution using the analytical methods. We denote the
thresholds determined after fitting an exponential distribution and a
phase-type distribution to a trace of length | | as 𝑆EXP(| |) and 𝑆PH(| |)

respectively. Fig. 7 illustrates the evaluation process.

7.2. Effect of marking selection on the performance of the production/
inventory system

Deciding on the markings to be used in the marking-dependent
threshold policy in a right way improves the performance of the control
policy. In this section, we investigate the following questions: what will
be the performance if only one marking is to be used; should we use the
buffer status or the production status as the selected marking?; and what is
the additional benefit of using both of the markings?

In order to investigate these questions, each case is analyzed by
using the exact method with the corresponding MMAP representations
of the processes depending on the number of markings for the given
parameters. When both the buffer status and the machine status are
used, the marking-dependent threshold policy uses four thresholds to
control the system. If only the buffer status or the machine status is used
as a marking, the control policy uses two thresholds. If these markings
are not used and the controller only uses the demand inter-arrival
times, then only one threshold is used. The average cost of the system
under an information scenario with the optimal thresholds is denoted
by 𝜋∗𝑎,𝑏 where 𝑎 ∈ {0, 1} indicates whether the production marking is
used (𝑎 = 1) or not (𝑎 = 0), and 𝑏 ∈ {0, 1} indicates whether the buffer
status marking is used (𝑏 = 1) or not (𝑏 = 0). For each case, after the
optimal thresholds are determined, the minimum cost 𝜋∗𝑎,𝑏 has been
compared to the cost obtained when both of the information sources
are used by the controller 𝜋∗1,1.

Table 6 shows the results of these experiments. The results indicate
that the marginal contribution of using both markings is lower than the
contribution of using only the production status marking on average.
As the expected repair time increases, the number of repair phases
increases, and the breakdowns become more frequent, the contribution
of using the production marking is higher than the contribution of
using the buffer marking. In these cases, the effect of the breakdowns
become more pronounced for the system and the disparity between the
demand and production rate increases the value of information. If the
production rate is much higher than the demand rate, it will be able
to react to trigger or halt production depending on the markings in a
faster way. Large backlog costs also decrease the value of information,
as it becomes less attractive to carry backlogs based on the estimation
that the demand will temporarily be low.

Table 7 shows the effect of the parameters on the optimal threshold
level for each marking when both the buffer status and the production
status are used as markings. In this case, the control policy uses 4
thresholds corresponding to 4 different marking pairs. On average, the
threshold for the marking machine under repair and buffer empty is the
lowest and the threshold for the marking machine in working condition
and buffer not empty is the largest. As the number of repair phases
increases, the coefficient of variation of the repair time decreases. As
a result, all thresholds decrease. Similarly, as the breakdowns become
more frequent, all the threshold levels increase to protect the system
from the downtime. As the backlog cost increases compared to the
inventory cost and as the production becomes slower compared to
the demand, all thresholds increase. Furthermore, the threshold for
the marking machine in working condition and buffer not empty is more
sensitive to these parameters as opposed to the parameters related
solely to the demand process. Overall, the threshold for the marking
machine under repair and buffer empty is the most sensitive threshold to
the parameters of the demand process.
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Fig. 7. Scheme of the performance evaluation for the control methods.

Table 7
Average threshold levels for the markings.

Parameter
level

Marking

Machine
under repair
and buffer
empty

Machine in
working
condition and
buffer empty

Machine
under repair
and buffer
not empty

Machine in
working
condition and
buffer not
empty

𝑞
1 0.75 1.81 1.18 2.29
2 0.75 1.73 1.28 2.32
3 0.73 1.68 1.37 2.33

𝜇2
1 0.81 1.67 1.33 2.51
2 0.70 1.74 1.24 2.24
3 0.72 1.82 1.25 2.17

𝜇3
1 0.90 1.83 1.33 2.20
2 0.62 1.70 1.24 2.35
3 0.60 1.63 1.21 2.47

𝑟
2 0.97 1.83 1.47 2.43
4 0.63 1.71 1.14 2.25
6 0.42 1.61 1.04 2.13

𝜆
0.5 0.57 1.71 1.19 2.25
0.7 0.76 1.76 1.28 2.34
0.9 0.84 1.75 1.33 2.33

𝛾
0.01 0.49 1.50 1.15 2.00
0.05 0.77 1.79 1.29 2.38
0.09 1.06 2.03 1.42 2.67

𝜇1
𝑇𝑃

1.5 2.09 3.08 2.14 3.62
2 0.60 1.66 1.10 2.23
2.5 0.22 1.18 1.00 1.75

𝑐−

𝑐+

2 0.31 1.32 1.08 1.81
3 0.64 1.67 1.20 2.25
4 0.94 1.94 1.37 2.52
5 1.20 2.16 1.50 2.79

