
Khayyati, S.⇤ and Tan, B., “Khayyati, S.⇤ and Tan, B., “A Machine Learning Approach
for Implementing Data-driven Production Control Policies,” International Journal of Pro-

duction Research, Vol. 60, No. 10, 3107-3128, 2022.

https://doi.org/10.1080/00207543.2021.1910872

c�2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

http://home.ku.edu.tr/~btan/PDF/JournalArticles/IJPR_MLControl_2021.pdf
http://home.ku.edu.tr/~btan/PDF/JournalArticles/IJPR_MLControl_2021.pdf


A Machine Learning Approach for Implementing
Data-Driven Production Control Policies

Siamak Khayyati
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College of Administrative Sciences and Economics, Koç University, Rumeli Feneri Yolu, Istanbul, Turkey, 34450,

Email: btan@ku.edu.tr

Given the extensive data being collected in manufacturing systems, there is a need for developing a sys-

tematic method to implement data-driven production control policies. For an e↵ective implementation, first,

the relevant information sources must be selected. Then, a control policy that uses the real-time signals

collected from these sources must be implemented. We analyze the production control policy implementation

problem in three levels: choosing the information sources, forming clusters of information signals to be used

by the policy, and determining the optimal policy parameters. Due to the search-space size, a machine-

learning-based framework is proposed. Using machine learning speeds up optimization and allows utilizing

the collected data with simulation. Through two experiments, we show the e↵ectiveness of this approach.

In the first experiment, the problem of selecting the right machines and bu↵ers for controlling the release

of materials in a production/inventory system is considered. In the second experiment, the best dispatching

policy based on the selected information sources is identified. We show that selecting the right information

sources and controlling a production system based on the real-time signals from the selected sources with

the right policy improve the system performance significantly. Furthermore, the proposed machine learning

framework facilitates this task e↵ectively.

Key words : production control, stochastic models, machine learning, real-time control, discrete event

simulation

1. Introduction

Advances in the information collection technologies in manufacturing settings has increased the

amount of information collected significantly (Tao et al. 2018). Despite the increase in the data

collected, implementing data-driven production control policies still faces challenges in practice

(Moeuf et al. 2018). One of these challenges is the mismatch between the amount of information

available on the shop-floor and the amount of information needed for an e↵ective production control

policy for the system (Kusiak 2017).

On one end of the spectrum, no information or no relevant information is available about the
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system, and the relevant information has to be inferred based on the data collected from the system.

On the other end of the spectrum, the large quantity of the available data, makes discerning the

relevant information a complicated task and renders most available modeling and optimization

tools computationally prohibitive.

Although modeling tools and control policies for manufacturing systems have been studied exten-

sively, the state of the art optimization tools are not often capable of modeling and optimizing

complex systems e↵ectively. Even in smaller models, incorporating partial information into the

control policy can complicate the modeling and optimization of the system. In such cases, methods

that utilize machine learning allow implementing e↵ective production control policies (Cadavid

et al. 2020).

Following the advances in real-time data collection in manufacturing systems, there is a need for

developing a systematic method to implement data-driven production control policies e↵ectively.

In order to implement a data-driven control policy e↵ectively, first, the most relevant information

sources to control production flows in a given system must be identified. Then information clusters

that will be used by the control policy must be formed based on the real-time data about the status

of the selected information sources. These information clusters are referred as the markings in this

study. Finally, the optimal parameters of the marking-dependent production control policy that

authorizes production or the release of material into the system based on the real-time markings

collected from the shop floor must be determined.

As a summary, we consider the overall problem of controlling a system with limited data and

many sources of information. This problem is then broken down to three levels:

1. choosing the information sources (P1),

2. forming the markings by clustering the signals from the selected information sources (P2) and

3. determining the parameters of the optimal marking-dependent policy based on the selected

markings (P3).

As the number of information sources and the number of markings used to control production

increase, implementing a complicated production control policy in a large-scale system leads to

di�culties in implementation. For example, even for the small production system with 3 stations

and 3 bu↵ers we analyze in Section 9.1 as the first experimental setup, Problem P2 has 2⇥ 1050

feasible solutions. In addition, the computational burden to determine the optimal control param-

eters increases exponentially. In this setting, using machine learning algorithms, more specifically,

clustering algorithms for P2 and supervised learning algorithms for P1, P2, and P3 facilitates find-

ing the solutions of these problems e�ciently. In this study, we formulate P1 and P2 as regression

problems and use supervised learning algorithms to determine the solutions.
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The extensive use of sensors and digital machines has contributed to the prevalence of big data

problem in manufacturing settings (Zhong et al. 2016). A reduction in the amount of information

that is required for the control policy and the parameters that need to be optimized can be helpful in

overcoming the challenges related to this problem. Furthermore, it has been shown that increasing

the number of control parameters has diminishing returns for a marking-dependent control policy

(Khayyati and Tan 2020). In a typical manufacturing system, the number of system states to

consider is large and simulations that are used to generate the data points require significant time

and computational resources to run. Consequently, optimizing policies that take into account the

state of the whole system is specifically prone to yield the big data problem in manufacturing

settings. This results in a di�culty in identifying the most important relations between system

states, control parameters and system costs.

The main contribution of this work is proposing a machine learning framework for implementing

a data-driven production control policy in partially observable production systems. This method

includes selection of the information sources and clustering the signals from these sources to control

production. Using clusters of information signals rather than all the information signals significantly

increases the e�ciency of optimizing the marking-dependent policy. As a result, the proposed

method can be used to implement a real-time production control policy e↵ectively.

The remainder of this work is organized as follows. Section 2 gives a review of the pertinent

literature. The marking-dependent control policy is introduced in Section 3. Section 4 describes the

partially observable production system we consider. The problem considered in this study is stated

formally in Section 5. Section 6 gives the Discrete Event Simulation algorithm used to evaluate

the performance of the system. The solution method we propose is discussed in Section 7. Section

8 explains how the data for the regression problem is generated to optimize the system. Section 9

gives the numerical experiments we have performed. Finally, Section 10 concludes the paper.

2. Literature Review

In the following, we give an overview of the literature on using machine learning methods for

performance evaluation and control of production systems.

2.1. Machine Learning for Control of Production Systems

Machine learning has been used for controlling operations and processes in manufacturing (Monos-

tori et al. 1996, Irani et al. 1993, Charest et al. 2018, Cadavid et al. 2020, Hwang and Jang 2020).

It has also been used for controlling the manufacturing systems at the planning level (Priore et al.

2001). Can and Heavey (2012) investigate building meta models of Discrete Event Simulation

(DES) models using DNN and genetic programming. A meta model of a DES refers to a function

that maps the space of decision variables to the space of a performance measure, e.g., mapping the
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base-stock level to the average cost or in a bu↵er allocation problem, di↵erent bu↵er allocations

are considered the data points (the number of space allocated to each bu↵er is the feature) and the

throughput is the response. The development of a meta model can both help optimize the DES by

optimizing the meta model and it can be used as an easy to evaluate replacement for the DES in

optimization problems with larger scope. Furthermore, uniform sampling of the solution space is

used for generating the data. We aim to show the improvement resulting from machine learning in

the process of optimization, referred to here as learning while optimizing, as well.

Li and Olafsson (2005) use machine learning more explicitly in the optimization procedure as

opposed to using machine learning for estimating a performance measure. Li and Olafsson (2005)

consider the dispatching problem as a classification problem, and uses machine learning to discrim-

inate between two jobs, given the attributes of the jobs, and decide which one to dispatch earlier?

For using machine learning in more complicated settings, agent based models have been suggested

(Aissani et al. 2008, Monostori et al. 2006). Reinforcement learning methods have been applied to

control systems with degrading machines and managing the delivery of material in manufacturing

settings (Paraschos et al. 2020, Hwang and Jang 2020). Reinforcement learning methods have the

capacity to be applied to a large variety of problems. However, there are drawbacks associated with

applying them in practice. Di�culties in working e↵ectively with partial information, handling

systems with a large state-action space and generating explainable models have been identified as

the main drawbacks of using reinforcement learning in practise. (Dulac-Arnold et al. 2019). By

selecting the most relevant sources of information and forming a manageable numbers of groups of

partial information signals, we decrease the e↵ect of the large size of the state space and generate

a relatively more interpretable policy. Zhang et al. (2020) gives a detailed review of the various

applications of machine learning in manufacturing.

2.2. Machine Learning for Performance Evaluation

There are many studies in the literature that aim at predicting di↵erent performance measures

related to a production system. Lingitz et al. (2018) use di↵erent machine learning methods for lead

time prediction for a semiconductor producer. Alenezi et al. (2008) present a method to predict the

time it takes for a new order that has arrived to be completed for the purpose of providing a due

date with a given reliability based on snapshots of the production system (number of items in the

bu↵ers and machine availability) using support vector regression. Karaoglan and Karademir (2017)

use neural networks for predicting flow times. Backus et al. (2006) aim at predicting the cycle time

for a lot that is being produced based on historical data and features such as WIP in di↵erent

parts of the system and the cycle time for similar lots that have gone through the same machines.

