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ARTICLE INFO ABSTRACT

Keywords: We consider the production control problem of a production-inventory system with correlated demand
Production systems inter-arrival and processing times that are modeled as Markovian Arrival Processes. The control problem
State-dependent threshold policies is minimizing the expected average cost of the system in the steady-state by controlling when to produce

Correlated demand arrival
Correlated service process
Markovian arrival processes

an available part. We prove that the optimal control policy is the state-dependent threshold policy. We
evaluate the performance of the system controlled by the state-dependent threshold policy by using the Matrix
Geometric method. We determine the optimal threshold levels of the system by using policy iteration. We then
investigate how the autocorrelation of the arrival and service processes impact the performance of the system.
Finally, we compare the performance of the optimal policy with 3 benchmark policies: a state-dependent
policy that uses the distribution of the inter-event times but assumes i.i.d.inter-event times, a single-threshold
policy that uses both the distribution and also the autocorrelation, and a single-threshold policy that uses
the distribution of the inter-event times but assumes they are not correlated. Our analysis demonstrates
that ignoring autocorrelation in setting the parameters of the production policy causes significant errors in
the expected inventory and backlog costs. A single-threshold policy that sets the threshold based on the
distribution and also the autocorrelation performs satisfactorily for systems with negative autocorrelation.
However, ignoring positive correlation yields high errors for the total cost. Our study shows that an effective
production control policy must take correlations in service and demand processes into account.

1. Introduction and inter-event times. The simulation and analytical studies also show

negative dependence among the inter-departure times of the products

Controlling production systems to match supply and demand in an leaving a production line (Hendricks and McClain, 1993; Tan and
uncertain environment received considerable attention in the manu- Lagershausen, 2017; Manafzadeh Dizbin and Tan, 2019).

facturing systems literature. Control policies such as the Control-Point Complicated processing tasks such as batch processing, parallel

Policy, Generalized Kanban Policy, and Base-Stock Policy are suggested processing, and merging may create high dependence between the

to control the material flow in a production system, e.g., Gershwin
(2000), Duri et al. (2000) and Liberopoulos and Dallery (2000) among
others.

The analytical models that evaluate the performance of production
systems controlled to match supply and demand usually model the
demand inter-arrival and processing times as independent random vari-
ables. As a result, dependence among the inter-arrival and processing
times is not often taken into account. However, autocorrelation can be
observed in processing, inter-arrival and inter-departure times. Fig. 1
depicts the empirical distributions and autocorrelations of the process-

processing times of the products. Moreover, dispatching rules and the
production network for different products yield dependence among
the inter-arrival times observed at different stations. Correlated inter-
arrival and processing times then result in a correlated output process.
The correlated output process creates the arrival process at other stages
of the production and causes further dependence among inter-departure
times.

Ignoring dependence among inter-event times has been one of the
shortcoming of the classical queuing theory in analyzing manufacturing

ing, inter-arrival, and inter-departure times of certain equipment at the systems (Shanthikumar et al., 2007). Although the optimal inventory
Robert Bosch semiconductor manufacturing plant. Schomig and Mittler control policies with independent and identically distributed (i.i.d.)
(1995) and Inman (1999) also report dependence in observed cycle inter-event times have been investigated thoroughly in the literature,
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Fig. 1. Empirical distribution and dependence of the processing, inter-arrival, and inter-departure times of a specific equipment at a semiconductor manufacturing plant.

the optimal production control policies of production systems with
correlated inter-event times have not been studied. The objective of
this paper is to fill this gap by deriving the optimal control policy
of a manufacturing system with correlated inter-arrival and processing
times and analyzing the effects of correlation on the production control.

The control problem studied in this paper is minimizing the ex-
pected holding and backlog costs of a production-inventory system with
correlated processing and demand inter-arrival times that are modeled
as Markovian Arrival Processes (MAP) in the long run. The action
space consists of whether or not to produce depending on the state of
the system. We prove that a manufacturing system with MAP demand
inter-arrivals and MAP processing times can be controlled optimally by
using a state-dependent threshold policy. We use a matrix-geometric
method to evaluate the performance of a production-inventory system
controlled by the state-dependent threshold policy. We determine the
optimal threshold levels by using a policy iteration method. We then
evaluate the impact of positive and negative autocorrelations in inter-
arrival and processing times. In addition, we compare the performance
of the optimal policy in controlling a system with 3 benchmark pro-
duction policies: a state-dependent policy that uses the distribution but
assumes i.i.d. inter-event times, a single-threshold policy that uses both
the distribution and also the autocorrelation, and a single-threshold
policy that uses the distribution but assumes i.i.d. inter-event times.

We consider proving the optimal control policy of a production-
inventory system with correlated inter-arrival and processing times
that are modeled as MAPs, proposing the Matrix Geometric method to
evaluate the performance of the system when it is controlled optimally,
and investigating the impact of autocorrelation among the inter-event
times on the performance of a production-inventory system as the main
contributions of this paper.

The structure of the paper is as follows. The literature related to
the optimal control of production and queuing-inventory systems is
reviewed in Section 2. In Section 3, the problem is defined and it is
proven that the state-dependent threshold policy is the optimal control
policy. The Matrix Geometric method to evaluate the performance

of the system for given thresholds and the policy iteration approach
used to determine the optimal thresholds are presented in Section 4.
Section 5 evaluates the impact of positive and negative autocorrelation
in demand inter-arrival and processing times on the performance of
the state-dependent threshold policy and compares the performance
of the benchmark policies with the optimal policy. Finally, Section 6
concludes the paper and discusses future research directions.

2. Literature review

We discuss the pertinent literature in three related areas. The first
area is related to the papers that investigate the optimal control pol-
icy of inventory systems with correlated demand-arrivals where the
demand is modeled as a Markov-modulated process. The second area
is related to the papers that study the optimal control of production
systems. Finally, the third area is related to the papers that evaluate the
performance of queuing-inventory systems by using matrix-geometric
methods.

2.1. Optimal control of inventory systems

In this section, we cover the inventory control literature that uses
models where the demand is modeled as Markov-modulated (MM)
processes. The optimal inventory control policy for these models is
proven to be state-dependent base-stock or (s, .S) policies under differ-
ent assumptions about the cost criterion, lead time, timing horizon, and
production capacity. Accordingly, an order of an appropriate quantity
is triggered when the inventory position is below a given threshold.

Song and Zipkin (1993) investigate the optimality of state-dependent
base-stock and (s,.S) policies for an inventory system under continu-
ous review with Markov-modulated Poisson Process (MMPP) demand
process, and fixed ordering costs over finite and infinite horizon. They
show that the state-dependent base-stock policy is optimal when there
is no fixed cost and the state-dependent (s,.S) policy is optimal when
there is a fixed cost. Song and Zipkin (1996a) evaluate the steady-state
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performance measures of multi-echelon systems with MMPP demand
and state-independent base-stock policies in multi-echelon inventory
systems. Song and Zipkin (1996b) evaluate the performance mea-
sures of a two-echelon inventory system with MMPP demand where
the first (second) stage is controlled by a state-independent (depen-
dent) base-stock policy. Bayraktar and Ludkovski (2010) consider
a continuous-time model for inventory management with Markov-
modulated non-stationary demand where the state of the modulating
processes is unobserved. They prove the optimality of a time-and-belief-
dependent (s, .S) strategy and develop a numerical method to calculate
the optimal policy. Nasr and Maddah (2015) consider a continuous
inventory replenishment system with a MMPP demand process.

Sethi and Cheng (1997) consider a discrete-time model with non-
stationary demand and no lead time and investigate the optimality
of (s,S) policies for finite and infinite horizon and non-stationary
systems. Beyer and Sethi (1997) consider a system with convex surplus
cost and prove that the (s, S) model with MMPP demand and average
cost criterion minimizes the inventory cost. Ozekici and Parlar (1999)
consider a model involving random variations in supply and prove
the optimality of the state-dependent base-stock policies and state-
dependent (s,.5) type policies with and without fixed setup costs.
The optimality of the (s,.S) policy is generalized to systems involving
general costs (Beyer et al.,, 1998), and lost sales (Cheng and Sethi,
1999). Chen and Song (2001) show the optimality of the state de-
pendent base-stock policies for serial systems with Markov modulated
demand and deterministic lead time under a finite and infinite hori-
zon and average cost criterion. Muharremoglu and Tsitsiklis (2008)
study a multi-echelon inventory system with Markov-modulated de-
mand under periodic review and propose a single item-single customer
approach to prove the optimality of state-dependent base-stock poli-
cies. Janakiraman and Muckstadt (2009) utilize the method developed
in Muharremoglu and Tsitsiklis (2008) to demonstrate the optimality of
the state dependent base-stock policies in a two-echelon serial system
with identical ordering/production capacities. Hu et al. (2016) study
a class of periodic review (s,.S) inventory systems with a Markov-
modulated demand process. They develop an algorithm to calculate the
moments of the inventory level.