Average 0.74 1.74 1.27 2.31

7.3. Performance of the data-driven method

In order to capture the effect of the trace length, we conduct the
experiments for traces that have 100, 1000, 10000 observed event
arrivals. We use the JSO to analyze the system for a total of 66912 cases
depending on the range of parameters, informational settings, and trace
length. For each case, 5 traces were generated and analyzed by the JSO
approach.

Table 8 reports the performance of the JSO approach with the given
trace lengths compared to the optimal analytical solution for the case
where both sources of information are used to control the system. The
percentage deviation of the costs obtained by using the JSO compared

to the analytical solution,
|

|

|

𝜋(𝑆JSO(a,b,| |))−𝜋∗1,1
|

|

|

𝜋∗1,1
is reported for each case.

Fig. 8 depicts the average costs obtained with the JSO approach
with different levels of information and different trace lengths
𝜋(𝑆JSO(a,b,| |)). The results show that as the trace length increases, the
cost obtained with the JSO approach gets closer to the optimal cost
obtained with the analytical approach under each information scenario.
That is, the JSO approach makes use of the additional information
to reduce cost. However, the selection of the markings to be used in
the marking-dependent threshold policy has a significant effect on the
performance. When no additional markings are used and the control
only uses the unmarked trace that includes the demand inter-arrival
times, the performance of the JSO with the longest trace is worse than
the analytical solution for the case both the production and inventory
status are used as markings in addition to the inter-arrival times.

As the demand arrival pattern is interrupted by breakdowns due to
longer down times, the information about the machine is expected to
become more valuable. The results confirm that decreasing the repair
rate has an adverse effect on the performance of the JSO when the
production status information is not used in the markings.

Fig. 9 compares the performance of JSO to the methods where
the analytical method is used with the parameters estimated from the
unmarked traces. The percentage loss compared to the solution with
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Table 8
Percentage difference of the average cost using JSO with different information levels with respect to the optimal analytical solution using both sources of information given different
trace lengths.

Available information

Unmarked trace Trace with buffer status only Trace with machine status only Trace with buffer and machine status
|

|

|

𝜋(𝑆JSO(0,0,| |) )−𝜋∗1,1
|

|

|

𝜋∗1,1

|

|

|

𝜋(𝑆JSO(0,1,| |) )−𝜋∗1,1
|

|

|

𝜋∗1,1

|

|

|

𝜋(𝑆JSO(1,0,| |) )−𝜋∗1,1
|

|

|

𝜋∗1,1

|

|

|

𝜋(𝑆JSO(1,1,| |) )−𝜋∗1,1
|

|

|

𝜋∗1,1
(one threshold) (two thresholds) (two thresholds) (four thresholds)

Trace Length Trace Length Trace Length Trace Length

100 1000 10000 100 1000 10000 100 1000 10000 100 1000 10000

𝑞
1 14.67 6.44 5.58 14.38 5.47 3.56 11.16 2.74 0.99 11.25 2.31 0.32
2 13.18 6.96 6.08 12.23 5.08 3.40 10.48 3.24 1.53 10.18 2.43 0.37
3 11.81 6.99 6.19 12.32 4.93 3.20 11.20 3.59 1.88 10.40 2.37 0.38

𝜇2
1 12.27 6.40 5.33 11.70 4.87 3.01 10.52 3.71 1.88 9.67 2.43 0.34
2 13.25 7.23 6.48 12.79 5.47 3.72 10.33 2.91 1.29 10.14 2.31 0.38
3 15.01 7.10 6.29 15.30 5.32 3.43 12.48 2.64 0.89 12.65 2.42 0.40