They conclude that a regression tree is optimal for this task. Machine learning can also be used

for detecting disturbances in the performance of a production system (Farooqui et al. 2020).
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This work di↵ers with the other works in the literature in three main ways. First, we consider

the problem of selecting the sources of information alongside the problems related to finding the

best policy. This approach addresses both the problem of determining the location of sensors in a

production system and also the issues that might arise in implementation of real-time production

control policies due to a lack of e�cient solution methods for complex representations of a pro-

duction system. To the best of our knowledge, this problem has not been addressed in this setting

before. Second, the use of marking-dependent policy allows for determining an easy to implement

policy that can utilize the information gathered from various locations in the production system.

Third, our use of machine learning in determining the control policy allows for integration of data

coming from various sources including historical data from di↵erent times despite potential changes

in the system and simulated data.

3. Marking-Dependent Production Control Policy

In this work, we focus on implementing a specific data-driven control policy that is designed to

utilize the partial information signals, clusters of which are referred as markings, emitted from the

system in controlling the release of material into di↵erent parts of the system. This policy is an

extension of the marking-dependent threshold policy introduced for production/inventory systems

(Khayyati and Tan 2020). The proposed marking-dependent production control policy decides on

the authorization of the release of material into the di↵erent parts of a production system for

each of the identified markings and enforces the release authorization based on the last observed

marking.

Figure 1 depicts a production system where the release of material into the system is controlled

by using a given marking-dependent policy that utilizes information from two source of information.

The marking-dependent production policy di↵ers from a state-dependent policy in that it does

not assign a di↵erent set of actions to each possible state of the system. Instead, the observable

information about the state of the system is summarized in the markings and the actions of

the controller depend on the markings. This allows for a significant reduction of the number of

control parameters for partially observable production systems. This reduction allows determining

the optimal control parameters e�ciently. As a result, the marking-dependent production control

policy can be implemented as a real-time production control policy e↵ectively.

4. Model

In the following, we give the formal description of the system under study, the marking-dependent

policy and the optimization problem for determining the best parameters for the marking-

dependent policy. Table 1 gives the description of the notation used throughout the paper.
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Figure 1 Implementing a marking-dependent release control of a production system with information source

selection (P1), partial information signal grouping (P2), and optimal control policy parameter setting

(P3) subproblems

4.1. Production Plant

A production plant consists of n elements. Each element Ei, i 2 {1, . . . , n} is a workstation or a

bu↵er. The connections between these elements are referred to as the plant structure, represented

by a matrix C whose (i, j)th entry indicates if element i feeds into element j. We consider a discrete

state-space continuous time process describing the dynamics of a system consisting of stations and

finite bu↵ers. This representation is quite general and allows considering all production systems

that can be modelled as open queueing networks with blocking.

Station i has mi working states. Let ⌘= (⌘1, . . . ,⌘n) denote the state of the system, where ⌘i 2Ai

and Ai is the finite set of possible states for element Ei. The possible states for station i include

Ai = {W1, . . . ,Wmi
,B,S}, where Wj refers to the jth working state of station i including the down

state, B indicates that station i is blocked, and S refers to starvation of station i. The state of

bu↵er i is the number of items in the bu↵er Ai = {0,1, . . . ,!i} where !i is the size of bu↵er i. The

set of ⌘ tuples is denoted with {⌘}.

The parameters of all the elements, e.g., the statistical characteristics of the time spent in each

state and the transition processes among the states for the machines and the bu↵er sizes are given

in set ⇤. For example, for a production line with two reliable stations separated with a finite bu↵er

with a capacity of !2 where the processing times are exponential random variables with rates

µ1 and µ3, ⇤ includes the processing rates and the bu↵er size as the parameters of the system,

i.e., ⇤ = {µ1,!2, µ3}. In case some or all of the parameters of the system are not all known a

priori, the estimates of the parameters of the system based on the available traces and available
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Table 1 The notation used throughout the paper (excluding the notation locally used in the discrete event

simulation algorithm and the numerical experiments)

Description

P1 The problem of selecting the sources of information

P2 The problem of forming the markings

P3 The problem of setting the control parameters for a marking-dependent policy

⇤ The parameters of a production system

⇤̄ The estimate values of the parameters of the production system

I The vector determining the sources of information in the production system

Y The matrix that defines the relation between the partial information

observations and the markings

W A unique vector representation for Y

U The parameters of the marking-dependent policy that govern the release

of material into the elements of the production system based on each marking

⇧ The cost of the production system

N The number of collections of traces available

Dr The rth collection of traces

⇧̄
�
I,Y,U, ⇤̄,Dr

�
The estimated cost of the system based on Dr

Ei The ith element in the production system (bu↵er or machine)

C The matrix that shows the connection of elements in a production system

n Number of elements in the production system

⌘ State of the system

⌘i The state of element Ei

Ai Set of possible states for element Ei

mi Number of working states of element i including the down state

!i Bu↵er size of element i

Ii The decision to use Ei as a source of information

C (I) The total cost of collecting information from sources specified by I

⌘̂ The state of the system based on the partial observations of system state

K Number of markings

�i Indicator that shows if the release into Ei can be controlled or not

⇧̄3
�
I,Y, ⇤̄

�
Best cost for given markings and selected information sources

⇧̄2
�
I, ⇤̄

�
Best cost for given selected information sources

⇧̄1
�
⇤̄
�

Best cost for the system

IC , WC The set of candidate I vectors and the set of candidate W vectors

X, Y The data matrix and the output vector for the regression problems

fI, fW The regression models built for the selection of information sources

and formation of markings respectively

Dr,l The rth data set available related to the lth set of system parameters

⇤̄l The estimates of the parameters of the system for instance l

Il, Wl The set of I and W tuples respectively evaluated

based on the data available for the lth instance

information are included in ⇤̄. Following the previous example of the two-station production line,

if the parameters µ1 and µ3 are not known a priori, the available traces can be used to determine

the estimates for µ1 and µ3 denoted with µ̄1 and µ̄3 respectively. In this case, ⇤̄= {µ̄1,!2, µ̄2}.

4.2. Information sources

Each element can be used as a source of information about the production plant. Let Ii 2 {0,1}

denote the decision to use Ei as a source of information and let C (I) denote the total cost of

collecting information from these sources, where I= (I1, . . . , In).
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In the two-station production line example, if the interstation bu↵er and the second station are

used as the information sources for the production control policy to decide on the release of the

parts into the first station, I1 = 0, I2 = 1, I3 = 1, and I= (0,1,1).

Then let ⌘̂ = (⌘̂1, . . . , ⌘̂n) where ⌘̂i =

⇢
⌘i, if Ii = 1
�, if Ii = 0

denotes the state of the system based on the

partial observations of system state. In other words, if element Ei is not selected to be used as an

information source or if the state of that element is not observable, the state of the system with

partial information, ⌘̂ does not include the state of Ei. The set of ⌘̂ tuples is denoted with {⌘̂}.

In the two-station production line example, when the bu↵er capacity is 2, the state space of the

system has 5 states:

{⌘}= {(W1,0,S), (W1,0,W1), (W1,1,W1), (W1,2,W1), (B,2,W1)}.

However, since the information on the first station is not collected, the state space of the system

based on the partial observation of the system state has 4 states:

{⌘̂}= {(�,0,S), (�,0,W1), (�,1,W1), (�,2,W1)}.

4.3. Markings

Markings are the clusters of partial information signals used to decide on authorizing the release of

material into a given element. Markings are obtained from the observable system states. Namely,

the set of possible partial observations of the state of the system, ⌘̂, is mapped into a finite set

of markings {1, . . . ,K}, where K is the total number of markings used by the control policy. We

assume that the number of markings K is given. That is, we focus on controlling the release of

parts into a production system with a given number of markings. Once the problem of determining

the best K markings is solved, K can also be optimized by following a similar approach presented

in this study.

Since the set of markings is much smaller than the set of ⌘̂ tuples, the assignment of ⌘̂ tuples

to di↵erent markings can be viewed as putting ⌘̂ tuples in K clusters. Let yi,k 2 {0,1} : i 2

{1, . . . , |{⌘̂}|} , k 2 {1, . . . ,K} denote the decision to place partial observation tuple i in the cluster

corresponding to marking k, yi,k = 1, or yi,k = 0 otherwise. Let Y = {yi,k} denote the matrix that

specifies a given formation of markings.