The main objective in these studies is determining the amount of
inventory to be shipped to the next level of supply chain where the
inventory is supplied exogenously without any capacity restrictions.
One of the main assumptions of the infinite-capacity problems is the
independence between lead times of the products shipped between two
consecutive echelons of the supply chain. As a result, orders given
at different times can pass each other. This property is crucial in
proving the optimal policy. Hence, the researchers that study the finite
capacity problems in an inventory control setting usually model the
lead time as deterministic or consider a finite time horizon to deal
with this problem. The main difference in our study is considering
the optimal production control problem of a finite-capacity producer
that has correlated processing times and meets a demand stream with
correlated inter-arrival times.

2.2. Optimal control of production systems

The second stream of the literature is related to the studies that
consider the optimal control of production systems. These studies use
models with discrete or continuous flow of materials. It is shown that
threshold-type policies that are referred as the base-stock policies for
the models with discrete material flow and the hedging-type policies
for the models with continuous material flow are optimal. Accordingly,
production is allowed when the inventory level is below a threshold
determined for the given state.

For a system with discrete material flow, Veatch and Wein (1994)
study a make-to-stock manufacturing system with an exogenous Pois-
son demand and two stations. Each station is modeled as a queue
with controllable production rate and exponential service times. The
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objective of the study is to control the production rates to minimize
the inventory holding and backordering costs. Berman and Kim (2001)
consider the dynamic replenishment of parts in a supply chain with
single class of customers where parts are procured by a supplier with
an Erlang processing distribution. They assume Poisson customer ar-
rivals and exponential processing times and model the problem as a
Markov decision process. They show that the optimal ordering policy
that minimizes the customer waiting, inventory holding, and order
replenishment costs has a monotonic threshold structure. He et al.
(2002) examine several inventory replenishment policies for a make-to-
order production-inventory system with Poisson demand-arrival. They
derive the optimal replenishment policy, which minimizes the av-
erage total cost per product of the warehouse. de Véricourt et al.
(2002) consider a capacitated supply system with a single product
and several classes of customers where each customer class has a
different backorder cost. They study the optimal allocation policy of
products and show the optimality of a threshold policy. Karabag and
Tan (2019) analyze the purchasing, production, and sales policies for a
continuous-review discrete material production-inventory system with
exponentially distributed demand inter-arrival, and processing times.
They show that the optimal purchasing, production, and sales strategies
are state-dependent threshold policies.

For a system with continuous material flow and constant demand
for a single product, Sharifnia (1988) study the production control of
a manufacturing system with arbitrary number of machine states. He
shows that the optimal production policy that minimizes the average in-
ventory and backlog costs of the system is the hedging-point policy. Tan
(2002) considers a manufacturing system with two-state Markov mod-
ulated demand, uncertain repair and failure times and continuous
material. He shows that the optimal production flow control policy that
minimizes the expected average inventory holding and backlog costs is
a double-hedging policy. Gurkan et al. (2007) use simulation-based op-
timization to determine the threshold levels of a production-inventory
system where stochasticity in the system is modeled using semi-Markov
processes. Gershwin et al. (2009) consider a manufacturing system
with deterministic production time and stochastic Markov modulated
demand. They show that the hedging point is the optimal control policy
of the system. Tan (2018) study the optimal production flow control
problem of a make-to-stock manufacturing system with price, cost, and
demand uncertainty. He models the stochastic dynamics of the system
with a time-homogeneous Markov chains and shows that the optimal
production policy is a state-dependent hedging policy.

All of these models assume deterministic or i.i.d. demand inter-
arrival and service times and do not consider correlation explicitly.
Most of the studies further assume that the inter-event times are
exponentially distributed random variables. Our study differs from the
production control literature in that we analyze a discrete material-
flow continuous-time production-inventory system with correlated de-
mand inter-arrival and service times modeled as Markovian Arrival
Processes.

2.3. Matrix-geometric methods

We now focus on the literature that utilize the matrix-geometric
methods for performance evaluation of the queuing-inventory sys-
tem. He and Jewkes (2000) use the matrix-analytic methods to evaluate
the performance of a make-to-order production-inventory system with
Poisson arrivals and exponential processing times. Manuel et al. (2007,
2008) study a perishable (s,.S) inventory system under continuous
review with a finite buffer and a single server. They consider two types
of customers arrivals modeled as a MAP and service process with phase-
type distribution. They evaluate the joint probability distributions of
the number of customers in the system and the inventory level in
the steady state. Zhao and Lian (2011) consider a queuing-inventory
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system with Poisson demand arrival, exponential processing times and
(r, Q) replenishment policy. Their objective is minimizing the long-run
expected waiting cost. They formulate the problem as a level-dependent
Quasi-Birth-and-Death process and investigate the control of such a
process. Liu et al. (2014) investigate a Markovian inventory system
with two classes of demands, replenishment policy, and a flexible
service discipline. They derive the steady state probability distribution
of the inventory levels by using Markovian processes, and adopt a
mix integer optimization model to find the optimal inventory control
levels. Jiang et al. (2015) consider a two-echelon queuing-inventory
system with a demand process that follows a compound Poisson pro-
cess, a two-echelon inventory system consisting of a central warehouse
and several sub-warehouses. They propose an algorithm for minimizing
the mean total cost of the inventory system. Xia et al. (2017) study the
service rate control problem of the MAP/M/1 queue. They evaluate the
impact of service rates on the long-run average total cost of the system
and show the optimality of quasi-threshold-type policy under some
conditions. Manafzadeh Dizbin and Tan (2019) study a production-
inventory control system with correlated service and processing times
controlled with a single base-stock level that is not the optimal policy
for this system. They evaluate the performance of the models with the
Matrix Geometric method and evaluate the effect of autocorrelation on
the performance when the system is controlled with this sub-optimal
policy.

These studies that use the matrix-geometrics methods in the litera-
ture focus on the performance evaluation of queuing-inventory systems
under a given production policy where arrival and service processes are
modeled usually as independent distributions. Our study differs from
this stream of the literature in that we derive the optimal control policy
and use the Matrix Geometric method to determine the performance
measures of a system with correlated demand-arrival and processing
times.

3. Model

We consider a single machine with an unlimited buffer where the
raw material is supplied from an unlimited stock with zero lead-time.
An arriving demand to the system is satisfied immediately, if there is
enough inventory in the buffer to meet the demand. Otherwise, the
demand is backlogged. Since backlog is allowed, all demand is satisfied
eventually according to the first-come-first-served (FIFO) rule. The
difference between the cumulative production and demand is referred
as the inventory position and denoted by X(¢). The on-hand inventory
is X*(t) = max{X(#),0} and the backlogged demand level is X~ (1) =
max{—X(¢),0}.

The cost structure of the system consists of the holding and backlog
costs. The holding cost is 4 per unit per unit of time, and the backlog
cost is b per unit per unit of time. The cost function at any time ¢ is a
function of X (r) and given as

bX—(n, if X <0,
C(X@®) = 1
X {hX*(t), if X(r) >0, W

The demand inter-arrival times and processing times are modeled
as discrete state-space and continuous-time processes. The state of the
demand arrival process is denoted with j, € J,. The state of the
production time process, also referred as the service process, is denoted
with j; € J,. At any given time, the demand arrival process can be in
one of m, = |J,| discrete states and the service process can be in one
of m; = |J,| states. When the machine is available, it may or may not
start producing a new part depending on the control policy.

We assume that the system is continuously reviewed, and the state
of the system is fully observed at any time ¢. The state of the system is
fully specified by the inventory position and the states of the demand
arrival and service processes.
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3.1. Production control problem

The main goal of the production control problem is to determine
the production policy /7 that minimizes the long run average cost of
the system in the steady state by deciding on whether to produce or
continue to producing (u = 1) or not (v = 0) depending on the state
of the system (X, j,, j;). The average cost of this system in steady state
under policy IT can be written as Eq. (2).

