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ABSTRACT
Efficient performance evaluation methods are needed to design and control production systems.
We propose a method to analyse single-server open queueing network models of manufactur-
ing systems composed of delay, batching, merge and split blocks with correlated interarrival and
service times. Our method (SLQNA) is based on using a supervised learning approach to deter-
mine the mean, the coefficient of variation, and the first-lag autocorrelation of the inter-departure
time process as functions of the mean, coefficient of variation and first-lag autocorrelations of the
interarrival and service times for each block, and then using the predicted inter-departure time pro-
cess as the input to the next block in the network. The training data for the supervised learning
algorithm is obtained by simulating the systems for a wide range of parameters. Gaussian Process
Regression is used as a supervised learning algorithm. The algorithm is trained once for each block.
SLQNA does not require generating additional training data for each unique network. The results
are compared with simulation and also with the approximations that are based on Markov Arrival
Process modelling, robust queueing, and G/G/1 approximations. Our results show that SLQNA is
flexible, computationally efficient, and significantly more accurate and faster compared to the other
methods.
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1. Introduction

Performance evaluation of manufacturing systems has
been subject to numerous studies in the literature
(Dallery and Gershwin 1992; Buzacott and Shanthiku-
mar 1993; Papadopoulos and Heavey 1996). Analytical
approximations and simulation have been used to pre-
dict the throughput, cycle time, buffer levels and other
measures of interest.

While simulation methods can be used to model a
given production system, the time to build the system
with the desired level of detail and the time to obtain
statistically significant results can be long. As a result,
designing a production system that requires optimising
many parameters using simulation requires substantial
computational resources and time.

On the other hand, analytical approximations can be
developed for a specific production system under more
restrictive assumptions. Most of the analytical approx-
imation methods are based on decomposing a given
network into building blocks, analysing these building
blocks to determine their output parameters, passing the
output parameters to the computation of other build-
ing blocks, and then continuing this process repetitively

CONTACT Barış Tan btan@ku.edu.tr College of Administrative Sciences and Economics, College of Engineering, Koç University, Rumeli Feneri Yolu,
Istanbul 34450, Turkey

according to an algorithm until a convergence criterion
is met. Since this method requires computing the output
characteristics of a building block many times, an analyt-
ical method is used to determine the output parameters
efficiently under restrictive assumptions. Most of these
methods also rely on Poisson arrivals, exponential and
phase-type distributions to allow analytical tractability
(Dallery and Gershwin 1992; Buzacott and Shanthiku-
mar 1993) or use two-moment approximations to repre-
sent the arrival and service processes under the assump-
tion that these processes do not exhibit any autocorre-
lation (Kuehn 1979; Buzacott and Shanthikumar 1993;
Hopp and Spearman 2011). As a result, most of the
analytical methods developed for the stochastic models
of manufacturing systems do not incorporate possible
autocorrelation of the interarrival and service times.

The interevent times observed in manufacturing sys-
tems exhibit significant autocorrelation. Figures 1(a,b)
depict the (normalised) interarrival, service, and inter-
departure time distributions and autocorrelation func-
tions for amachine in Robert Bosch Reutlingen semicon-
ductor plant. A study of close to 4.5 million interevent
data from 363 machines at this plant yield that 58%
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Figure 1. Empirical distribution. (a) andAutocorrelation (b) of interarrival, Service, andDeparture Timesof aMachine inBoschReutlingen
semiconductor plant.

of the processing times have a first-lag autocorrelation
greater than 0.25 and 18% of the observed interarrival
times have a first-lag autocorrelation greater than 0.1
or less than −0.1 (Manafzadeh Dizbin 2020). Moreover,
ignoring autocorrelation of interevent times yields sig-
nificant errors in performance evaluation and control or
production systems (Manafzadeh Dizbin and Tan 2019).