In the two-station production line example where the interstation bu↵er and the second machine

are used as the information sources for the production control policy, let us assume that the bu↵er

capacity is 2 and the release is allowed when there are less than 2 parts in the bu↵er. In this case,

only two markings that track the number of parts in the bu↵er with respect to the set threshold
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are used in the control policy, i.e., K = 2. One marking is used for the signals that show that there

are less than 2 parts in the bu↵er and the other marking is used for the signal that the bu↵er has

2 parts and the second station is working. Accordingly, all the states that have less than 2 part in

the bu↵er, {(�,0,S), (�,0,W1), (�,1,W1)} are mapped into the first marking and the state that

has 2 parts in the bu↵er, {(�,2,W1)} into the second marking. Accordingly,

Y=

2

64

1 0
1 0
1 0
0 1

3

75 .

4.4. Marking-dependent control policy

The release of material into a given number of elements in the plant is controlled based on the last

observed marking from the system. Let �i 2 {0,1} denote an indicator that shows if the release

into Ei can be controlled (1) or not (0). We consider �i to be a predetermined characteristic of the

system. If �i is set to 0 for element i, the release of material into element i will be always allowed.

Let uj = (u1,j, . . . , un,j) denote the control tuple in the system where ui,j 2 {0,1} denotes the

decision to release material into Ei when the last observed marking is j. If the release is authorized,

ui,j = 1, and if it is not authorized ui,j = 0.

When the release of material into Ei is not allowed, if Ei is a workstation, it will be starved

upon completing the processing of a part. If Ei is a bu↵er, the workstation that feeds to it will be

blocked upon completing the processing of a part.

In the two-station production line example where the release of material into the first station is

allowed when there are less than 2 parts in the bu↵er, assuming only the release of parts into the

first station can be controlled, i.e., �1 = 1,�2 = 0,�3 = 0,

u1 = (1,0,0) ,u2 = (0,0,0) .

4.5. Policy parameters

The parameters of the marking-dependent policy with K markings are K tuples u1, . . . ,uK indi-

cating the decision for all the elements for each marking. Let

U=

2

64
u1

...
uK

3

75 (1)

denote the matrix specifying all the parameters of the marking-dependent policy.
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In the two-station production line example when the release of material into the first station is

allowed when there are less than 2 parts in the bu↵er,

U=


u1

u2

�
=


1,0,0
0,0,0

�
.

A marking-dependent threshold policy can be a specific case of the marking-dependent policy if

the formation of the markings allows implementing a threshold policy. In Section 9.1, we demon-

strate how di↵erent threshold policies can be implemented as marking-dependent policies in the

production/inventory system analyzed.

5. Problem Description

Let ⇧ (I,Y,U,⇤) denote the long-run total cost of the system with parameters ⇤ when it is

controlled with the information sources I, markings specified by Y and marking-dependent policy

U. The relevant operation, inventory carrying, and service-level related costs are included in the

total cost function together with the cost C(I) related to controlling the system with the selected

sources given in I.

In the numerical experiments, we focus on the problem of determining the best locations of a

given number of information sources. A given limit L on the number of sources of information can

be imposed by setting the total cost of using selected information sources, C(I) =

⇢
0, if

P
i Ii L

1, if
P

i Ii >L
.

Since the cost function does not vary in the examples we considered, we use ⇧ (I,Y,U,⇤) instead

of ⇧ (I,Y,U,⇤,C), for notational convenience.

The main problem considered in this study is minimizing the total long-run cost of the system:

min(I,Y,U)⇧ (I,Y,U,⇤) .

Since ⇧ (I,Y,U,⇤) is not available, it is estimated using N di↵erent datasets that include col-

lections of traces available about di↵erent stochastic processes in the production system that are

necessary for simulating the system. These traces can be of di↵erent lengths due to the frequency

of the events related to them. For example, the available traces for slow machines are shorter than

available traces for faster machines. Let Dr denote the rth data set available, r= 1, . . . ,N . Then,

the dataset is represented as {Dr : 1  r  N}. Each data set contains the interevent times and

machine state information for di↵erent elements in the system. Using this data, a discrete-event

simulation algorithm can simulate the system and calculate the performance measures of interest.

Section 6 gives a more detailed description of these datasets and the Discrete Event Simulation

algorithm.

The aim is to find the best information sources, the best markings based on the states of the

information sources, and the parameters of the marking-dependent policy based on the selected
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Figure 2 Evaluation of the production system

markings for the production system using the available data sets {Dr : 1 rN}. The estimated

cost is denoted with ⇧̄
�
I,Y,U, ⇤̄,Dr

�
where ⇤̄ denotes the exact values or approximations of the

system parameters either known a priori or approximated from the available traces.

Given these definitions, the problem can be stated as

min(I,Y,U)

NP
r=1

⇧̄
�
I,Y,U, ⇤̄,Dr

�

N
. (2)

In order to explain the setting, consider the example given in Figure 1. In this production system

with 5 machines and 3 bu↵ers, the solution of this problem may yield selection of the bu↵er E4

and the machine E8 as the information sources. Once the information sources are selected, di↵erent

combinations of state of E8, whether it is blocked or not, and whether the bu↵er E4 is full, empty,

or partially full can be grouped together to form two markings. Then the decisions to release

the material into the machine E1 will depend on the observation of these signals. For example,

observing that the machine E8 is starved while the bu↵er E4 is empty at a given time may allow

release of material while observing E8 is working and E4 is full may not allow production on the

machine E1. The objective is making these selections optimally for a given system.

6. The Discrete Event Simulation Algorithm

The long-run cost of the system ⇧̄
�
I,Y,U, ⇤̄,Dr

�
given in Equation (2) is estimated by using

simulation. Figure 2 depicts the evaluation of the production system to estimate the long-run cost

of the system.
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In the following, we give the Discrete Event Simulation (DES) algorithm for simulating a pro-

duction system with the marking-dependent policy and given a dataset.

6.1. Dataset

In this section, the DES algorithm is given for one replication of the data without loss of gener-

ality. Hence, the superscript r that shows the index of the replication for the dataset Dr has been

omitted for notational convenience.

The dataset D includes the interevent times for each element in isolation, the working states of

the elements following the completion of an event, and the indicators that show whether the events

are related to a service completion or a change in the working state without the completion of a

service, e.g., due to breakdown and repair events. Hence,D= {�i,l,ci : i2 {1, . . . , n}, l 2 {1,2,3}, ci 2
{1, . . . , |ci|}} where |ci| is the length of the trace available for element i, �i,1,ci is the cith interevent

time, �i,2,ci is the state following the cith event, and �i,3,ci is an indicator variable that shows

whether the cith event is a process completion for element i. These parameters of the dataset D

can be obtained from a Manufacturing Execution System database or generated by simulating

the elements in isolation with the available data. All the variables used in the DES algorithm are

described in Table 2.

For the example system with two stations with exponential processing times, the dataset includes

the interevent times that are the processing times for station 1, �1,1,c1 , c1 2 {1, . . . , |c1|} and the

processing times for station 2, �3,1,c3 , c3 2 {1, . . . , |c3|}. These interevent times can be generated

as exponential random variates with rates µ1 and µ2. Furthermore, since the stations are reliable,

the state of the stations will be W1 following each process completion. That is �1,2,c1 =W1, c1 2
{1, . . . , |c1|} and �3,2,c3 =W1, c3 2 {1, . . . , |c3|}. Finally, since all the events are process completions

in this example, the indicator variables will be the same, i.e., �1,3,ci =�3,3,ci = 1 , ci 2 {1, . . . , |ci|}.
This definition of traces is based on the assumption that the changes in the working states of

a machine are process dependent. The failures, repair times or di↵erent down or up states are

modeled as di↵erent working states. The blocking and starvation times are generated using the

DES algorithm depending on the markings and the policy parameters.

6.2. The DES Algorithm

The DES algorithm presented here can model production/inventory systems, serial lines with

heterogeneous parallel stations, assembly lines, and a combination of these systems. The method-

ology presented in this study to implement the marking-dependent production control policy can

be used for other production systems with their associated DES algorithms. For modeling produc-

tion/inventory systems, synchronization stations are modeled as stations with multiple incoming
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Table 2 The description of the variables used in the DES algorithm

Variable Description
NISi Number of input streams to element i
AB Set of available bu↵ers (downstream or upstream)
DB Set of downstream bu↵ers
UB Set of upstream bu↵ers
CB Set of upstream bu↵ers chosen for elements with more than one input stream
�i,1,ci The cith inter-event time for element i
�i,2,ci The state that the cith event for element i takes it to
�i,3,ci The indicator that shows if the cith event causes the completion of a service
ci Inter-event time counter for element i
z Indicator for flagging if resolution of blocking and starvation might be needed
FEL Future event list

streams with zero processing time. In this model, the machines can be in various working states in

addition to the blocked and the starved states. The various working states can be used for modeling

downtimes as well. Table 2 gives the description of variables used in the DES algorithm.