T
vI(X,j,.j)=E" [Tlim %/ C(X®IX©0) =0,J0) = (%) dt|.
—00 0 h

@

Then the objective of the problem is to identify the optimal policy IT*
defined as

T = sup V(X jg. j)- 3)
)is

3.2. Demand inter-arrival and processing times

In order to capture the autocorrelation in inter-event times, the
demand inter-arrival and processing time processes are modeled as
Markov Arrival Processes. MAPs are generalization of phase-type (Ph)
distributions (Neuts, 1979). MAPs contain most of the commonly used
arrival processes such as Erlang processes, Coxian distributions and
Markov-modulated Poisson processes as subclasses. MAPs can approx-
imate a given inter-event process arbitrarily close enough (Asmussen
and Koole, 1993). MAPs are used commonly in the telecommunica-
tions literature to model positively correlated inter-arrivals (Buchholz
et al., 2014). MAPs can also be used in modeling negatively correlated
arrivals in manufacturing systems (Hendricks and McClain, 1993; Man-
afzadeh Dizbin and Tan, 2019). Manafzadeh Dizbin and Tan (2019)
review various algorithms to construct a MAP by using the observed
inter-event time data.

A MAP consists of two different sub-processes each of which has a
discrete state space referred as phases. The MAP of the demand inter-
arrival time is denoted as MAP(D,, D,). The non-diagonal elements
of matrix D, include the transition rates between the phases that
do not generate a demand arrival. The diagonal elements of the D,
correspond to the rates of the exponentially distributed sojourn times
in corresponding states. The elements of D, capture the transition rates
that generate a demand arrival.

A MAP can be interpreted as a continuous-time Markov-chain with
the generator matrix D = Dy+ D, and | D| states. The joint probability
density function of the consecutive inter-arrival times 7;, i = 0,1, ..., of
the MAP(D,, D,) is written as:

VG STOPN 9]
= pexpP0't D expP02 D, ... expP'k D\ 1, for 1, > 0,i € {1,....k} (4)

where f is the solution of f(—D,y)~!D; =  and 1 = 1 and 1 is a vector
of ones with an appropriate size. # can be interpreted as the probability
distribution of the phases immediately after an arrival.

The nth moment of T, E[T"] is calculated from the matrix D, as:

E[T"] = n!f (-Dy) " L. 5)

Accordingly, the expected value and the variance of T, E[T'] and Var[T]
are

E[T]=-p(Dp) 1,
Var(T) = 2pD;1 - (pD;'1)°.

The squared coefficient of variation of the inter-event times is scv =
Var(T)/E*[T). The covariance of Ty and T}, Cov (Tp, T}) is also deter-
mined from the matrices D, and D, as

Cov (T, Ty) = E (TyT,) — E(T)
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1

B(-Dy)" k -
=E(T)(—0)71 (=D 'Dy)" (=Dy) ' 1 —ET?. (6)
B (=Dy)
The kth-lag autocorrelation coefficient p, is defined as
_ Cov(Ty. Ty)
b= TYanm) 2

The production time is denoted with T, with mean E[T}], variance
Var[T,] and the squared coefficient of scv;. The MAP of the production
time process is denoted as MAP(A(, A;) and the matrices A, and A4,
are defined similar to the definition of D, and D,. Let the infinitesimal
generator of the underlying Markov chain matrix of the production
process be A = Aj; + A,. Then, the state transition of the system is
governed by the underlying Markov chain that has an infinitesimal
generator M = D@ A (@ is the Kronecker sum) with a finite state space
J = J,xJ,. The underlying Markov chain consists of m = |[M| = m, xm;
states and the state of the underlying process is (j,. j)-

3.3. Structure of the optimal control policy

In order to identify the optimal control policy that determines
whether to produce or continue to produce or not depending on the
state of the system (X, j,, j,), we discretize the continuous-time Markov
process by using the uniformization technique and write the Bellman
optimality equation of this system as

C(X
V(X ji) g = S

+ Y PoUa DV X )+ Yy Pl VX =1, ) +

j€J, J€Jq
0 u=0
mind 2 RoGe /WX N+ Y RiGIWX +1)0i) (g
Jj'edy J'edy
VX, jaJs) u=1,

where g is the optimal average cost of the system over an infinite hori-
zon and V (X, j,, j,) is the differential cost of being in state (X, j,, j,), the
matrices Py, R, P;, and R, capture transitions related to events without
and with the demand-arrival and service completion. The probability
transition matrices of the arrival and service processes are written as

1
Py=—-Dy+1,,
0 a 0 mg

P, = =Dy,
1 al
1
Ry= -Ag+1,,
0 aO m
R,:lA] ©)]
o

where @ > max; (-M(i,)) is the uniformization constant, /,, and I,,
are identity matrices of the size m, and m_, respectively. '

Our main result given in Theorem 1 proves that the state-dependent
threshold policy is the optimal policy to control this system.

Theorem 1. A state-dependent threshold policy is the optimal control
policy of a production system with correlated demand-arrival and processing
times modeled as MAP. According to the state-dependent threshold policy,
described with the binary variable u(x, j,. j,), the state of the modulating
Markov process (j,, j,) and the inventory level determine whether to start,
stop, or continue the production. That is, when the optimal policy is used,
the production starts or continues (u(x,j,,j,) = 1) if the state of the
modulating Markov process is (j,, j,) and the inventory level (X) is less
than the threshold-level associated with the state (j,, j,) denoted as Z(j,. j,)-
Similarly, the production stops (u(x, j,.j;) = 0) if the inventory level is
greater than or equal to Z(j,, j,). The policy can be stated as follows:

o L, ifx<Z(@j)X=x
u(x, jg» jg) =

(10)
0, otherwise.
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Proof. Given in Appendix.

Let the states of the Markov-modulating process be indexed from 1
to m. The state-dependent threshold policy is determined by the vector
of the thresholds denoted by Z = (Z™, z(m=D, 7@ 71y where z(
is the (m — i + 1)th biggest threshold level. The states of the Markov-
modulating process are ordered according to the ordering of Z. Since
the steady-state performance of the system depends on the selection
of these thresholds, the optimal policy is determined by selecting the
optimal thresholds.

Fig. 2 shows the evolution of the inventory position, the shortfall,
the state of the arrival process, and the control policy of a production-
inventory system with a two-state MAP inter-arrival and exponential
service times controlled by the state-dependent threshold policy. The
threshold levels corresponding to state 2 and 1 are set to (Z®, Zz()) =
(10,5). Depending on the state of the arrival process, we stop the pro-
duction if the inventory position is equal to or above the corresponding
threshold level.

4. A matrix geometric approach to evaluate the steady-state per-
formance of the system

In this section, we present the Matrix Geometric approach to eval-
uate the performance of a system controlled by the optimal state-
dependent threshold policy given in Theorem 1. We first present a
method to generate the infinitesimal generator matrix of a production
system controlled with the given thresholds of the state-dependent
threshold policy, denoted by Q. We then discuss how to determine the
steady-state probabilities by using the Matrix Geometric approach.

4.1. The steady-state probability distribution

In order to capture the dynamics of the system, we focus on the
shortfall from the largest threshold. The shortfall level k is equivalent
to the inventory position Z —k as shown in Fig. 2 for the specific case.
The steady-state probability of being in state (Z"™ —k, j,, j,) is denoted
as n(k,j, js). The steady-state probability vector =, = {x(k,j,, j,)},
Ja € I, Jjs € J, contains the probabilities at the shortfall level k. The
probabilities in 7, are ordered according to the ordering of states in the
underlying Markov chain of the system.

The steady-state probability distribution is given by the vector = =
{m}, k = 0,1,.... The steady-state probabilities satisfy zQ = 0 and
#1 = 1. Therefore, once the infinitesimal generator matrix of the system
is constructed, the steady-state probabilities can be calculated, and
the performance of the system can be evaluated from the steady-state
probability distribution.

4.2. Infinitesimal generator matrix

The generator matrix Q is determined by the submatrices that
are associated with three types of events: demand arrival, production
completion, or an event that does not change the inventory position for
each level of the inventory position.

The submatrix that captures transitions associated with demand
arrivals is referred as, the forward matrix. The state transition rates of
the arrival and production process without a demand arrival or service
completion are captured in the local matrix. Finally, the backward
matrix captures the transition rates related to service completion. The
forward, local, and backward matrices at the shortfall level k are
denoted by F,, L,, and B, respectively. Accordingly, the infinitesimal
generator matrix has the following block tri-diagonal form:

Ly, F
B, L F

B, L, F an

B, Ly Fy
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Fig. 2. Production-Inventory System with MAP Inter-Arrivals with Two States and Exponential Service Times Controlled by the State-Dependent Threshold Policy ((Z®, Z") = (10, 5),

E[T]=1.1250, scv = 1.5, p; =0.15, E[T,] = 1).