𝜇3
1 9.94 4.86 4.19 11.11 3.83 2.06 9.75 2.67 1.04 9.75 2.31 0.37
2 19.64 7.82 6.81 14.57 5.70 3.92 12.48 3.23 1.62 11.99 2.25 0.37
3 15.47 7.85 6.76 14.22 6.15 4.45 11.27 3.32 1.60 10.56 2.34 0.33

𝑟
2 13.30 4.86 4.09 10.91 3.62 2.11 10.36 3.11 1.61 9.89 2.12 0.36
4 11.98 7.40 6.34 14.51 5.91 3.76 11.79 3.48 1.31 11.65 2.71 0.36
6 13.03 8.78 7.86 14.17 6.92 4.74 10.91 2.93 1.13 10.39 2.50 0.37

𝜆
0.5 15.50 8.17 7.14 14.47 6.14 4.27 11.56 3.11 1.21 11.37 2.52 0.35
0.7 13.00 6.80 5.93 13.61 5.30 3.45 11.41 3.09 1.38 11.06 2.36 0.37
0.9 11.34 5.96 5.10 11.83 4.74 2.85 10.27 3.22 1.47 9.82 2.32 0.36

𝛾
0.01 10.46 4.42 4.04 11.12 3.56 2.27 9.49 2.65 1.59 9.09 1.65 0.29
0.05 16.12 8.34 7.32 14.10 6.20 4.23 11.78 3.17 1.36 11.28 2.53 0.40
0.09 13.25 8.17 6.82 14.70 6.42 4.07 11.97 3.60 1.10 11.88 3.03 0.39

𝜇1
𝑇𝑃

1.5 16.54 3.95 2.23 15.78 4.61 1.44 14.78 3.75 0.83 14.97 3.55 0.61
2 11.05 6.76 6.13 12.11 5.04 3.53 9.97 2.71 1.21 9.46 2.18 0.30
2.5 12.24 10.22 9.82 12.03 6.53 5.60 8.49 2.95 2.02 7.82 1.48 0.18

𝑐−

𝑐+

2 12.92 7.88 7.19 12.77 6.12 4.60 9.43 2.67 1.27 9.37 1.95 0.24
3 13.38 7.06 6.21 13.09 5.39 3.73 10.94 3.12 1.42 10.37 2.33 0.34
4 13.27 6.48 5.45 13.41 4.82 3.06 11.43 3.18 1.35 11.06 2.43 0.41
5 13.55 6.48 5.39 13.96 5.24 2.70 12.52 3.57 1.37 12.21 2.90 0.47

Average 13.28 6.98 6.06 13.31 5.39 3.52 11.08 3.14 1.35 10.75 2.40 0.36

Fig. 8. The average cost of using JSO with different trace-lengths and information levels compared to the average optimal analytical cost with both sources of information.

the analytical method that uses the unmarked traces
|

|

|

𝜋(𝑆)−𝜋∗0,0
|

|

|

𝜋∗0,0
is used

for this comparison. With the assumption that the process times are
not correlated, twenty bootstrap samples of the process times have
been used in data preparation for the JSO. It is observed that using
the analytical method with the fitted phase-type distribution yields
results close to the JSO. When the trace length is sufficiently long,
both methods yield the same results. However, when the trace length is
short, parameter fitting methods cannot capture the distributions and
therefore the performance is worse than the performance of the JSO
approach. The average deviation with respect to the optimal analytical
solution for the methods were 2.66% for JSO, 3.16% for exponential

fitting and 4.15% for phase-type fitting. Fitting an exponential dis-
tribution that captures only the first moment outperforms the results
obtained for the case where a phase-type distribution that matches the
first three moments when the trace length is short.

Table 8 shows the effect of the parameters and information sce-
narios on the performance of data-driven JSO. It is worth noting that
many of the patterns observed in Table 6 are present for the data-
driven JSO with traces of 1000 and 10000 length. However, for short
traces these patterns are not present. This indicates that with very short
traces, having more information to use and having more thresholds to
set might not translate to a better control of the system due to the
difficulty of estimating the control policy parameters.
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Fig. 9. Percentage difference of average cost using exponential and phase-type fitting methods and JSO with respect to the optimal analytical solution given unmarked traces.

The results from Figs. 8 and 9 and Table 8 show that the marking-
dependent threshold policy implemented with the JSO approach as a
real-time control policy is an effective way of matching supply and
demand.