Let FEL denote the future event list. The event list includes the information, E 2 FEL, regarding

the changes in the system at specific times. Namely, the information for each change is recorded in

E= (e1,e2,e3,e4) where e1 denotes the event time, e2 denotes the element that is a↵ected directly

by event E, e3 denotes the state of element e2 after the event takes place, and e4 is an indicator

that shows if the event is a process completion or a change in the state of element e2 without the

completion of a process. If the controller cannot modify the release decision for element i (�i = 0),

we assume that the release of material into element i is always allowed, i.e., we set ui,k = 1, 8i, k.

Algorithm 1 gives the DES pseudocode for simulating the production system and Algorithm 2

gives the submodule for resolving blocking and starvation. In summary, this DES algorithm modifies

the state of the system (⌘) locally based on the earliest future event and the element it a↵ects,

i.e., ⌘e2 where E = (e1,e2,e3,e4) is the earliest event in FEL. Then the algorithm checks if the

state variable for other elements (⌘j, j 6= e2) needs to change as well due to blocking or starvation

being resolved. If the state of the system ⌘ is changed, then the check is repeated, otherwise the

next earliest event is identified, and the algorithm continues. The algorithm stops when the trace

provided for one of the elements is fully processed.

7. Solution Methodology

Once the dataset that includes the collected data as well as the synthetic data obtained by sim-

ulation, {Dr, r = 1, . . . ,N} is obtained, the Discrete Event Simulation algorithm is used with the

dataset to estimate the long-run costs for di↵erent selections of information sources, markings,

and production control policy parameters. Then, the three subproblems of the problem given in

Equation (2) for a production system with the estimated parameters ⇤̄, the information sources

I, markings Y, and the marking-dependent control policy U are formally stated as
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Algorithm 1 DES pseudo code
1: while |FEL|> 0 do
2: E E

0
: e

0
1  e

00
1 8E

00 2 FEL . Identifying the earliest event in FEL
3: T  e1; i e2

4: if e4 = 1 then . If the current event is a completion of a process
5: DB {j :Ci,j = 1} . Down stream elements of element i
6: if |DB|= 0 then ⌘i S . The part goes to the sink
7: else
8: AB DB\ {k : ⌘k <Bk}\ {k : uk,m = 1} . Identifying the available bu↵ers
9: if |AB|> 0 then
10: ⌘j ⌘j +1,⌘i S : j 2AB . The part goes to one of the available downstream bu↵ers
11: else
12: ⌘i B . Blocking
13: end if
14: end if
15: else
16: FEL FEL[ {(T +�i,1,ci , i,�i,2,ci+1,�i,3,ci )}; ci ci +1
17: end if
18: z 1
19: while z = 1 do
20: z 0
21: call Algorithm 2 . Blocking and starvation resolution
22: end while
23: end while

Algorithm 2 Blocking and starvation resolution sub-module
1: z 1 . Blocking and starvation resolution
2: while z = 1 do
3: z 0
4: for i2 {1, . . . , n} do
5: if i is a machine then
6: if ⌘i =S_ ⌘i =B then
7: Identify the marking m based on I, Y
8: if ⌘i =S^ui,marking = 1 then
9: if 9j :Cj,i = 1 then . The machine feeds from the source
10: FEL FEL[ {(T +�i,1,ci , i,�i,2,ci+1,�i,3,ci )}; ci ci +1; z 1
11: else
12: UB {j :Cj,i = 1}; AB {j : ⌘j � 0, j 2 UB}
13: if |AB|�NISi then
14: ⌘j ⌘j � 1 : j 2 CB⇢AB, |CB|=NISi; ⌘i Di,2,ci

15: FEL FEL[ {(T +�i,1,ci , i,�i,2,ci+1,�i,3,ci )}; ci ci +1; z 1
16: end if
17: end if
18: end if
19: end if
20: if ⌘i =B then
21: if 9j :Ci,j = 1 then
22: ⌘i S; z 1 . The part goes to the sink
23: else
24: DB {j :Ci,j = 1}
25: Identify the marking m based on I, Y
26: AB DB\ {k : ⌘k <Bk}\ {k : uk,m = 1} . Identifying the available bu↵ers
27: if |AB|� 1 then ⌘j = ⌘j +1 : j 2 CB⇢AB, |CB|= 1; ⌘i S; z 1
28: else ⌘i B
29: end if
30: end if
31: end if
32: end if
33: end for
34: end while

• P3: Finding the best control parameters for given markings that are defined based on the

selected information sources:
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⇧̄3
�
I,Y, ⇤̄

�
=minU

NP
r=1

⇧̄
�
I,Y,U, ⇤̄,Dr

�

N
. (3)

• P2: Forming the best markings by clustering the partial information signals for the selected

information sources:

⇧̄2
�
I, ⇤̄

�
=minY⇧̄

3
�
I,Y, ⇤̄

�
. (4)

• P1: Selecting the best information sources:

⇧̄1
�
⇤̄
�
=minI⇧̄

2
�
I, ⇤̄

�
. (5)

The number of feasible solutions for these problems can be very di↵erent and the computational

burden of solving the original problem can be unevenly distributed among them. The problem of

selecting the best sources of information, P1, can have approximately 2n feasible solutions. The

problem of finding the best formation for the markings by putting the partial information tuples into

K clusters, P2, has approximately

⇢
|{⌘̂}|
K

�
feasible solutions, where |{⌘̂}|⇠=

nQ
i=1

((1� Ii)+ |Ai| Ii).

Finally, the problem of finding the best policy parameters u1, . . . ,uK for the marking-dependent

policy, P3, has approximately
�
2
P

�i
�K

feasible solutions.

For the first experimental set up given in Section 9.1, P2 has 2⇥ 1050 feasible solutions. For the

second experimental setup given in Section 9.2, P1 has 286, P2 has 5⇥1029, and P3 has (23)3 = 512

solutions respectively.

8. Solution of the Optimization Problems with the Regression Models

In the following part, we discuss how the two higher levels of the problem of finding the best

marking-dependent policy for a given number of information sources and markings (P1, P2) can

be solved by using the regression methods. The lower-level problem, P3 can be treated similarly.

However, it is not discussed in this paper.

8.1. Information Source Selection Problem: P1

For a given selection of the information sources I, evaluating ⇧̄2
�
I, ⇤̄

�
is computationally expensive

for all the problems irrespective of the solution method. A regression model allows determining the

order of I tuples to be evaluated in a way that improves the objective function value that can be

achieved in a given time period.

Due to the large number of possible I solutions for a given system that is 2n for a system with

n elements, it may not be possible to enumerate all these solutions or evaluate them using a fast

learned model or a fast inaccurate simulation. For these reasons, we consider searching for the

best solutions in a subset of the possible solutions. We refer the subset of solutions that can be
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evaluated in a specified time period as the candidate solutions. The specified time period can be

viewed as a computational budget.

Let IC = {I1, I2, . . . , IzI} denote the set of candidate I vectors. These candidate solutions can be

obtained by using ordinal optimization (Ho et al. 1992), incorporating expert opinion, or alterna-

tively generating zI random tuples.

Due to computational constraints, the number of performance measure evaluations that are used

to select the best information source tuple will be less than or equal to zI. Let us assume that

at most � performance measure evaluations can be completed with the specified computational

budget using the DES algorithm given in Section 6.

Let It denote the tth information source selection that has been evaluated where t < z. The input

to the regression problem is expressed as

X =

2

64
I
1

...
I
t

3

75 , Y =

2

64
⇧̄2

�
I
1, ⇤̄

�

...
⇧̄2

�
I
t, ⇤̄

�

3

75 . (6)

For the two-station production line example, this regression problem is given as

X =

2

64
0 1 1
...

1 0 1

3

75 , Y =

2

64
⇧̄2

�⇥
0 1 1

⇤
,{µ̄1,!2, µ̄2}

�

...
⇧̄2

�⇥
1 0 1

⇤
,{µ̄1,!2, µ̄2}

�

3

75 (7)

where the estimated long-run costs ⇧̄2
�⇥
0 1 1

⇤
, µ̄1,!2, µ̄2}

�
, . . . , ⇧̄2

�⇥
1 0 1

⇤
, µ̄1,!2, µ̄2}

�
are

obtained by the DES algorithm for di↵erent selection of information sources.

Let fI (I) denote the regression model built based on X and Y . Then, at a given iteration,

the next information sources to be evaluated is selected based on the regression model that has

been built by using all the evaluated information sources up to that iteration, i.e., fI(It+j) 
fI(It+j+1),�� t� 1� j � 1. The process of learning fI and selecting I

t+j using fI can be repeated

as more I tuples are evaluated and fI becomes more accurate as a result. This process is referred

as learning while optimizing and depicted in Figure 3.

This procedure orders the elements in IC such that fI(I(1))< fI(I(2))< · · ·< fI(I(�)) where I
(k)

is the information source selection tuple that yields the kth lowest predicted average cost fI(I(k)).