The submatrices Fy, L,, and B, are determined by the matrices that de-
scribe the demand arrival and service MAPs and also by the production
policy.

The transition rates related to demand arrivals are given in the D,
matrix of the demand arrival MAP. Therefore, the forward matrix F,
that includes the transitions that increases the shortfall (decreases the
inventory position) by one unit is completely determined by the D,
matrix:

F=D®I,. (12)

On the other hand, the shortfall decreases by one unit after a production
completion. The production decision is authorized by the production
policy at each decision epoch. The state-dependent threshold policy
described in Eq. (10) makes production authorization decisions based
on the inventory position and the threshold levels. Let U, be a diagonal
matrix of size m x m at the shortfall level k that authorizes the
production for each state. Let m,..., 1 be the states of the underlying
Markov process corresponding to states with the threshold levels of
zm, ..., ZzW, U, is defined as

v U+,
Yoo,

where U® is a diagonal matrix of the size U,. The (j, j) element of U®
corresponds to the control decision of state m — j + 1 as given below:

if Zm — 7O > k> zm _ z0+) j=1 . m-1

if k> zm -z 13

. 1, ifi<sm—j+1<
v, j) = Cremed "ot m
0, ifl<m—j+1<i-1,

The backward matrix is determined by A, matrix of the production
time matrix and also the production authorization matrix U, as

14)

B, =U, (Ima ® A4, ) . (15)

Similarly, the local matrices for the transition rates of the events that
do not change the inventory position are given as
L= Do®1, + Uy (1, ® ). 16)
Ly=Dy®]I, . a7)

The production authorization matrix appears in the definition of the
local matrix L, given in Eq. (16) in order to make the transition matrix

a valid infinitesimal generator and ensure that the transition rates are
zero in the states where production is not authorized.

4.3. Determining the performance measures

For given thresholds, the production policy imposed by these thresh-
olds is implemented by defining the production authorization matrix
U, in Eq. (13). Then the generator matrix Q for the given thresholds is
constructed by determining the forward, backward, and local matrices
as given in Egs. (12), (15), (16), and (17).

In order to compute the steady-state probability distribution, the
inventory position that can take values between Z and —co can be
truncated at a lower bound K*. In this case, the size of the generator
matrix will be (Z0" + K*)m x (Z™ + K*)m. In principle, the steady-
state probabilities = can be determined by solving #Q =0 and =1 = 1.
However, this approach can be computationally demanding if (Z™ +
K*)m is large.

Alternatively, the tri-diagonal structure of the generator matrix can
be exploited to determine = more efficiently. Equations zQ = 0 and
x1 = 1 can be rewritten by using the tri-diagonal structure. Accord-
ingly, the steady-state probabilities 7z, satisfy the following equations:

gLy +m B, =0 18)
m Fy +m Ly +m0Biin =0, k=0,1,... (19)
o
Y m=1 (20)
x=0

The equations for the forward, backward, and local matrices given
in Egs. (12), (15), (16), and (17) show that the forward matrix remains
constant at each level. However, the backward and local matrices differ
depending on the inventory position and the state of the underly-
ing Markov chain. This structure is equivalent to the structure of a
level-dependent Quasi Birth and Death (LDQBD) process.

There are efficient methods developed for the analysis of LDQBD
processes. We determine the steady-state probabilities of this pro-
cess by using the Matrix Geometric method developed for LDQBD
processes (Bright and Taylor, 1995; Baumann and Sandmann, 2010).

Once the steady-state probabilities are obtained, the performance
measures of the system are then calculated by using the steady-state
probability distribution for the given threshold vector Z used in the
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threshold-based production policy. As functions of Z, the expected in-
ventory level, X*(Z), the expected backlog level, X=(Z), the probability
of not having inventory in the system, Py(Z), and the total cost, TC(Z)
are given as:

Zm_1
X2y = Y (2™ -kmd,
k=0
(s
X (Z) = Z (k= Z"™)m, 1,
k=Z(m 41
P(2)= ) =l
x=2(M+1
TC(Z) = bX™(Z) + hX*(2). @D

4.4. Determining the optimal state-dependent threshold levels

The performance measures given in Eq. (21) are obtained for given
thresholds. In order to determine the optimal thresholds that minimize
the total cost, an effective search method is needed. We use the policy
iteration algorithm (Bertsekas, 2005) to determine the optimal thresh-
old levels of the state-dependent threshold policy. The policy iteration
works with a finite Markov Decision Process (MDP) and a finite number
of policies, and guarantees that an optimal policy and optimal value
function are determined in a finite number of iterations.

We generate the initial MDP by truncating the inventory level
between a maximum threshold level of the state-dependent threshold
policy and a lower level of the inventory position. An appropriate
level of the lower bound K* is set to accumulate the probabilities of
being in levels lower than K* into level K* by using the approach
given in Heindl et al. (2004). Then at each iteration, the transition
probabilities of the system are determined by using the block matrices
given in Eq. (11). Once the finite-size generator matrix is determined in
this way, at each iteration of the algorithm, the steady-state probabil-
ities and the total cost are calculated by using the methodology given
in Section 4.3 for the given thresholds. The algorithm is initialized
by setting the state-dependent threshold levels equal to the optimal
single-threshold level. The new policies are generated by implementing
policy improvement. This results in increasing or decreasing the state-
dependent threshold levels compared to the previous iteration. The
policy improvement iterations are continued until the cost cannot be
improved further.

The steady-state probabilities of the system controlled by the op-
timal policy obtained from the policy iteration are calculated and
the performance measures for the system controlled with the opti-
mal thresholds are obtained by using Eq. (21) with these steady-state
probabilities.

5. Numerical experiments

In this section, we analyze the effect of autocorrelation in inter-
arrival and processing times on the performance of a production sys-
tem controlled by the state-dependent threshold policy. We consider
processes with positive and negative first-lag autocorrelations. Our
objectives in these experiments are two-fold: investigating the impact
of positive and negative autocorrelation on the optimal performance
and also comparing the optimal performance with the benchmark
production policies.

5.1. Experimental setup

5.1.1. Benchmark production control policies

We use three sub-optimal production control policies as benchmarks
to compare the performance of the optimal policy. The first benchmark
policy, referred as Multiple-Threshold No Autocorrelation (MTNA),
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uses a state-dependent threshold policy where the thresholds are deter-
mined by considering the inter-event time distributions but assuming
that the inter-event times are not correlated. In order to determine
the state-dependent threshold for this case, the correlated inter-event
time is modeled with a MAP with zero autocorrelation (MAP™"). The
thresholds are determined by using the methodology in Section 4.4
and the steady-state probabilities are obtained for the system controlled
with these thresholds.

The second approximation, referred as Single-Threshold With
Autocorrelation (STWA), uses a single-threshold policy where the
single-threshold is set optimally considering the inter-event distribution
and the autocorrelation to represent the inter-event time

Finally, the third approximation, referred as Single-Threshold No
Autocorrelation (STNA), uses a single-threshold policy where the op-
timal value of the single-threshold is determined by considering the
inter-event distribution but assuming that the inter-event times are not
correlated.

These different benchmark policies yield different threshold vectors
to be used by the production policy. The total costs, the expected
inventory levels, the expected backlog levels, and the probability of
not having inventory in the system are determined for each bench-
mark case by evaluating the original system with the correlated inter-
event times when the system is controlled with the thresholds given
by the benchmark cases. These performance measures are compared
with the performance measures obtained by using the optimal state-
dependent threshold policy (Multiple-Threshold With Autocorrelation).
The percentage deviation of the expected inventory, expected backlog,
probability of having no on-hand inventory, and the total cost with
a benchmark policy with respect to these measures obtained with the
optimal policy are denoted with Ay+, Ay, 4p, and Ay respectively.

5.1.2. Demand arrival and production time processes

We consider four different MAPs with high (sco > 1) and low (scv <
1) variability, and positive and negative first-lag autocorrelation in our
analysis. We consider systems with correlated inter-arrivals and expo-
nential processing times (MAP/M/1), Poisson arrivals and correlated
processing times (M/MAP/1), and correlated arrival and processing
times (MAP/MAP/1). This setup allows us to capture the impact of
autocorrelation in demand arrivals or production times separately and
jointly.