8. Conclusions

In this study, we propose using the marking-dependent threshold
policy as an effective data-driven method to control production. We
show that the parameters of the marking-dependent control policy can
be determined with the joint simulation and optimization approach
that combines the data collected from the shop floor with the available
statistical information about the demand, production, and information
arrival processes.

The marking-dependent threshold policy is easy to implement: a dif-
ferent threshold level is determined for each marking. When a marking
is received, production of a new item is triggered if there is no item
being produced at that moment and the inventory level is less than or
equal to the threshold associated with that marking. The completion of
a production triggers a production if the inventory level is less than the
threshold associated with the last observed marking. If the inventory
level reaches the threshold, the production stops until a new demand
arrives, in which case it will stay idle if the newly observed marking
corresponds to a threshold level lower than the inventory level.

We propose an analytical method based on the matrix geometric
method for evaluating the performance of a production/inventory sys-
tem controlled with the marking-dependent threshold policy where the
demand, production, and information arrival processes are modeled as
Marked Markovian Arrival Processes. We introduce an MIP formulation
for determining the optimal thresholds based on this analytical method.

For the data-driven JSO method, we give the mathematical pro-
gramming representation of the problem as a mixed integer program.
Given the considerable increase in the power of solvers in solving
mathematical programming problems, the MIP formulation is given as
the first step in devising efficient solution methods for the problem with
shorter trace lengths. In addition, we give the discrete event simulation
procedure for the system if longer traces are to be used to determine
the parameters of the marking-dependent control policy.

We use an experimental setup for a feeder line for an assembly sys-
tem to evaluate the performance of the marking-dependent threshold
policy that uses different markings to control the release of material
into the feeder line. We use this setup to determine the effects of
using different markings and also to evaluate the JSO approach with
simulated shop-floor data with different trace lengths.

Our numerical results show that the JSO-based approach is an
effective method for controlling the system. With sufficiently long

traces, the proposed method is able to use the information effectively
and yields results that are close to the performance obtained with
the analytical solution for the same information level. The value of
information about the status of a machine increases as the variability of
the repair times decreases and the repair time increases. The informa-
tion about the machine status is more valuable than the information
about its downstream buffer. The JSO-based approach is an efficient
way for determining the optimal threshold levels given limited data.
Furthermore, this method outperforms parametric methods that first fit
distributions ignoring the autocorrelation of the demand process and
then determine the control parameters based on the analytical model
with the fitted parameters.

We are working on implementing the marking-dependent control
policy as a release control policy for a wafer fab in order to manage the
flows into a die bank in a semiconductor manufacturing plant. In this
implementation, markings such as the availability status of the stations
that are identified as the bottleneck resources based on historical data
and the level of work in progress inventory are used in the marking-
dependent threshold policy. Given the complexity of semiconductor
manufacturing, there may be many other sources of information that
can be used to control the system. However, considering all sources of
information will result in optimization problems that are computation-
ally intractable. Furthermore, there is no simple way of deciding which
sources of information to use.

This work can be extended in different ways. There are two fun-
damental questions regarding the marking-dependent threshold policy.
First, the optimality of the marking-dependent threshold policies for
the system considered in this study can be proven formally by formu-
lating the problem as a partially observable Markov decision process.
Furthermore, using a large number of markings to control a system is
computationally prohibitive due to the difficulty of determining the
optimal thresholds. Therefore, this work can be extended to develop
a method to select a small number of markings from a set of possible
markings. Given a large number of markings, controlling the system
with a given smaller number of thresholds can be posed as a clustering
problem. However, attacking this problem as a pure optimization prob-
lem can be computationally intractable. Therefore, there is a need to
develop efficient clustering methods based on different data analytics
approaches. In addition, the pattern of the arrivals can help in inferring
the marking information. These are left for future research.

Acknowledgments

Research leading to these results has received funding from the EU
ECSEL Joint Undertaking under grant agreement no. 737459 (project
Productive4.0) and from TUBITAK (217M145).