Once the candidate I tuples are ordered according to the average cost prediction obtained by

machine learning methods, the best information source that yields the minimum average cost can

be obtained by evaluating the � average costs by using the DES algorithm given in Section 6. As

a result, the solution of the selection of information sources problem with � objective function

evaluations using the DES algorithm is given as

I
⇤(�) = arg min

k�
⇧̄2

�
I
(k), ⇤̄

�
, (8)
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⇧̄2⇤(�) = ⇧̄2
�
I
⇤(�), ⇤̄

�
. (9)

We denote the best average cost that can be obtained among all the candidate solutions as

⇧̄2⇤ = ⇧̄2⇤(zI).

add a given number of rows
to  and  by evaluating

random
selections of sources of

information

Learn a prediction model 
on  and 

generate random selections
of sources of information and

evaluate them using 

add the best newly
generated selections

according to  to  and 

generate a given number of
rows for  and  with

evaluating random
selection of sources of

information

Figure 3 Flowchart for learning while optimizing

8.2. Marking Formation Problem: P2

The same procedure discussed for using regression for selection of sources of information can be

applied to the formation of markings. The elements of Y that indicate a specific formation of

markings are not good candidates for being used as features in a machine learning setting. This

is due to the fact that for a given formation of markings, the number of representations increases

exponentially with the number of markings. That is, there are K! di↵erent Y representations for

K markings. It is possible to add all the equivalent representations to the training data. However,

this increases the number of data points by a factor of K!. In order to represent di↵erent marking

clusters in the learning algorithm, we use the variable wi,j =
PK

k=1 yi,kyj,k that is equal to one if

marking i and j are in the same cluster and is equal to zero otherwise. This representation avoids

symmetric formations, i.e., identical marking formations with di↵erent Y values. Let

W=
⇥⇥
w1,2, . . . ,w1,|⌘̂|

⇤
, . . . ,

⇥
w2,3, . . . ,w2,|⌘̂|

⇤
, . . . ,

⇥
wi,i+1, . . . ,wi,|⌘̂|

⇤
, . . . ,

⇥
w|⌘̂|�1,|⌘̂|

⇤⇤
(10)

denote the tuple of wi,j values. W gives a unique representation of each formation of markings.

For the two-station production line example, the markings were formed with clustering all the

states that have less than 2 part in the bu↵er, {(�,0,S), (�,0,W1), (�,1,W1)} into the first marking

and the state that has 2 parts in the bu↵er, {(�,2,W1)} into the second marking as described in

Subsection 4.3. For these markings, their unique representation W is given as

W=
⇥⇥
1, 1, 0

⇤
,
⇥
1, 0

⇤
,
⇥
0
⇤⇤
.
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Figure 4 depicts the relation between Y that represents the assignment of di↵erent states into the

marking and its unique representation W for this example.

Since the numbering of markings 1, . . . ,K is arbitrary, for each W representation, there are

K! equivalent representations with identical grouping of partial information signals but di↵erent

numbering for the markings. In other words, using the unique representation W decreases the size

of the training set by a factor of K!.

Figure 4 The relation between Y and W for the two-station system example

Although we do not consider choosing K here, this representation is not dependent on K and

can allow for learning from formations based on di↵erent K values. Hence, we use ⇧̄1 (I,W) and

⇧̄1 (I,Y) interchangeably.

Let � be the maximum number of performance measure evaluations that can be completed

in a given computational time limit. Let WC = {W1,W2, . . . ,WzW} denote the set of candidate

W tuples. The candidate solutions can be obtained by using the approaches discussed for the

information source selection problem.

For a given selection of the sources of information I, the problem of finding the next formation

of markings to evaluate is expressed using the data specified as

X =

2

64
W

1

...
W

t

3

75 , Y =

2

64
⇧̄1

�
I,W1, ⇤̄

�

...
⇧̄1

�
I,Wt, ⇤̄

�

3

75 (11)

where W
t denotes the tth formation of markings that has been evaluated.

Let fW (W) denote the regression model built based on X and Y . Then, at a given iteration,

the next marking formation to be evaluated is selected based on the regression model that has

been built by using all the evaluated information sources up to that iteration, i.e., fW(Wt+j) 

fW(Wt+j+1),� � t� 1� j � 1. The process of learning fW and selecting W
t+j using fW can be

repeated as moreW tuples are evaluated and fW becomes more accurate as a result. This procedure
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orders the elements in WC such that fW(W(1))< fW(W(2))< · · ·< fW(W(�)) where W
(k) is the

marking formation that yields the kth lowest predicted average cost.

The best marking formation that yields the minimum average cost among the candidates is

obtained by comparing � average costs by using the DES algorithm given in Section 6. As a result,

the solution of the marking formation problem is given as

W
⇤(�) = arg min

k�
⇧̄3

�
I,W(k), ⇤̄

�
, (12)

⇧̄3⇤(�) = ⇧̄3
�
I,W⇤(�), ⇤̄

�
. (13)

The best average cost that can be obtained among all the candidate solutions is referred as

⇧̄3⇤ = ⇧̄3⇤(zW).

8.3. Incorporating the Data Available about Di↵erent Parameter Sets

If the data about production systems that are similar to the production system of interest is

available, the existing data can be used to improve the computational e�ciency. In many cases, it is

possible to obtain data about similar systems. First, it is common for the parameters of a production

system to change over time due to replacement of machines due to maintenance or a change in the

technology. Second, before enough data about the system can be gathered, the estimates about

the parameters in the system change by new observations. The simulations performed during this

period belong to systems with parameters close to the actual system. Therefore, the collected data

can be informative about the new system. Third, a shared optimization resource can be used by

di↵erent facilities with similar structure. It would be beneficial for the optimization resource to be

able to pool the e↵ort dedicated to similar facilities. In the numerical results, we consider a subset

of these scenarios that is related to identical production system structures with similar parameters.

For incorporating the data and the simulation evaluations available from similar systems, we use

the following notation. Let Dr,l denote the rth data set available related to the lth set of system

parameters, referred to as the lth instance of the system. The aim is to find the best marking-

dependent policy for a target instance of the system specified by l⇤ using the available datasets

{Dr,l : 1  r  N l,1  l  L}. Additionally, let ⇤̄
l denote the estimates of the parameters of the

system for instance l. Let Il and Wl denote the set of I and W tuples respectively that have been

evaluated based on {Dr,l : 1 rN l} .

Then the regression problem for selection of sources of information can be expressed as

X =

2

64
X1

...
XL

3

75 , Y =

2

64
Y 1

...
Y L

3

75 , (14)
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where

X l =

2

64
⇤̄

l
I
1

...
...
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I
t
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75 , Y l =

2

64
⇧̄2

�
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1, ⇤̄l

�

...
⇧̄2

�
I
t, ⇤̄l

�

3

75 , It 2 Il. (15)

Similarly, the regression problem for formation of markings (for given sources of information spec-

ified by I) can be expressed using Equation (14) where

X l =

2

64
⇤̄

l
W

1

...
...

⇤̄
l
W

t

3

75 , Y l =

2

64
⇧̄1

�
I,W1, ⇤̄l

�

...
⇧̄1

�
I,Wt, ⇤̄l

�

3

75 ,Wt 2 Wl. (16)

The regression models learned on this data can be used for evaluating candidate I and W tuples

for every l 2 {1, . . . ,L}. The candidates ordered by using the regression models can them be used

for optimizing the information source selection and marking formation problems following the

procedure described in Sections 8.1 and 8.2.

8.4. Solution of the Regression Problem by Using Machine Learning Approaches

Once the data for regression is formed, di↵erent machine learning algorithms can be used to solve

the regression problem. In the numerical experiments, we compared neural networks, random forest,

linear regression, Gaussian Process Regression, and genetic programming methods.

Initially inspired by the nervous system of animals, artificial neural networks (ANN) are one

of the most studied and commonly used machine learning tools (Gurney 2014). They generate

prediction functions that are composed of nested highly non-linear functions. Neural Networks are

capable in estimating highly non-linear functions.

Random forest (RF) is an ensemble learning method (Breiman 2001). Random forest uses a

number of regression trees where each tree is trained with a subset of the features. Random forests

generate prediction functions that are composed of nested if statements. Random forest algorithm

has been successful in many applications; however, they have a high memory requirement.

Linear regression (LR) fits a linear model to the data by minimizing the least square error over

the training set. Linear regression can fit nonlinear functions through using nonlinear transforma-

tions of the features. However, given that there are many di↵erent ways for such transformations,

the transformation has to be done on the basis of the specific application.