In this paper, we present a new approximationmethod
to analyse open queueing networks with correlated inter-
arrival and service times. Themethod is intended to com-
bine the generality of simulation methods with the com-
putational efficiency of analytical approximation meth-
ods. The approach presented in this study is based on
generating training sets for the desired output variables

for a wide range of input parameters for the delay, batch-
ing, merge, and split building blocks that are used to
construct a queueing network model of a manufactur-
ing system. Then a supervised learning algorithm trained
with simulation is used to determine the functional rela-
tionship between the input stream characteristics and the
output characteristics. For example, for the single-station
delay block that represents a machine in a manufac-
turing system depicted in Figure 2, the input parame-
ters are the mean, the coefficient of variation and the
first-lag autocorrelations of the interarrival and service
times, (μa, cva, ρa) and (μs, cvs, ρs). The output param-
eters are the mean, the coefficient of variation, and
the first-lag autocorrelation of the inter-departure time,

Figure 2. The building blocks of the single-server queuing network.
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(μd, cvd, ρd) and themean and the coefficient of the cycle
time, (CT, cvCT). As the next step in the approxima-
tion method, the parameters of the output process are
fed into the next block in an open queueing network as
its input parameters. The queueing network models are
built and analysed by combining the delay, batching, split,
and merge building blocks. This method is referred as
SLQNA (Supervised Learning based Queuing Network
Analyzer).

The main contribution of this study is presenting
a computationally efficient and accurate approximation
method for a single-server open queueing network that
is composed of delay, batching, merge, and split build-
ing blocks with correlated interarrival and service times.
Our extensive numerical experiments show that existing
approximation methods that do not incorporate possi-
ble autocorrelation in interarrival and service times can
yield significant errors in the cycle time prediction. Com-
pared to the methods that incorporate correlated interar-
rival and service times based on Markov Arrival Process
(MAP) representation of interarrival and service times,
SLQNA is 50 times faster on average and yields an error
that is 50% lower compared to thismethod. Furthermore,
the computational performance of SLQNA is not affected
by the size of the network and the parameters used as
opposed to the limitation of the other methods.

The organisation of the remaining part of this paper
is as follows. In Section 2, we review the pertinent litera-
ture. The approach to analyse the building blocks to con-
struct the queueing networks is presented in Section 3.
The supervised learning method to determine the out-
put parameters, the method to generate correlated ran-
dom variables, the training data and the accuracy of
the output parameters obtained by using the supervised
learning method are given in Section 4. The approxima-
tion method to analyse open queueing networks and the
numerical experiments that compare the accuracy and
the computational efficiency with the existing methods
are presented in Section 5. Finally, the conclusions are
given in Section 6.

2. Past work

In this section, we review the past work related to the
analysis of queueing networks and using supervised
learning methods in design of production systems.

2.1. Analysis of queueing networks with i.i.d.
interarrival and i.i.d. service times

Most of the analytical approximation methods devel-
oped to analyse open queueing networks do not incor-
porate autocorrelation among interarrival and service

times. In Queueing Network Analysis (QNA), approxi-
mations for the cycle time and the coefficient of varia-
tion of the inter-departure time are used to determine
these values as functions of the mean and the coeffi-
cient of variation of the interarrival and service times.
Since the departure rate is equal to the arrival rate in an
open queueing network, the departure rate and the coeffi-
cient of variation of the departure process obtained from
an analytical approximation are fed into the following
block (Kuehn 1979; Buzacott and Shanthikumar 1993;
Hopp and Spearman 2011). Other methods that model
the buffer level processes as reflected Brownian motion
are designed mainly to study systems with heavy traffic
(Harrison and Nguyen 1990).

Exact analytical solutions that yield the output charac-
teristics based on the interarrival and service time char-
acteristics are available for only a few classes of queueing
systems. For general systems, analytical approximations
have been used. For a single stationwith general indepen-
dent interarrival and service time distributionswith inde-
pendent interarrival and service times, i.e. ρa = ρs =
0, a widely known G/G/1 queue approximation for the
average time in the queue is given by Kingman (1961):

CTq = (cv2a + cv2s )
2

u
1− u

μs, (1)

where u = μs/μa is the utilisation and the cycle time
is equal to the cycle time in the queue and the average
service time, i.e. CT = CTq + μs.

Similarly, for the flow variability, an approximation for
the inter-departure time coefficient of variation is given
(Marshall 1968) as

cv2d = u2cv2s + (1− u2)cv2a. (2)

There are also other approximations forG/G/1 queue, e.g.
Krämer and Langenbach-Belz (1976), Rasmussen and
Williams (2006) and Buzacott and Shanthikumar (1993)
among others. These approximations define the func-
tional relationship between the inputs (μa, cva), (μs, cvs),
and the outputs (μd, cvd) and CT and ignore the effects
of ρa and ρs. The accuracy of these approximations even
with the independence assumption of the interarrival
and service times depends on the range of parameters
used. The error introduced by these approximations can
be significant in evaluating the performance of a manu-
facturing system (Akhavan-Tabatabaei, Ding, and Shan-
thikumar 2009).