International Journal of Production Economics 226 (2020) 107607

17

S. Khayyati and B. Tan

Appendix A. Specifying the intermediate matrices for MIP

Let 𝑋̄ denote the maximum threshold level admissible. Let 𝜓𝑃 ,𝑖,𝑗 ∶
1 ≤ 𝑖 ≤ 𝐶𝐷, 1 ≤ 𝑗 ≤ 𝐶𝑊 , 0 ≤ 𝑋 < 𝑋̄ denote the binary variable for
the decision to continue production when the inventory position is 𝑋
and marking pair (𝑖, 𝑗) has been observed last. Hence, 𝜓𝑋,𝑖,𝑗 = 𝛿{𝑆𝑖,𝑗>𝑋

}

holds. Given this definition, for a policy to be a threshold policy, the
following set of constraints must hold. Note that the constraints given
by Eq. (67) correspond to Eq. (34) in the general formulation:

𝜓𝑃 ,𝑖,𝑗 ≤ 𝜓𝑃−1,𝑖,𝑗 ∶ 1 ≤ 𝑖 ≤ 𝐶𝐷, 1 ≤ 𝑗 ≤ 𝐶𝑊 , 0 < 𝑋 < 𝑋̄. (67)

For determining 𝐄 and 𝐠, we first choose an order for matching
𝜓𝑋,𝑖,𝑗 values and the elements of the vector 𝐲. This order is given
in Eqs. (68), where 𝜓̈𝑋 and 𝜓̇𝑋,𝑖 are intermediary sub-vectors of 𝐲.
Let 𝑓

(

𝑋, 𝑖1, 𝑖2
)

= 𝑋𝐶𝐷𝐶𝑊 +
(

𝑖1 − 1
)

𝐶𝑊 + 𝑖2 denote a function from
{0,… , 𝑋̄ − 1} × {1,… , 𝐶𝐷} × {1,… , 𝐶𝑊 } to {1,… , 𝑋̄𝐶𝐷𝐶𝑊 }, used for
pointing to 𝜓𝑋,𝑖1 ,𝑖2 in 𝐲. Using this order and the function 𝑓 , the
constraints given in Eq. (67) can be specified by 𝐄 and 𝐠 given in
Eqs. (69)–(70):

𝐲 =
[

𝜓̈0 ⋯ 𝜓̈𝑋̄−1
]

, 𝜓̈𝑋 =
[

𝜓̇𝑋,1 ⋯ 𝜓̇𝑋,𝐶𝐷
]

,

𝜓̇𝑋,𝑖 =
[

𝜓𝑋,𝑖,1 ⋯ 𝜓𝑋,𝑖,𝐶𝑊
]

,
(68)

𝐄 =
𝑋̄−1
∑

𝑋=1

𝐶𝐷
∑

𝑖1=1

𝐶𝑊
∑

𝑖2=1

(

𝐞(𝑋−1)𝐶𝐷𝐶𝑊 +(𝑖1−1)𝐶𝑊 +𝑖2 ,(𝑋̄−1)𝐶𝐷𝐶𝑊
)𝑇

⊗
(

𝐞𝑓(𝑋,𝑖1 ,𝑖2),𝑋̄𝐶𝐷𝐶𝑊 − 𝐞𝑓(𝑋−1,𝑖1 ,𝑖2),𝑋̄𝐶𝐷𝐶𝑊
)

, (69)

𝐠 = 𝟎(𝑋̄−1)𝐶𝐷𝐶𝑊 ,1. (70)

Moreover, given a vector 𝐲, the threshold level for marking pair
(𝑖1, 𝑖2) can be calculated as

𝑆𝑖1 ,𝑖2 =
𝑋̄−1
∑

𝑋=0
𝐲𝑓 (𝑋,𝑖1 ,𝑖2). (71)

In the following we describe determining the alternative forms of
the boundary state transitions. Let 𝐐̃𝑋1 ,𝑥2 (𝛹 ) denote the sub-block of 𝐐
corresponding to transitions from inventory position 𝑋1 to inventory
position 𝑋2, as a function of the binary variables 𝛹 ∈ {0, 1}𝑋̄𝐶𝐷𝐶𝑊 .
Given this notation, the sub-blocks of 𝐐 as a function of 𝛹 can be
specified by the following equations:

𝐐̃𝑋,𝑋−1(𝛹 ) =
[

1 0
0 0

]

⊗
𝐶𝐷
∑

𝑖1=1

𝐶𝑊
∑

𝑗1=1

𝐶𝐷
∑

𝑖2=1

𝐶𝑊
∑

𝑗2=1

(

1 − 𝜓𝑋−1,𝑖2 ,𝑗2

)