Gaussian Process Regression (GPR) is a non-parametric kernel-based probabilistic method

that works well with noisy training data (Rasmussen and Williams 2006). GPR assumes the data

to belong to a Gaussian process. Any finite set of points selected from a Gaussian process follows

a Gaussian distribution. The functional form of the prediction models generated by GPR is hard

to interpret. Training a GPR model involves inversion of matrices whose size is dependent on the

number of data points. Hence, they are computationally costly for large data-sets.
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Genetic programming is a method that generates prediction models that are a nested combi-

nation of multiplication and summation functions. Genetic programming uses methods very similar

to genetic algorithm for minimizing the error on the training dataset (Koza and Koza 1992).

Genetic programming uses tree structures for storing the prediction functions. The computational

burden for genetic programming increases significantly as the number of features increases. This

is particularly relevant to the problem of forming the markings, since the number of features has

a quadratic relation with the number of possible partial information observations.

9. Numerical Experiments

In this section, we give two sets of numerical experiments to demonstrate how the best marking-

dependent control policy can be implemented by selecting the information sources, forming mark-

ings, and determining the marking-dependent production policy by using the machine learning

approach described in Section 7. We also compare di↵erent machine learning methods in performing

this task.

The first set of numerical experiments focus on the problem of forming the markings and the

second set on choosing the sources of information. In the first set of numerical experiments, we

consider a given selection of sources of information for the production/inventory system. In this

specific case, the problem of setting the policy parameters is easy to solve. Hence, we focus on the

problem of forming the markings that has approximately 2⇥ 1050 solutions.

In the second set of numerical experiments, we aim at testing the performance of machine

learning methods in learning from only one instance of the system where evaluation of the system

is computationally expensive. Accordingly, in this experiment, we consider the problem of selecting

3 information sources from 13 elements in the system that has 286 solutions. Evaluating each

possible solution for this system takes 3.6 hours on a personal computer.

In the numerical experiments, we compare the performance of the learning methods by using the

properties of their convergence graphs (Beiranvand et al. 2017). A convergence graph shows the

evolution of the best solution reached by an algorithm against the number of objective function

evaluations used for reaching this solution. Using the convergence graph, another performance

measure for each method is defined as the number of function evaluations needed to reach a solution

close to the best known solution.

9.1. Production/Inventory System

9.1.1. Experimental Setting Description In the first set of numerical experiments, we

consider a production/inventory system. By using this system, we show how the marking-dependent

policy works and how the markings that are used to control release of material can be formed by

using machine learning.
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Table 3 Parameters of the production/inventory system

Type
Information

Size Processing time Breakdown Probability Repair time
E1 Machine - U[0, µ1] p1 U[0, r1]
E2 Bu↵er 5 - - -
E3 Machine - U[0, µ3] - -
E4 Bu↵er 1 - - -
E5 Machine - U[0, µ5] - -

E6 Bu↵er
Determined
based on

control parameters
- - -

The system we consider is a three-station production/inventory system as depicted in Figure 5.

In this system, the release of material into machine E5 is controlled to balance the accumulation

of material in bu↵ers E4 and E6. We first show how this system can be controlled by using the

marking-dependent policy and then describe how a marking-dependent threshold policy can be

expressed as a marking-dependent policy.

Figure 5 Production/inventory system

Table 3 gives the details about the system parameters. For di↵erent instances of the system,

the processing time parameters, µ1, r1, µ3, µ5 have been drawn randomly from [0.55,0.85] and the

breakdown probability p1 is drawn randomly from [0.055,0.085]. In this set of experiments, the

information source is predetermined as the unreliable upstream machine (E1) and its bu↵er (E2)

and the machine that is controlled to match the flows (E5), i.e., I=
⇥
1 1 0 0 0 1

⇤
. Therefore, the

problem of selecting the sources of information (P1) is not addressed. The problem of forming

the markings (P2) is solved by using machine learning. Since the problem of setting the policy

parameters has only two possible solutions, the release of material into machine E5 is allowed or

not, the problem of setting the policy parameters (P3) has been solved by exhaustive search.

9.1.2. Marking-Dependent Policy For this system, the state of the system is expressed as

⌘= (⌘1,⌘2,⌘3,⌘4,⌘5,⌘6) ,

where, ⌘1 2 {W1,W2,B,S}, W1 denotes the working state, W2 denotes the down state of the

station, ⌘2 2 {0, . . . ,!2}, ⌘3 2 {W1,B,S}, ⌘4 2 {0, . . . ,!4} where !4 ! 1, ⌘5 2 {W1,B,S} , and

⌘6 2 {0, . . . , ⌧}, ⌧ is the maximum inventory level allowed by the controller.
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(a)

(b)

(c)

Figure 6 The three levels of the problem: (a) selection of sources of information (b) forming the marking (c)

setting the parameters of the marking-dependent policy.

Based on this definition, we will now discuss how di↵erent production control policies can be

implemented with this unified representation:

• In this system, if a threshold policy is to be implemented, the control decision can be made

based on only the state of bu↵er E6 that is controlled according to the threshold. Accordingly, the

information selection matrix I is set as I=
⇥
0 0 0 0 0 1

⇤
.

• If a multi-threshold policy that takes the status of the unreliable machine into account is to
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be implemented, then I=
⇥
1 0 0 0 0 1

⇤
.

• If a policy that also takes into account the status of the intermediate bu↵er is to be imple-

mented, then I=
⇥
1 1 0 0 0 1

⇤
and ⌘̂= (⌘1,⌘2,�,�,�,⌘6).

• A base-stock policy with base-stock level ⌧ would require two markings (K = 2) with the

formation of markings specified as

yi,j =

8
><

>:
1

if the ith ⌘̂ tuple satisfies⇣
�,�,�,�,�, (�1)j+1⌘6  (�1)j+1⌧ +

�
j�1
2

�⌘.

0 o.w.

(17)

• A multi-threshold policy that uses the threshold ⌧Down when the machine is down and the

threshold ⌧Up when the machine is up can be implemented by using two markings (K = 2). The

markings are formed according to

yi,j =

8
>>>><

>>>>:

1,

if the ith ⌘̂ tuple satisfies⇣
⌘1 =W2,�,�,�,�, (�1)j+1⌘6  (�1)j+1⌧Down +

�
j�1
2

�⌘

_
⇣
⌘1 =W2,�,�,�,�, (�1)j+1⌘6  (�1)j+1⌧Up +

�
j�1
2

�⌘.

0, otherwise.

(18)

The policies discussed here can be implemented by using the control parameters set as

U=


0 0 0 0 1 0
0 0 0 0 0 0

�
. (19)

9.1.3. Machine Learning Setup In this experimental setup, we compared linear regression

(LR), artificial neural networks (ANN), random forest (RF), Gaussian Process Regression (GPR)

and genetic programming (GP) approaches to select the best markings.

For this problem, the response variable for all the machine learning methods is the average cost

of the system. For each set of system parameters, we exclude the formations of markings with a

cost five times larger than optimal as easy to discard solutions.

We use 5 features that are related to the system parameters. These system parameters include

three machine rates, one breakdown probability and one repair time. The rest of the features

describe the relation of the 198 ⌘̂ tuples with each other. Equation (10) describes how the formation

of markings can be expressed as the relation between various ⌘̂ pairs. This results in using 198⇥

(198� 1)/2 = 19503 additional features for the relation among the observed system states. As a

result, 19508 features are used for the problem of forming the best markings.

From each of the system instances used for training, we pick 200 data points at random resulting

in 200⇥ 19 = 3800 data points. The proportion of features to data points, that is 19503 vs 3800,

makes the problem of forming the markings a big data problem (Zhong et al. 2016).

Neural Network Setup. We use a neural network with 3 hidden nodes for ANN. The number

of hidden nodes is determined using inner cross-validation. Given the large number of features, we
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choose the 5 system parameter features along with 195 randomly chosen among 19503 features as

the inputs for the ANN. The response variable is the average cost of the system.

Random Forest Setup. For the random forest algorithm (RF), We use 3 trees to be trained

based on all the available features. The number of tress is based on inner cross-validation. Random

forest is internally able to search for the more relevant features among the large number of available

features. As a result, all of the 19508 features are used as the inputs and the average cost is used

as the output.

Linear Regression Setup. In linear regression, we do not use any transformations of the

original features. Hence, the method produces a linear model based on all of the 19508 available

features and the average cost is used as the output. Linear regression does not include any hyper

parameters that need to be set using cross validation.

Gaussian Process Regression Setup. For GPR, we allow the choice of the basis functions and

the kernel functions to be chosen from among a set of basis functions and kernel functions. GPR

uses the kernel functions for forming the predictions. The kernel functions are used for building

kernel matrices and the size of these matrices are determined by the number of data points and

are independent of the number of features. This allows for a reduction in the computational e↵ort

caused by the large number of features for this problem.

Genetic Algorithm Setup. For genetic programming, we allow at most 40 nodes. The number

of nodes is determined based on inner cross-validation. Similar to random forest, genetic program-

ming internally searches for the most relevant features. Accordingly, all of the 19508 features are

used as the inputs and the average cost is used as the output.