The MAP representation, the squared coefficient of variation scv,
and the first-lag autocorrelation of the base MAPs, p, used in the
analysis are given in Table 1. The traffic intensity of the system is
set to be p = 0.8 in all cases. The mean of the inter-event times that
have these MAPs is set to 1. We rescale the mean of inter-event times
of the MAPs (Horvath and Telek, 2017) to generate systems with the
given traffic intensity. This rescaling preserves coefficient of variation
and autocorrelation structure of the original process. It is done by
multiplying the elements of the D, and D, matrices with the ratio of
the original mean and the new mean and normalizing the D, matrix to
make Dy + D, an infinitesimal generator matrix. Normalization is done
by replacing the diagonal element of the new D, matrix by the negative
of the summation of the other elements in a given row.

5.1.3. Generating MAPs with different first-lag autocorrelations

We analyze the impact of autocorrelation on the performance of the
system by generating different MAPs with the same inter-event time
distribution and different magnitudes of autocorrelation and analyzing
the system with these generated MAPs following a similar approach
used in Manafzadeh Dizbin and Tan (2019). The D, matrix of a MAP
with the same distribution and zero autocorrelation denoted by D" is
calculated as

D" = D,1p, (22)

where f is defined in Eq. (4). MAP(D,, qu”) is referred as MAP™",
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Table 1
The MAP representation, squared coefficient of variation, and first-lag autocorrelation of the MAPs employed in numerical analysis.
Process D, D, E[T] scv P
[-1.4968 0 0.0426 [1.4213  0.0329 0
Positively correlated MAP with scv < 1 0.0033 —1.5339 1.4213 0 0 0.1093 1 0.76 0.10
L O 0 —1.5340 10.0533 1.4807 0
—0.4531 0.0395 0.4135 0
Positivel; 1 MAP with s 1 1 1. 1
ositively correlated with scv > 0 —1.2612] [040176 1.2436] 50 0.15
[-15 15 0 0 0 0
Negatively correlated MAP with scv < 1 0 -3 1.5 1.5 0 0 1 0.78 -0.14
| 0 0 -15 1 0 15 0
[-0.5214 05214 0 [0 0 0
Negatively correlated MAP with scv > 1 0 —21.1159 0 13035 0 19.8124 1 2.75 -0.29
0 0 -21.1159 119.5518 0O 1.5641

The first-lag autocorrelation of a MAP is a linear function of the
elements of D, matrix (Horvath et al., 2005). When the first-lag au-
tocorrelation of MAP(D,, D,) is p;, in order to generate MAP(D,,
Di*?) with the same inter-event time distribution but with the first-lag
autocorrelation of 6p, (0 <0 < 1), Dq‘e“’ matrix is constructed as

D% = gD, + (1 —g)D/" (23)

where D" is given in Eq. (22).
5.2. Impact of correlated demand arrival process

In this section, we investigate the impact of positive and negative
autocorrelation in demand inter-arrival times on the performance of a
MAP/M/1 system. In order to focus on the impact of autocorrelation
in demand arrival process, the production times are set to be i.i.d.
exponential random variables.

Tables 2, 3, 4, and 5 show the performance measures when a pro-
duction system with positively or negatively correlated demand arrivals
and exponential service times is controlled with the optimal policy
and their comparisons with the results obtained with the benchmark
policies for the cases when the squared coefficient of variation scv is
less than 1 and greater than 1 respectively. The MAPs used for the
demand arrival processes in these experiments are given in Table 1 and
MAP"™"s are constructed by using the procedure given in Section 5.1.3.

Tables 2, 3, 4, and 5 show that the single-threshold policy that sets
the single threshold based on the demand inter-arrival time distribution
and also autocorrelation (Benchmark policy STWA) performs satisfac-
torily for all cases. The percentage error obtained for the total cost
is 2%-3% for the positively correlated demand arrival cases and less
than 0.1% for the negatively correlated demand arrival cases. How-
ever, when the autocorrelation is not incorporated in the production
policy, as in benchmark policies MTNA and STNA, the percentage
errors increase. These errors are more significant for the positively
correlated demand arrival cases. The effect of ignoring autocorrelation
on the expected inventory and backlog levels are more pronounced. For
example, when the autocorrelation is not incorporated in production
policy, the resulting backlog level is 101% higher than the optimal
backlog level for the positively correlated demand arrival case with
a high squared coefficient of variation (Table 3). Similarly, while
a single-threshold policy that does not incorporate autocorrelation
(STNA) yields 5% error for the total cost for the negatively correlated
demand arrival case with high variability (Table 5), the resulting
inventory level is 40% higher than the optimal inventory level.

The deviations between the results obtained by using the optimal
policy and the benchmark policies are caused by the differences in
the threshold levels set by the optimal and benchmark policies. For
example, for the case with positively correlated demand arrivals with
high variability (Table 3), the optimal policy uses two thresholds
and sets them to (19, 12). A single-threshold policy incorporating the
autocorrelation (STWA) sets the threshold to 16 that is in between the
optimal thresholds. As a result, the percentage errors for the total cost,

the expected backlog, and inventory levels are low (3%, 2%, and 5%
respectively). However, for the positively correlated demand arrival
case, when the autocorrelation is ignored in the production policy,
using a state-dependent policy depending on the distribution of the
demand inter-arrival time (MTNA) or using a single-threshold policy
(STNA) do not yield good results since the thresholds are set far away
from the optimal levels. For the case with negatively correlated demand
arrivals (Tables 4 and 5), the threshold levels set by the benchmark
policies are close to the optimal levels and therefore the percentage
errors are smaller.

As shown in Fig. 3, in a system with positively correlated arrival
process, the biggest optimal state-dependent threshold level set by
the state-dependent threshold policy increases more than the increase
of the optimal state-independent threshold level. This is due to the
positive autocorrelation of demand arrivals that causes a short (long)
inter-arrival time is to be followed by a short (long) inter-arrival time.
Hence, the state-dependent threshold policy increases the biggest opti-
mal state-dependent threshold level, greater than that of the optimal
state-independent threshold level to cope with the variability in the
inter-arrival times. For the negatively correlated demand arrival case,
demand accumulation due to variability is reduced by the arrival
pattern and as a result the errors are lower, and the single-threshold
policy performs well.

Figs. 3 and 4 show the impact of incremental increase in the first-
lag autocorrelation of positively and negatively correlated demand
arrival processes respectively. In order to conduct these experiments,
the MAPs given in Table 1 are used and the new MAPs are generated
by using the procedure given in Section 5.1.3. The distance between
the zero and the first-lag autocorrelation of MAP is divided into 9 equal
distances to generate MAPs with incrementally increasing the first-lag
autocorrelations. The figures show the effects of autocorrelation on the
threshold levels and percentage difference between the optimal total
cost of the system, TC* controlled with the optimal state-dependent
policy and the cost of the state-independent threshold policy, TC%,
where the optimal threshold is set by incorporating the demand inter-
arrival distribution and autocorrelation (STWA). The performance of
STWA deteriorates in general as the positive correlation of the system
increases. However, the policy does not show a monotone behavior for
negatively correlated systems. This erratic behavior maybe the result
of the significant decrease of the cost for negative correlated systems.

5.3. Impact of correlated production time process

We now focus on the impact of autocorrelation in production time
process on the performance of a M/MAP/1 system controlled with the
optimal policy and the benchmark policies. Similar to the analysis of
the effect of correlated demand arrivals, in order to focus on the impact
of autocorrelation in the service process, the demand inter-arrival times
are set to be i.i.d. exponential random variables.

Tables 6, 7, 8, and 9 show the performance measures when a
production system with positively or negatively correlated production
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Table 2
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Performance measures of a positively correlated demand inter-arrival and exponential production time system (MAP/M/1) controlled with the state-dependent threshold policy and

benchmark policies (Demand inter-arrival time scv < 1).

Policy System VA TC(Z*) Are X~(Z*) Ay X*(Z*%) Ay Py(2) Ap,

Optimal MAP/M/1 (16, 11, 10) 13.4067 1.3201 6.8064 0.1490

MTNA MAP™"/M/1 (7,7, 6) 14.9538 12% 2.2120 68% 3.8941 —43% 0.2511 69%

STWA MAP/M/1 11 13.7295 2% 1.3981 6% 6.7392 —-1% 0.1577 6%

STNA MAP™"/M/1 7 14.9017 11% 2.2601 71% 3.6013 —47% 0.2566 72%
Table 3

Performance measures of a positively correlated demand inter-arrival and exponential production time system (MAP/M/1) controlled with the state-dependent threshold policy and

benchmark policies (Demand inter-arrival time scv > 1).