𝐉𝑖1𝑗1 ,𝑖2𝑗2 ,𝐶𝐷𝐶𝑊

⊗
(

𝛿{𝑗1=𝑗2}𝐃𝟏𝑖2 ⊗ 𝐈𝑤
)

+
[

0 1
0 0

]

⊗
𝐶𝐷
∑

𝑖1=1

𝐶𝑊
∑

𝑗1=1

𝐶𝐷
∑

𝑖2=1

𝐶𝑊
∑

𝑗2=1
𝜓𝑋−1,𝑖2 ,𝑗2𝐉𝑖1𝑗1 ,𝑖2𝑗2 ,𝐶𝐷𝐶𝑊

⊗
(

𝛿{𝑗1=𝑗2}𝐃𝟏𝑖2 ⊗ 𝐈𝑤
)

+
[

0 0
1 0

]

⊗ 𝟎𝐶𝐷𝐶𝑊 𝑑𝑤,𝐶𝐷𝐶𝑊 𝑑𝑤

+
[

0 0
0 1

]

⊗

(𝐶𝐷
∑

𝑖=1

((

𝐞𝑖,𝐶𝐷 ⊗ 𝟏𝐶𝐷
)

⊗ 𝐈𝐶𝑊 ⊗ 𝐃𝟏𝑖 ⊗ 𝐈𝑤
)

)

,

𝑋 ≤ 𝑋̄,

𝐐̃𝑋,𝑋 (𝛹 ) = 𝛿{𝑋<𝑋̄}

([

0 0
0 1

]

⊗ 𝐈𝐶𝐷 ⊗ 𝐈𝐶𝑊 ⊗ 𝐈𝑑 ⊗𝐖𝟎
)

+
(

𝐈2 ⊗ 𝐈𝐶𝐷 ⊗ 𝐈𝐶𝑊 ⊗ 𝐃𝟎⊗ 𝐈𝑤
)

+
[

1 0
0 0

]

⊗
𝐶𝐷
∑

𝑖1=1

𝐶𝑊
∑

𝑗1=1

𝐶𝐷
∑

𝑖2=1

𝐶𝑊
∑

𝑗2=1

(

1 − 𝜓𝑋,𝑖2 ,𝑗2
)

𝐉𝑖1𝑗1 ,𝑖2𝑗2 ,𝐶𝐷𝐶𝑊

⊗
(

𝛿{𝑗1=𝑗2}𝐃𝟐𝑖2 ⊗ 𝐈𝑤
)

+
[

0 1
0 0

]

⊗
𝐶𝐷
∑

𝑖1=1

𝐶𝑊
∑

𝑗1=1

𝐶𝐷
∑

𝑖2=1

𝐶𝑊
∑

𝑗2=1
𝜓𝑋,𝑖2 ,𝑗2𝐉𝑖1𝑗1 ,𝑖2𝑗2 ,𝐶𝐷𝐶𝑊

⊗
(

𝛿{𝑗1=𝑗2}𝐃𝟐𝑖2 ⊗ 𝐈𝑤
)

+
[

0 0
1 0

]

⊗ 𝟎𝐶𝐷𝐶𝑊 𝑑𝑤,𝐶𝐷𝐶𝑊 𝑑𝑤

+
[

0 0
0 1

]

⊗

(𝐶𝐷
∑

𝑖=1

((

𝐞𝑖,𝐶𝐷 ⊗ 𝟏𝐶𝐷
)

⊗ 𝐈𝐶𝑊 ⊗ 𝐃𝟐𝑖 ⊗ 𝐈𝑤
)

)

,

𝑋 ≤ 𝑋̄,

𝐐̃𝑋,𝑋+1(𝛹 ) =
[

1 0
0 0

]

⊗ 𝟎𝐶𝐷𝐶𝑊 𝑑𝑤,𝐶𝐷𝐶𝑊 𝑑𝑤

+
[

0 1
0 0

]

⊗ 𝟎𝐶𝐷𝐶𝑊 𝑑𝑤,𝐶𝐷𝐶𝑊 𝑑𝑤

+
[

0 0
1 0

]

⊗
𝐶𝐷
∑

𝑖1=1

𝐶𝑊
∑

𝑗1=1

𝐶𝐷
∑

𝑖2=1

𝐶𝑊
∑

𝑗2=1

(

1 − 𝜓𝑋+1,𝑖2 ,𝑗2

)