9.1.4. Results In these experiments, we generated 20 instances of the production/inventory

system with random parameter sets for formation of markings. From these instances, each time, 19

were used for learning and 1 was used for testing. We focus on the average deviation from the best

known cost as the main performance measure to compare the performance of di↵erent algorithms.

Due to the size of the problem with approximately 2⇥ 1050 solutions, the optimal cost cannot be

determined. As an alternative, the best known cost, denoted by ⇧̄2⇤ is calculated by searching a

thousand randomly generated Y matrices.

Table 4 gives the accuracy of these methods in terms of predicting the value of the objective

function. The Mean Absolute Percentage Error (MAPE) for one instance is defined as

MAPE=
1

1000

1000X

i=1

100
|⇧̄3(I,Wi, ⇤̄)� ⇧̄3⇤|

⇧̄3⇤

and the Root Mean Square Error (RMSE) for one instance is defined as

RMSE=

vuut 1

1000

1000X

i=1

(⇧̄3(I,Wi, ⇤̄)� ⇧̄3⇤)2.
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In Table 4, we report the average MAPE and average RMSE values that are the average MAPE

and RMSE values over the 20 instances respectively. These results show than GPR yields more

accurate predictions for the average cost.

In order to compare the performance of the di↵erent methods in terms of solving the marking

formation problem, we focus on their ability to suggest the evaluation of better solutions earlier. We

start with a randomly generated set of solutionsWC = {W1,W2, . . . ,W1000}. For each method, and

each instance, we define the convergence graph of each algorithm after � performance evaluations

using DES (Beiranvand et al. 2017) as

✏� =
100⇥

�
min

�
⇧̄3

�
I,W(j1), ⇤̄

�
, ⇧̄3

�
I,W(j2), ⇤̄

�
, . . . , ⇧̄3

�
I,W(j�), ⇤̄

� 
� ⇧̄3⇤

�

⇧̄3⇤ ,

where fW(W(j1))< fW(W(j2))< · · ·< fW(W(j�)) and ⇧̄3⇤ =minW2WC
⇧̄3

�
I,W, ⇤̄

�
. We use ✏̄� as

the average of the convergence graphs over the 20 instances. We take the area under the average

of convergence graphs as the main performance measure for the methods.

Table 5 and Figure 7 summarize the results of these experiments. Figure 7 depicts the comparison

between evaluating formations of makings randomly and evaluating them in an order suggested by

di↵erent learning methods that have been trained on other instances of the system with di↵erent

parameters. These results were obtained after eliminating formations that have a cost two times

as much as the minimum cost in order to expedite the solution process.

The area under each curve in Figure 7 is the main performance measure reported in Table 5. The

results indicate that using all the methods can be beneficial for this problem. Specifically, Gaussian

regression process outperforms other methods. GPR is the fastest to reach a mean percentage error

(MPE) of 1% from ⇧̄3⇤.

In these experiments, Genetic Programming performs worse in comparison to other methods.

The main reason for the poor performance of GP is the very large number of features for this

problem. Since GP’s computational requirement is very sensitive to the tree sizes and the optimal

tree sizes in turn relate to the number of relevant features, GP fails to find good models in a

reasonable time for the problem of forming the best markings.

These results indicate that, in the cases where the evaluation of the system is costly, machine

learning can reduce the cost of the system by decreasing the computational burden of the opti-

mization.

9.2. Dispatching Problem

9.2.1. Experimental Setting Description A dispatching problem can be expressed as

deciding on releasing material from a common source bu↵er into di↵erent routes. This can be

done based on di↵erent characteristics of each route, e.g., the tra�c present in each route. Such

characteristics can be expressed in the markings.



27

Table 4 The accuracy of the methods in predicting the average cost for the marking formation problem

Average
MAPE

Average
RMSE

Linear regression 74.99 3.74
Genetic programming 59.02 3.43

Artificial neural network 22.85 1.13
Random forest 16.71 1.63

Gaussian process regression 13.10 0.50

Table 5 Performance on the test data related to marking formation problem for the production/inventory

system (average performance over 20 instances of the system)

Area under the
average of

convergence graphs

Number of
function evaluations

to reach 5% MPE for ⇧̄3⇤

Number of
function evaluations

to reach 1% MPE for ⇧̄3⇤

Random formation of markings 289.28 7 76
Genetic programming 237.13 6 50

Artificial neural network 154.03 5 48
Linear regression 98.89 2 11
Random forest 86.80 4 23

Gaussian process regression 39.55 3 5

0 2 4 6 8 10 12 14 16 18 20

0

10

20

30

40

50

60

70
Random search
LR
ANN
RF
GP
GPR

Figure 7 Search for the best formation of markings for the production/inventory system based on learned models

versus a random search (averaged over 20 di↵erent instances of the system)

Figure 8 depicts the structure of the system we use. For this problem, we investigate finding the

best selection of sources of information. The formation of markings has been performed through

a random search, and we use a predefined solution for the policy parameters. For this system,

the bu↵er sizes are set to 2 for all the bu↵ers. E1 is a reliable machine with processing rate 1
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and all the other machines are unreliable machines with processing rate 1, breakdown probability

0.1 and repair rate 0.1. The processing times and the repair times are exponentially distributed

random variables. We consider the problem of minimizing the cycle time in the system subject to

a minimum throughput level set as 0.6 for this case.

The marking formation problem for this setup can have up to

⇢
43

3

�
⇠ 5⇥1029 feasible solutions.

Since the marking formation problem is discussed in the previous experimental setup, in this setup,

we focus on the information source selection problem and form the markings by using a random

search.

In this system, although choosing sources of information is not trivial, the whole set of possible

choices can be evaluated for assessing the performance of learned models. Namely, the problem of

selecting 3 sources of information from the 13 elements present has 13!
10!3!

= 286 solutions. Evaluating

these solutions on a personal computer takes 44 days. A computer cluster that runs up to 40 jobs in

parallel was used to evaluate all of these 286 solutions in close to 24 hours. Since forming the best

marking is time consuming for each choice of the sources of information, ordering the candidate

solutions by using machine learning yields good results earlier.

Figure 8 The system considered for the information source selection problem

9.2.2. Marking-Dependent Policy For this system, the state of the system is expressed as

⌘= (⌘1,⌘2,⌘3,⌘4,⌘5,⌘6,⌘7,⌘8,⌘9,⌘10,⌘11,⌘12,⌘13) ,

where ⌘1 2 {W1,B,S}, ⌘2,⌘4,⌘6,⌘8,⌘10,⌘12 2 {0,1,2} and ⌘3,⌘5,⌘7,⌘9,⌘11,⌘13 2 {W1,W2,B,S} .

In order to demonstrate the implementation of a marking-dependent control policy, con-

sider a simple dispatching policy that dispatches material to the route where its processing is

expected to start earlier. This policy needs to check all the bu↵ers at the starting point of

each route; hence the information selection tuple is set as I=
⇥
0 1 0 0 0 1 0 0 0 1 0 0 0

⇤
and ⌘̂ =

(�,⌘2,�,�,�,⌘6,�,�,�,⌘10,�,�,�).
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This policy would require all the ⌘̂ tuples where bu↵er j has the least number of items in it

to be assigned to the same marking. That is, K = 3. This can be achieved by using the following

marking formation:

yi,j =

8
<

:
1

if the ith ⌘̂ tuple satisfies
⌘2+4(j�1)  ⌘k : k 2 {2,6,10}\{2+4(j� 1)}

0 otherwise.
. (20)

Then, for each marking, the route to the bu↵er with the lowest inventory will be open and the

rest of the routes will be barred as given by the following control parameters:

U=

2

4
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0

3

5 . (21)

9.2.3. Machine Learning setup For the dispatching problem, we consider one instance of

the system. In order to assess the improvements made possible by using machine learning in a more

accurate way, every possible solution for the problem of selection of information sources has been

evaluated. Since there is one instance of the system, the parameters of the system do not appear as

features for machine learning. The features relate to a specific source being selected or not. Hence,

there are only 13 features corresponding to 13 elements in the system for each data point.

The specifics of the machine learning algorithms used for this set of experiments is identical to

that of Section 9.1.3. The only exception is using all of the 13 features in all the methods including

in ANN and GP.

9.2.4. Results In the second set of numerical experiments, we have considered the system

depicted in Figure 8. We have evaluated this system with one set of parameters. This system has

been evaluated with di↵erent choices of sources of information.

For a given selection of sources of information, the formation of markings has been done using

a random search and for a given formation of markings, the policy parameters have been set as

given in Equation (21) due to the symmetry in of the system.