Policy System z* TC(Z*) Are X~(Z*) Ay X*H(Z*) Ay Py(2) Ap,

Optimal MAP/M/1 (19, 12) 17.8130 1.7380 9.1231 0.1583

MTNA MAP™/M/1 9, 8) 21.4375 20% 3.4962 101% 3.9565 -57% 0.3184 101%

STWA MAP/M/1 16 18.3744 3% 1.7677 2% 9.5361 5% 0.1610 2%

STNA MAP™/M/1 9 21.4637 20% 3.4492 98% 4.2176 —54% 0.3142 98%
Table 4

Performance measures of a negatively correlated demand inter-arrival and exponential production time system (MAP/M/1) controlled with the state-dependent threshold policy

and benchmark policies (Demand inter-arrival time scv < 1).

Policy System VA TC(ZY) Are X~(Z*) Ay X*(Z*%) Aye Py(Z) 4p,

Optimal MAP/M/1 (6, 6, 5) 6.1660 0.6114 3.1088 0.1543

MTNA MAP™ /M/1 (7,7, 6) 6.2399 1% 0.4571 —-25% 3.9544 27% 0.1154 —25%

STWA MAP/M/1 6 6.1775 0% 0.5692 -7% 3.3316 7% 0.1437 -7%

STNA MAP™"/M/1 7 6.3155 2% 0.4255 —-30% 4.1879 35% 0.1074 -30%
Table 5

Performance measures of a negatively correlated demand inter-arrival and exponential production time system (MAP/M/1) controlled with the state-dependent threshold policy

and benchmark policies (Demand inter-arrival time sco > 1).

Policy System VA TC(Z*) Ape X~(Z") Ay- X+(Z*) Ay. Py(2) 4y,
Optimal MAP/M/1 (13, 12, 11) 11.6780 1.0670 6.3431 0.1513

MTNA MAP™"/M/1 (13, 16, 16) 12.3225 6% 0.6743 —-37% 8.9509 41% 0.0956 -37%
STWA MAP/M/1 11 11.6845 0% 1.0762 1% 6.3034 -1% 0.1526 1%
STNA MAP™" /M/1 14 12.3084 5% 0.6802 —36% 8.9074 40% 0.0965 -36%

times and exponential demand inter-arrival times is controlled with the
optimal and the benchmark policies for the cases scv < 1 and scv > 1
respectively. The MAPs used for the production time processes are
given in Table 1 and MAP™"s are constructed by using the procedure
given in Section 5.1.3.

Similar to the effect of autocorrelation in the demand arrivals, the
effect of ignoring positive autocorrelation in production time process
in the production policy is more significant compared to the effect of
negative autocorrelation. The single-threshold policy where the thresh-
old is set based on the service time distribution and autocorrelation
(STWA) yields a total cost that is 2%—-4% higher than the optimal cost.
The resulting expected backlog and inventory levels are also within
6% of the optimal levels. However, if the autocorrelation information
is not used in selecting the policy parameters, as in the benchmark
policies MTNA and STNA, the threshold levels set by these policies are
far away than the optimal levels. Accordingly, the total cost obtained by
using these policies is 9%-21% above the optimal cost for the positively
correlated service times.

When the service times are negatively correlated, the thresholds set
by the benchmark policies are closer to the optimal levels and the total
costs are within 6% of the optimal cost. For positively and negatively
correlated service times, ignoring autocorrelation in production policies
yield significant errors for the expected backlog and inventory levels.

Figs. 5 and 6 show the impact of incremental increase in the first-lag
autocorrelation of positively and negatively correlated service processes
on the threshold levels and on the percentage difference between the
total costs of systems controlled by the optimal state-dependent and
state-independent threshold policy with autocorrelation (STWA). Fig. 5

shows that the optimal threshold levels of the system increase as the
first-lag autocorrelation increases. For the positively correlated service
times, the performance of the single-threshold policy with autocorre-
lation (STWA) in controlling the system deteriorates as the first-lag
autocorrelation increases as well. For the negatively correlated service
times, Fig. 6 shows that the optimal state-dependent threshold-levels
also increases as a function of the first-lag autocorrelation and the
performance of the single-threshold policy in controlling the system
deteriorates as the first-lag autocorrelation increases. However, the
relation is not monotone.

5.4. Impact of correlated arrival and service processes on the optimal
control of the system

Finally, in this section, we focus on the combined effects of autocor-
relation in both the demand arrival and also production processes on
the performance of a MAP/MAP/1 production system controlled with
the optimal and the benchmark policies. We consider four different
cases: positively correlated arrival and service, positively correlated
arrival and negatively correlated service, negatively correlated arrival
and positively correlated service, and negatively correlated arrival and
service. The MAPS given in Table 1 are used for both demand arrival
and service time processes in these experiments.

Fig. 7 shows the percentage increase in the total cost of a correlated
system controlled by the threshold levels that are optimal for the
uncorrelated system (Benchmark Policy MTNA) for the low variability
case scv < 1. Since the MAPs given in Table 1 for scv < 1 have 3
states, the optimal state-dependent threshold policy that incorporates

10
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Table 6
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Performance measures of a positively correlated production time and exponential demand inter-arrival time system (M/MAP/1) controlled with the state-dependent threshold policy
and benchmark policies (Production time scv < 1).

Policy System zZ* TC(Z*) Arc X=(Z*) Ay X*H(Z*) Aye Py(Z) 4p,

Optimal M/MAP/1 12,11, 7) 10.1854 1.0483 4.9438 0.1593

MTNA M/MAP™" /1 (8, 7, 6) 11.3075 11% 1.6547 58% 3.0339 —39% 0.2516 58%

STWA M/MAP/1 9 10.5654 4% 1.0761 3% 5.1849 5% 0.1630 2%

STNA M/MAP™" /1 7 11.0796 9% 1.4951 43% 3.6039 -27% 0.2268 42%
Table 7

Performance measures of a positively correlated production time and exponential demand inter-arrival time system (M/MAP/1) controlled with the state-dependent threshold policy
and benchmark policies (Production time sco > 1).

Policy System z* TC(Z*) Arc X~(Z%) Ay XH(Z*) Ay Py(Z) 4p,

Optimal M/MAP/1 (30, 21) 29.4551 3.1322 13.7943 0.1626

MTNA M/MAP™ /1 (12, 9) 34.3890 17% 5.9574 90% 4.6020 -67% 0.3125 92%

STWA M/MAP/1 22 29.9031 2% 3.1155 -1% 14.3256 4% 0.1617 -1%

STNA M/MAP™ /1 9 35.6392 21% 6.2382 99% 4.4482 -68% 0.3269 101%
Table 8

Performance measures of a negatively correlated production time and exponential demand inter-arrival time system (M/MAP/1) controlled with the state-dependent threshold
policy and benchmark policies (Production time scv < 1).

Policy System A TC(Z*) Arc X~(Z%) Ay XH(Z*) Ay Py(2) 4y

Optimal M/MAP/1 (7, 6, 5) 6.2734 0.6233 3.1572 0.1537

MTNA M/MAP™" /1 (7,7, 6) 6.2925 0% 0.5525 -11% 3.5302 12% 0.1362 -11%

STWA M/MAP/1 6 6.3932 2% 0.6230 0% 3.2780 4% 0.1536 0%

STNA M/MAP™" /1 7 6.4719 3% 0.4695 —25% 4.1245 31% 0.1157 —25%
Table 9

Performance measures of a negatively correlated production time and exponential demand inter-arrival time system (M/MAP/1) controlled with the state-dependent threshold

policy and benchmark policies (Production time scv > 1).