𝐉𝑖1𝑗1 ,𝑖2𝑗2 ,𝐶𝐷𝐶𝑊

⊗
(

𝛿{𝑖1=𝑖2}𝐈𝑑 ⊗𝐖𝟏𝑗2
)

+
[

0 0
0 1

]

⊗
𝐶𝐷
∑

𝑖1=1

𝐶𝑊
∑

𝑗1=1

𝐶𝐷
∑

𝑖2=1

𝐶𝑊
∑

𝑗2=1
𝜓𝑋+1,𝑖2 ,𝑗2𝐉𝑖1𝑗1 ,𝑖2𝑗2 ,𝐶𝐷𝐶𝑊

⊗
(

𝛿{𝑖1=𝑖2}𝐈𝑑 ⊗𝐖𝟏𝑗2
)

, 𝑋 < 𝑋̄.

Then, the boundary transitions denoted by 𝐁̃0,0 (𝛹 ) can be derived
by Eqs. (72). In addition, 𝐁0

0,0,𝐁
𝑘
0,0 can be calculated accordingly using

Eqs. (73)–(74).

𝐁̃0,0 (𝛹 )

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐐̃𝑋̄,𝑋̄ (𝛹 ) 𝐐̃𝑋̄,𝑋̄−1 (𝛹 )
𝐐̃𝑋̄−1,𝑋̄ (𝛹 ) 𝐐̃𝑋̄−1,𝑋̄−1 (𝛹 ) 𝐐̃𝑋̄−1,𝑋̄−2 (𝛹 )

𝐐̃𝑋̄−2,𝑋̄−1 (𝛹 ) 𝐐̃𝑋̄−2,𝑋̄−2 (𝛹 ) 𝐐̃𝑋̄−2,𝑋̄−3 (𝛹 )
⋱ ⋱ ⋱

𝐐̃0,1 (𝛹 ) 𝐐̃0,0 (𝛹 ) 𝐐̃0,−1 (𝛹 )
𝐐̃−1,0 (𝛹 ) 𝐐̃−1,−1 (𝛹 )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(72)

𝐁0
0,0 = 𝐁̃0,0 (𝛹 ) , 𝜓𝑋,𝑖,𝑗 = 0 ∶ 1 ≤ 𝑖 ≤ 𝐶𝐷, 1 ≤ 𝑗 ≤ 𝐶𝑊 , 0 ≤ 𝑋 < 𝑋̄ (73)

𝐁𝑘0,0 = 𝐁̃0,0 (𝛹 ) − 𝐁0
0,0,

𝜓𝑋,𝑖,𝑗 = 𝛿{𝑓 (𝑋,𝑖,𝑗)=𝑘} ∶ 1 ≤ 𝑖 ≤ 𝐶𝐷, 1 ≤ 𝑗 ≤ 𝐶𝑊 , 0 ≤ 𝑋 < 𝑋̄
(74)

Given this representation, in terms of the general formulation, 𝑛 =
2𝐶𝐷𝐶𝑊 𝑑𝑤 and 𝑚 = 𝑛(𝑋̄+2) and 𝐾 = 𝐶𝐷𝐶𝑊 𝑋̄ and 𝐄 has 𝐶𝐷𝐶𝑊 𝑋̄ rows.
Hence, the final formulation has 2𝐶𝐷𝐶𝑊 (1 + (2 + 𝑋̄)(1 + 2𝐶𝐷𝐶𝑊 𝑋̄))𝑑𝑤
continuous and 𝐶𝐷𝐶𝑊 𝑋̄ binary variables and 1+𝐶𝐷𝐶𝑊 (𝑋̄+2(3+𝑋̄(1+
4𝐶𝐷𝐶𝑊 (2 + 𝑋̄)))𝑑𝑤) constraints. However, in practice, as 𝑋̄ increases,
𝐁𝑘0,0 matrices become more sparse, and as a result, a considerable
number of the continuous variables and constraints can be eliminated
prior to solving the problem using the respective big-M values (The
big-M values for the redundant variables will be zero).