For the purpose of reaching accurate estimations, traces of length 10000 have been used for

the evaluations of the system. Hence, for each selection of sources of information, on average 3.6

hours have been spent and 286 selections of sources of information have been evaluated in a high

performance cluster. Then, for assessing the performance of the machine learning methods, 20 out

of 286 solutions have been selected randomly for training and the remaining 266 solutions have

been used for testing the methods. This experiment has been repeated for 100 times. Table 7

reports the accuracy of the predictions obtained by using di↵erent Machine Learning algorithms.

The results show that all the algorithms yield accurate average cost predictions except Genetic

Programming. Furthermore, GPR and Random Forest give more accurate results compared to the

other methods. In the following, we show how learning while optimizing is e↵ective for this case.
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Table 6 Optimal assignment of ⌘̂ tuples to di↵erent markings

Marking
1 2 3

(�,�,�,�,�,�,�,�, S,�,B,2,�, ) (�,�,�,�,�,�,�,�, S,�, S,1,�, ) (�,�,�,�,�,�,�,�, S,�, S,0,�, )
(�,�,�,�,�,�,�,�, S,�,W1,1,�, ) (�,�,�,�,�,�,�,�, S,�, S,2,�, ) (�,�,�,�,�,�,�,�, S,�,W1,2,�, )
(�,�,�,�,�,�,�,�, S,�,W2,2,�, ) (�,�,�,�,�,�,�,�, S,�,W1,0,�, ) (�,�,�,�,�,�,�,�,W1,�,W1,0,�, )
(�,�,�,�,�,�,�,�,W1,�, S,0,�, ) (�,�,�,�,�,�,�,�, S,�,W2,0,�, ) (�,�,�,�,�,�,�,�,W2,�, S,0,�, )
(�,�,�,�,�,�,�,�,W1,�, S,1,�, ) (�,�,�,�,�,�,�,�, S,�,W2,1,�, ) (�,�,�,�,�,�,�,�,W2,�,W2,0,�, )
(�,�,�,�,�,�,�,�,W1,�, S,2,�, ) (�,�,�,�,�,�,�,�,W1,�,W2,1,�, )
(�,�,�,�,�,�,�,�,W1,�,B,2,�, ) (�,�,�,�,�,�,�,�,W2,�,W2,2,�, )
(�,�,�,�,�,�,�,�,W1,�,W1,1,�, )
(�,�,�,�,�,�,�,�,W1,�,W1,2,�, )
(�,�,�,�,�,�,�,�,W1,�,W2,0,�, )
(�,�,�,�,�,�,�,�,W1,�,W2,2,�, )
(�,�,�,�,�,�,�,�,W2,�, S,1,�, )
(�,�,�,�,�,�,�,�,W2,�, S,2,�, )
(�,�,�,�,�,�,�,�,W2,�,B,2,�, )
(�,�,�,�,�,�,�,�,W2,�,W1,0,�, )
(�,�,�,�,�,�,�,�,W2,�,W1,1,�, )
(�,�,�,�,�,�,�,�,W2,�,W1,2,�, )
(�,�,�,�,�,�,�,�,W2,�,W2,1,�, )

For this instance of the system, the optimal selection of information sources is selecting the first

machine and the second bu↵er in the third route and selecting the second bu↵er in the second

route, i.e.,
⇥
0 0 0 0 0 0 0 0 1 0 1 1 0

⇤
. The optimal formation of markings is given in Table 6, where

element state 1 denotes a working machine and element state 2 denotes a machine under repair.

Sources of information about two of the routes in the system have been chosen. Although calculating

the average observable WIP level requires the steady state probability of observing each partial

information signal, just averaging the WIP levels in observable parts of each route for each marking

can give some information about the solution. However, deciphering the formation of markings for

this case is not straightforward. This might be due to the fact that the random search for the best

formation of markings might not have reached the optimal solution and contains some noise that

makes interpreting the solution di�cult.

Additionally, learning while optimizing has been compared to a blind search of the solution space

with employing GPR, Artificial neural network, Linear regression and random forest after every

10 evaluations of the solutions.

Figure 9 and Table 8 show how these methods perform in terms of optimizing the objective

function as the number of evaluations increase at each iteration. For this problem, 8 random

function evaluations is enough to reach a 5% MPE for ⇧̄2⇤. Since the learning is started after

10 function evaluations, we do not report the number of iterations needed to reach 5% MPE for

⇧̄2⇤ in Table 8. The starting portion for the di↵erent approaches are similar because the machine

learning methods are not used in choosing the solutions until enough data is available. However,

with relatively limited data, GPR is able to suggest evaluating considerably better solutions.
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Table 7 Performance on the test data related to selecting sources of information for the dispatching problem.

Average
MAPE

Average
RMSE

Genetic programming 90.60 9.46
Linear regression 3.38 0.46

Artificial neural network 3.29 0.42
Random forest 2.73 0.35

GPR 2.17 0.27
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Optimal solution

Figure 9 Comparison of Random Search and Di↵erent Machine Learning Algorithms that Use Learning While

Optimizing for Selecting the Information Sources for the Dispatching Problem

Table 8 Performance of the learning while optimizing approach for the dispatching problem.

Area under the
average of

convergence graphs

Number of
function evaluations

to reach 1% MPE for ⇧̄2⇤

Random formation of markings 324.22 109
Random forest 259.01 79

Artificial neural network 225.02 72
Linear regression 221.28 66

Gaussian process regression 177.78 52

10. Conclusions

In this paper, we consider the problem of implementing e↵ective data-driven production control

policies. Using extensive information sources and signals complicates the implementation of data-

driven production control policies with limited marginal benefit.

By focusing on a specific data-driven production control policy, referred as the marking-
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dependent production control policy, the problem is broken down to three levels, namely, choosing

the right information sources, forming the right clusters of partial information signals, referred to

as the markings, and determining the parameters of the optimal marking-dependent production

control policy. We show how the first two problems, i.e., selecting the information sources and

forming the markings to implement the marking-dependent production policy, can be solved using

regression models generated by using di↵erent machine learning algorithms.

Using two experimental setups, we show how machine learning can facilitate implementation

of production control in manufacturing systems. The first setup is a release control problem in a

production/inventory system. The second setup is a dispatching problem. We compare the perfor-

mance of Artificial Neural Networks, Genetic Programming, Linear Regression, Random Forest,

and Gaussian Process Regression methods on the data-sets related to forming markings for a

marking-dependent policy and the data set for selection of sources of information. Our results

show that all the methods prove to be beneficial for both problems. Additionally, our results show

the comparative advantage of random forest and Gaussian process regression algorithms for these

problems.

We show that even if there are no evaluations of the system with parameters other than the

latest available estimates of the system parameters, machine learning methods can be beneficial

with very few data points through the procedure of learning while optimizing presented in this

study.

This work can be extended in di↵erent directions. First, although the marking formation problem

can be solved as it is by di↵erent machine learning tools, it can benefit from using di↵erent distance

measures that can be defined between partial observation tuples of the state of the system. This

approach would provide more information about the structure of the system in training. For exam-

ple, for a subset of the information sources that are connected, a distance measure can be defined

as the absolute di↵erence in work-in-process inventory in those elements. Then, the clustering of

the partial information tuples can be done based on a distance function that is a mixture of these

distance functions. In training, the coe�cients used for building this mixture can be optimized

such that the resulting formations of markings on the training data have minimal cost. Hence, a

machine learning tool can be developed that is not blind to the specific structure of the regression

problem that is a result of markings being generated from partial observations of the system.

Next, the synthetic data generated by di↵erent parameter sets for the system can be viewed

as multiple machine learning tasks. This allows incorporating multi-task learning methods into

the optimization. Multi-task learning has been developed to improve the prediction models for

tasks with few data points by receiving assistance from tasks with many data points. Additionally,

multi-task learning can be used to transfer the domain knowledge between production systems
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that have similar but not identical structures. Hence, both problems discussed here can be viewed

as multi-task machine learning problems.

There are aspects of production systems that can be incorporated to the methods given in this

work to analyze a wider range of production systems. These include modeling production systems

with multiple products and batching processes. Multi-product systems naturally generate more

data as the status of each bu↵er in these systems is a multi-dimensional vector. Hence, these

systems can benefit greatly from methods that can identify suitable reductions of the information

signals.

Finally, obtaining the training data can be greatly improved by combining simulation with the

already-available data about the system. The available traces can be expanded by using methods

such as bootstrap sampling. However, preserving the autocorrelation structure of the datasets

requires some modifications to this method. Developing methods to combine the available data,

simulation runs, and other approximations e↵ectively allows increasing the training data sets that

can be obtained in a given time period. These are left for future research.

As a summary, this work shows that an e�cient and e↵ective data-driven production control

policy can be implemented in a complex production system by selecting the right information

sources, the right markings obtained from these sources, and using the right production policy

that utilizes these signals e↵ectively. The computational burden of this large-scale optimization

problem can be addressed by using the machine learning framework presented in this study and

appropriate algorithms.
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