Policy System z TC(Z*) Are X~(Z*) Ay X+H(Z") Ay Py(2) 4y,
Optimal MAP/MAP/1 (12, 11, 9) 11.1589 1.0147 6.0855 0.1461
MTNA MAP™"/MAP/1 (13, 12, 12) 11.6535 4% 0.7389 -27% 7.9593 31% 0.1064 -27%
STWA MAP/MAP/1 11 11.4695 3% 1.0019 -1% 6.4602 6% 0.1442 -1%
STNA MAP™"/MAP/1 13 11.8632 6% 0.7341 —28% 8.1925 35% 0.1057 —28%
Positively correlated service times with scv < 1 Positively correlated service times with scv > 1
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Fig. 5. Impact of the first-lag autocorrelation of a positively correlated production time process on the threshold levels and the percentage difference between the total costs of
M/MAP/1 system controlled with the optimal state-dependent threshold policy and the single-threshold policy with autocorrelation (STWA) policy (h =1, b =5).
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Negatively correlated service times with scv > 1
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Fig. 6. Impact of the first-lag autocorrelation of a negatively correlated production time process on the threshold levels and the percentage difference between the total costs of
M/MAP/1 system controlled with the optimal state-dependent threshold policy and the state-independent threshold policy with autocorrelation (STWA) policy (h =1, b =15).

autocorrelation in service and demand arrival times sets 9 thresholds
depending on the state of the demand and the production time pro-
cess. The figure shows that positive correlation has more impact on
the performance of the system. Controlling a system with positively
correlated arrival and service times with first-lag autocorrelation of 0.1
results in a 20% increase in the total cost. Results are less dramatic for a
system with negatively correlated arrival and service times. Controlling
a system with negatively correlated arrival and service times with the
first-lag autocorrelation of —0.14 result in a 6% increase in the total cost
of the system. In addition to the impact of ignoring correlation, Fig. 7
captures the interaction between negative and positive correlations
as well. For the cases where the signs of the demand arrival and
service process autocorrelations are different, i.e., positive/negative
and negative/positive, positive and negative correlations neutralize the
impact of each other, resulting in a lesser increase in the deviations.
Similar results follow for processes with scv > 1.

Fig. 8 demonstrates the percentage difference between the total
cost of MAP/MAP/1 system with correlated inter-arrival and service
times controlled with the optimal policy and the single threshold policy
(STWA). Similar to the previous cases the performance of the single
threshold policy deteriorates as the correlation increase. Controlling a
system where both of the arrival and service processes are positively
correlated with a first-lag of 0.1 with a single threshold policy results in
an 8% increase in the cost in comparison to the optimal policy. Fig. 9
demonstrates the percentage difference between the total cost of the
correlated system with that of the system controlled by single threshold
policy that assumes i.i.d. inter-event times (STNA). The policy performs
well for cases with low magnitude of correlation and cases that negative
and positive correlations interact with each other. Its performance gets
worse as the correlation increases.

6. Conclusions

In this paper, we investigate the optimal control policy of a system
with correlated demand inter-arrival and processing times modeled

12

as Markovian Arrival Processes. We prove that the optimal policy
that minimizes the expected average cost of the production-inventory
system in the long run is a state-dependent threshold policy. We then
propose a matrix analytic method to evaluate the performance of the
system controlled by the state-dependent threshold policy and use the
policy iteration algorithm to determine the optimal thresholds.

We use the structural properties of MAP to generate demand inter-
arrival and production time processes with the same distribution and
different magnitudes of autocorrelation. These MAPs are then used to
evaluate the impact of autocorrelation in the inter-arrival and pro-
cessing times on the optimal threshold levels and performance of the
state-independent policy.

Our numerical analysis demonstrates that the optimal performance
measures of a system with correlated inter-arrival times and service
process are dependent on the autocorrelation structure in the system.
Positive autocorrelations in the inter-arrival and processing times in-
crease the optimal threshold levels of the system. In contrast, negative
autocorrelations in inter-arrival and processing times decrease the op-
timal threshold levels. In this study, we report the results for a system
with moderate traffic intensity. Our extensive numerical results showed
that the impact of the correlation in this system increases significantly
as we increase the traffic intensity of the system.

We evaluate the performance of the optimal single-threshold policy
in controlling the system by comparing the total costs of systems
controlled by 3 benchmark policies: a state-dependent policy that uses
the distribution but assumes i.i.d. inter-event times, a single-threshold
policy that is set by using both the distribution and also the autocorrela-
tion, and a single-threshold policy that uses the distribution but assume
that the inter-event times are i.i.d.

Our analysis demonstrates that ignoring autocorrelation in setting
the parameters of the production policy causes significant errors in the
expected inventory and backlog costs. A single-threshold policy that
sets the threshold based on the distribution and also the autocorrela-
tion performs satisfactorily. However, ignoring positive correlation in
setting the state-dependent thresholds levels and the single threshold



N. Manafzadeh Dizbin and B. Tan

Positive Arrival and Service

0.004 0% 0% 0% 0% 2% 11%
g
3 0.021 0% 0% 0% 0% 2% 11%
o
[0}
O
2
80044 0% 0% 0% 1% 3% 12%
s
C
S
<0061 0% 0% 1% 2% 4% 13%
3
@)
e
- 0084 1% 1% 2% 3% 5% 14%
w
=
0.10{ 6% 7% 8% 9% 12% 20%
-0.00 0.02 0.04 0.06 0.08 0.10
First Lag Correlation of Arrival Process
Negative Arrival and Positive Service
0.001 0% 0% 0% 0% 1% 2%
wn
@
80024 0% 0% 0% 0% 0% 1%
o
()
1)
2
& o004{ 0% 0% 0% 0% 0% 0%
s
c
S
=006 0% 0% 0% 0% 0% 0%
5
@)
e
- 0.08{ 1% 1% 0% 0% 0% 0%
[
=
0.101 7% 6% 5% 5% 4% 3%
0.00 -0.03 -006 -0.09 -0.11  -0.14

First Lag Correlation of Arrival Process

First Lag Correlation of Service Process

First Lag Correlation of Service Process

International Journal of Production Economics 228 (2020) 107692

Positive Arrival and Negative Service

0.004 0% 0% 0% 0% 2% 11%
-0.034 0% 0% 0% 0% 2% 11%
-0.064 0% 0% 0% 0% 2% 10%
-0.094 0% 0% 0% 0% 1% 10%
-0.114 0% 0% 0% 0% 1% 9%
-0.144 1% 0% 0% 0% 0% 9%
-0.00 0.02 0.04 0.06 0.08 0.10
First Lag Correlation of Arrival Process
Negative Arrival and Service
0.004 0% 0% 0% 0% 0% 1%
-0.034 0% 0% 0% 0% 1% 2%
-0.061 0% 0% 0% 1% 2% 3%
-0.094 0% 0% 1% 2% 3% 4%
-0.114 0% 0% 1% 2% 4% 5%
-0.144 0% 1% 2% 3% 5% 6%
0.00 -0.03 -0.06 -0.09 -0.11 -0.14

First Lag Correlation of Arrival Process

Fig. 7. Percentage difference between the total cost of MAP/MAP/1 system with correlated inter-arrival and service times controlled with the optimal policy and the

Multiple-Threshold NO Autocorrelation policy (MTNA).

based on the distribution yields high errors. The difference between
the total costs of the systems controlled by the state-dependent and
the state-independent policies may increase as the magnitude of the
first-lag autocorrelation increases. Our study shows that an effective
production control policy must take correlations in service and demand
processes into account.

This research can be extended in a number of directions. The
approach used in deriving the optimal policy can be extended to
determine the optimal threshold levels in a partially observable system,
where the buffer level is observable while the state of the underlying
Markovian process is unobservable. The methodology used here for
evaluating the optimal policy can also be adopted to evaluate the
optimal control policy of a system with different classes of customers. In
order to implement the state-dependent threshold policy or an approxi-
mate policy that uses the autocorrelation and distribution information,
a methodology needs to be developed to determine the thresholds by
using the collected data from the shop floor. These are left for future
research.
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Appendix. Proof of Theorem 1

We adopt the methodology presented in Koole (2006) to identify the

optimal control policy of a system with correlated demand-arrival and
service processes modeled as Markovian Arrival Process (MAP). Recall



N. Manafzadeh Dizbin and B. Tan

Positive Arrival and Service

0.004 0% 0% 0% 0% 1% 4%
g
50024 0% 0% 0% 0% 1% 5%
o
[0}
O
2
80044 0% 0% 0% 0% 1% 5%
s
C
S
<0061 0% 0% 0% 1% 1% 4%
3
@)
e
- 0084 0% 0% 1% 1% 2% 5%
w
=
0.104 3% 2% 3% 4% 5% 8%
-0.00 0.02 0.04 0.06 0.08 0.10
First Lag Correlation of Arrival Process
Negative Arrival and Positive Service
0.001 0% 0% 0% 0% 0% 1%
wn
@
30024 0% 0% 0% 0% 0% 0%
o
[
1)
2
& 0044 0% 0% 0% 0% 0% 0%
s
c
S
=006 0% 0% 0% 0% 0% 0%
5
@)
e
- 0084 1% 0% 0% 0% 0% 0%
[
=
0.101 2% 3% 2% 2% 1% 1%
0.00 -0.03 -006 -0.09 -0.11  -0.14