Appendix B. Discrete event simulation algorithm for evaluating
the system performance for given traces

Algorithm 1 generates the inventory process of a system controlled
with marking-dependent threshold policy. In this pseudo-code, 𝑥 rep-
resents variable 𝑥’s value at the current time 𝑇 , and 𝑥𝑒 represents the
value of 𝑥 immediately after event 𝑒. Once the inventory process for a
threshold matrix 𝑆 has been calculated, it can be used for evaluating
𝑆 + 𝑥𝟏𝐶𝐷 ,𝐶𝑊 by adding 𝑥 to 𝑃𝑒.

The algorithm starts with initializing the variables in line 1. Then
one arrival event is placed in the future event list (FEL) in line 2. Then,
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while FEL is not empty, the earliest event, denoted by 𝐸, is identified
in line 5. Then based on the type of this event (d for arrivals and s for
productions), the last observed marking (𝛼 or 𝛽) is updated in lines 7–
8. Then, the current threshold level 𝑆 is set based on the last observed
markings 𝛼 and 𝛽 in line 9. After the current threshold level is set, the
effect of event 𝐸 on the other system variables must be assessed.

If event 𝐸 is an arrival, the inventory level will decrease if the
arrival is an arrival of information and demand. This is expressed in
line 11. After each arrival, the next arrival is scheduled and added to
FEL. This is expressed in line 12. If the inventory level is less than the
current threshold level and the machine is idle, production must start,
meaning a production completion event should be added to FEL and the
machine’s current status WS must become working. This is expressed in
lines 14–15.

Alternatively, if the earliest event 𝐸 is a production completion
event, the inventory level should increase by one, as expressed in
line 19. Then, if the inventory level is less than the current threshold
level, the current machine status WS should remain working and a new
production completion must be scheduled accordingly. Otherwise, the
machine must become idle. Lines 21–24 express these tasks. Finally, the
event that has took place must be erased from FEL. This is expressed
in line 27.

Algorithm 1 DES algorithm

1: 𝑖← 1, 𝑘 ← 1, 𝑒← 1, 𝑇𝑒 ← 0, 𝑋𝑒 ← 0, 𝑒← 𝑒 + 1, WS ← idle, 𝑇 ← 0
2: 𝐹𝐸𝐿←

{(

d, 𝑇 + 𝜏𝑖, 𝛼𝑖, 𝜉𝑖, 𝜙
)}

, 𝑖← 𝑖 + 1

3: 𝛽 ← 1
4: while |𝐹𝐸𝐿| > 0 do
5: 𝐸 ← 𝐸 ∶ 𝐸2 < 𝐸

′

2∀𝐸,𝐸
′ ∈ 𝐹𝐸𝐿

6: 𝑇 ← 𝐸2, 𝑇𝑒 ← 𝑇
7: if 𝐸1 = d then 𝛼 ← 𝐸3 end if
8: if 𝐸1 = s then 𝛽 ← 𝐸5 end if
9: 𝑆 ← 𝑆𝛼,𝛽

10: if 𝐸1 = d then
11: 𝑋𝑒 ← 𝑋𝑒−1 − 𝐸4

12: if 𝑖 ≤ | | then 𝐹𝐸𝐿 ← 𝐹𝐸𝐿∪
{(

d, 𝑇 + 𝜏𝑖, 𝛼𝑖, 𝜉𝑖, 𝜙
)}

, 𝑖← 𝑖+1
end if

13: if WS = idle, 𝑋𝑒 < 𝑆 then
14: WS ← working
15: if 𝑘 ≤ | | then 𝐹𝐸𝐿 ← 𝐹𝐸𝐿 ∪

{(

s, 𝑇 + 𝑔𝑘, 𝜙, 𝜙, 𝛽𝑘
)}

,
𝑘 ← 𝑘 + 1 end if

16: end if
17: end if
18: if 𝐸1 = s then
19: 𝑋𝑒 ← 𝑋𝑒−1 + 1
20: if 𝑋𝑒 < 𝑆 then
21: WS ← working
22: if 𝑘 ≤ | | then 𝐹𝐸𝐿 ← 𝐹𝐸𝐿 ∪

{(

s, 𝑇 + 𝑔𝑘, 𝜙, 𝜙, 𝛽𝑘
)}

,
𝑘 ← 𝑘 + 1 end if

23: else
24: WS ← idle
25: end if
26: end if
27: 𝐹𝐸𝐿 ← 𝐹𝐸𝐿∖𝐸
28: 𝑒 ← 𝑒 + 1
29: end while
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