First Lag Correlation of Arrival Process

First Lag Correlation of Service Process

First Lag Correlation of Service Process

International Journal of Production Economics 228 (2020) 107692

Positive Arrival and Negative Service

0.004 0% 0% 0% 0% 1% 4%
-0.034 0% 0% 0% 0% 1% 3%
-0.064 0% 0% 0% 0% 1% 4%
-0.094 0% 0% 0% 0% 0% 3%
-0.114 0% 0% 0% 0% 0% 4%
-0.144 0% 0% 0% 0% 0% 3%
-0.00 0.02 0.04 0.06 0.08 0.10
First Lag Correlation of Arrival Process
Negative Arrival and Service
0.004 0% 0% 0% 0% 0% 1%
-0.034 0% 0% 0% 0% 1% 1%
-0.061 0% 0% 0% 0% 1% 1%
-0.094 0% 0% 0% 1% 1% 1%
-0.114 0% 0% 0% 1% 1% 2%
-0.144 0% 1% 1% 1% 2% 3%
0.00 -0.03 -0.06 -0.09 -0.11 -0.14

First Lag Correlation of Arrival Process

Fig. 8. Percentage difference between the total cost of MAP/MAP/1 system with correlated inter-arrival and service times controlled with the optimal policy and the Single-Threshold

With Autocorrelation policy (STWA).

that the state of the production-inventory system presented in Section 3
can be fully specified by the inventory level (X) at the buffer and state
of the underlying Markovian process corresponding to demand-arrival
(j,) and service (j,) processes. We represent the state of the system with

(X, Jjards)-

V(X.j)+8
L0+ N R HVX.))
J€Ja
+ 2 Plp VX = 1)) u=0.
J€Jq
= min % + Z Py DV (X, J) (A1)
jel,
+ 2 Pl VX = 1))
je‘ld
HEOV X+ 1j) =BV (X)) u=1.

For simplicity, we first analyze a system with M AP(D,, D,) arrival
and exponential service process with rate u. The state of the system

14

in this case can be represented by the inventory level at the buffer
and the state of the arrival process (X, j,). The action space of the
system consists of two actions denoted by u = 0, and u = 1. The action
u = 0 corresponds to stopping or not continuing the production, and
the action u = 1 corresponds to starting or continuing the production.
The optimality equation of this system can be written as in Eq. (A.1)
using the uniformization technique. Note that the uniformization op-
erator preserves the monotonicity and convexity characteristics of the
value function of the continuous-time model (Koole, 2006). Hence, the
optimality results carry over to the continuous time problem. Starting
from state (X, j,) the system spends an exponential time with rate «
in this state, which results in €% cost, before moving to the next
state. The transition probabilities to the next state is determined by
the action u. If u = 0 the transition probabilities of the system are
related to the demand-arrival. In this case, the transition probabilities
corresponding to state-change without new demand-arrivals and with
demand-arrivals are captured with non-diagonal elements of the P,
matrix, and P; matrix, respectively. The system stays at the same state
with probability 1 + M = Py(j,. j,)- The transition probabilities
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Fig. 9. Percentage difference between the total cost of MAP/MAP/1 system with correlated inter-arrival and service times controlled with the optimal policy and the Single-Threshold

No Autocorrelation policy (STNA).

related to demand-arrival are the same when action u = 1 is taken. In
this case, the system moves to state (X + 1, j,) with probability f and
remain in the same state with probability 1 - % = Py(gda)— f

By rewriting Eq. (A.1) and letting V,,, (X, i) be the minimal expected
total cost if there are n+ 1 more events to go, V,, (X, j,) can be written
in terms of V, (X, j,) as in Eq. (A.2).

C(X
Vi Xoi 8= S0 4 3 RV, + Y, Pl VX = 1)

j€l, =

+§If,,<x,ja) +<§>minm<x,ja>,Vn<X +1,,)). (A.2)

Eq. (A.2) can be expressed by using the operators given in Eq. (A.3)
which are similar to operators defined in Koole (2006). These operators
preserve the convexity and increasing property of a given function f.
Let x be the inventory level and j represent the state of the Markovian
process.

Tcostxf(x) = C(x) + f(x),

15

! 1
Tnig (f1s s D) = Y p(DS5(x), where Y p(j) =1,
j=1 j=1
Ty f (X, ) = f(x,J)s
Ty f(x)) = f(x=1,)),
Tpf(x.)) = f(x+1,)),
Tep f(x, ) = min{ f(x, /), Tp(T,,,)} = min{ f(x, ), f(x + 1,7},
Thpenof (X.J) = min{ £(x, ). T,, } = min{ £ (x. j). £ (x./")}.

Tpaf(x,J) = Ty(T,p) = f(x = 1,j). (A.3)

Eq. (A.2) can be written in terms of the operator in Eq. (A.3) as follows:
= Tcosts (

+§ V. +TCPV;1))-

Vn+l +8 Tum'f (Teann’ o enL‘Vn’ TDA Vn’ T TDA Vn)

B

A4

We show by induction that V,, (X, j,) is convex in X for a given
Ja € J,. Let V(X j,) = C(X). Convexity of the V{(X, j,) is established
trivially. Assume by induction that V,, (X, j,) is convex in X for n’ €
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(2...n) and j, € J,. Since all of the operators preserve the convexity
property, convexity of ¥, is followed. For n — oo this policy converges
to the policy that minimizes the long-run average cost of the system.
By Theorem 8.1 in Koole (2006), convexity of V' (X, j,) in X results in
a threshold type optimal policy.

The optimality equation for a system with M AP(A(, A|) service
process differs from the optimality equation of a system with exponen-
tial service process only in the second line of Eq. (A.1). The state of
the system in this case is (X, j,,j;). The second line of the optimality
equation of this system includes transition probabilities related to state-
change (off-diagonal elements of R,) and service-completion (R;) of

the service process and probability of the state remaining the same
1 — —PoYaja)=AgUs-Js)
(1 - ——me =),

C
VXdpip+e= 24 T RGu)V(Xdd)

J€Ja/lia}
+ Y P VX = 1.].J)
J€Jy
+ Y RyUp WX i+ Y RiGy WX+ 1,00
J'€J5/ s} J'ed;

+(1 ))V(X’ja’js)»

=Dyl Ja) = Aol Js A5)
o

where J, is the set of Markovian states of the service process. Hence,
the optimality equation is of the following form:

C
V(ija’jx)+g = % + Z PO(ja’j)V(ijajs)

J€J,
+ Y P VX = 1.j.j) +
J€l,
min 9 0. Y Roled WXoju i)+ D) Rl d WX + 1)
i€/ s} Ve
~AoUarJa) .
~(— =W (X ) (A.6)
By using the following equation
o o =AU )
Y RoUp N+ Y Ry, = —=, (A7)
7ei) = *
we can re-write Eq. (A.6) as
o C(x) - .
VX jpi)+g=—+ Z Pola: DV (X, j.Js)
a JjEJ,
+ Y PG V(X = 1.j.j) +
=
min 2 0, ' Ryl i) (V(Xojar i) = V(X.jordy))
J'€J5/1is}
+ D RGod) (VX + 1, i) = VX, i J)) (A.8)

Jiel;

By taking the minimum function inside each function and adding and
subtracting (@)V(X ,jar Js) we get the following equation.

C
VX, jwis) + 8= % + Y Pl IV (X, 1))

=
o S Ay -

+ 2 PUp VX = 1,j,j) = (=225 (X g )

jel, *
+ Y RUadImin{ V(X jy J V(X )

j'eds/ s}
+ Y RGedmin{ VX j JO. VX + 170 ) | (A.9)

J'eds

which can be written in the following form:

oo C(x) - -
V(X jois)+8= % + O Pyl DIV(X, j1 )
=g
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+ 2 PUp V(X = 1,7,J)

i€,
+ X RolsndYmin{ VX jy J). V(X s )

J'eJ;

+ Y R dmin{ VX jy JO VX + 1,70 |
J'eds

(A.10)

Eq. (A.10) can be written as function of the given operators in Eq. (A.3)
as given in Eq. (A.11). Convexity of the v, follows from the fact that
the operators preserve convexity.

=T

costs

+Tunif (Tmenul/n’ (A} Tmenvl/n’TCP ns e TCPVn))'

I/n-%—] +& (Tu enuI/n’TDA n""’TDAVn)

it (TonVi e

env’ n’

(A11)

By Theorem 8.1 of Koole (2006) the optimal policy is of the threshold
type for a given Markovian state, proving Theorem 1.
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