In Section 4.4.1, we compare the accuracy of the
approximations given by Kingman (1961), Krämer and
Langenbach-Belz (1976), Rasmussen andWilliams (2006)
and Buzacott and Shanthikumar (1993) with the accu-
racy of the supervised learning algorithm presented in
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this study for a station with correlated interarrival and
service times. The results show that the average cycle time
predicted by the delay block of SLQNA presented in this
study is very accurate with a mean absolute percentage
error (MAPE) of 1% while all the other approximations
give an average error greater than 11%.

In Section 5.2, we compare the accuracy of SLQNA
with QNA in predicting the total cycle time in different
networks. This comparison shows that SLQNA is much
more accurate thanQNA (3%vs 11%MAPE for the range
of parameters in the production line experiments and 4%
vs. 8% MAPE in the experiments with the network with
split and merge).

2.2. Analysis of queueing networks with correlated
interarrival and i.i.d. service times

The number of studies that present approximationmeth-
ods for the autocorrelated interevent times are limited.
There are studies that use the renewal approximation of
the autocorrelated arrivals for a system with correlated
arrivals and renewal service times (Jagerman et al. 2004;
Araghi and Balcıoğlu 2020). These studies do not provide
an approximation for the departure process mean, coef-
ficient of variation, and autocorrelation for the general
correlated interevent times.

Whitt and You (2020) introduce a queuing network
analysis method based on robust queuing and using the
indices of dispersion for counts that is closely related to
the autocorrelation function of a process. This method,
referred as Rob-QNA in this study, assumes renewal ser-
vice times and a first come first serve queuing discipline.

The comparison of the accuracy of SLQNA with
Rob-QNA in predicting the total cycle time, given in
Section 5.2, shows that SLQNA is much more accu-
rate than Rob-QNA (3% vs 12% MAPE for the range of
parameters in the production line experiments).

2.3. Analysis of queueing networks with correlated
interarrival and correlated service times

Markovian Arrival Processes (MAP) can be used to cap-
ture autocorrelation in interevent times ofmanufacturing
systems. A method that is based on analysing single-
server queueing networks with correlated interevent
times by using MAPs has been introduced by Horváth,
Horváth, and Telek (2010). This method, referred as
MAPQNA in this study, uses MAP representations of the
flows between the stations and the service times formod-
elling networks of MAP/MAP/1 queues with split and
merge (Horváth, Horváth, and Telek 2010).

There are two main limitations in this approach for
performance evaluation of manufacturing systems. The

range of the mean, coefficient of variations and auto-
correlation of a given process that can be modelled by
using a MAP can be limited, especially for negative auto-
correlations that are present in manufacturing systems.
Extending the range of parameters comes at the expense
ofmaking the state-space larger and yields computational
problems. The second limitation is related to the effect
of truncating the infinite-length MAP that represents a
departure process when it is used as an input MAP for
the next queue in the network. To minimise the errors
introduced by the truncation, MAPQNA uses a moment
matching procedure given by Telek and Horváth (2007).

The comparison of the accuracy of SLQNA with
MAPQNA, given in Section 5.2, in predicting the total
cycle time shows that SLQNA ismuchmore accurate than
MAPQNA (3% vs. 6%MAPE for the range of parameters
in the production line experiments and 4% vs. 8%MAPE
for the experiments with the network with split and
merge). Furthermore, the average computational time for
SLQNA is 1 secondwhile the average computational time
for MAPQNA is 50 s on a personal computer. Moreover,
the computational performance of SLQNA is very robust
while MAPQNAmay not yield a result depending on the
system parameters.

2.4. Analysis of queueing networks with simulation
and supervised learning

Simulation is used widely in the industry to evaluate the
performance of production systems. However, most of
the simulation studies ignore correlated interarrival and
service times. Setting up the simulation and running it
to get statistically significant results can also take a long
time for a given manufacturing system.

Simulation has been used for generating training data
for flow time prediction. Hung and Chang (1999) and
Yang (2010) uses neural networks for generating meta-
models for simulation and discusses the process of choos-
ing the parameter sets for generating the training data.

The models that are built by using these learning
methods can be used as surrogate models for improv-
ing the performance of simulation-optimisation meth-
ods (Mihoubi, Bouzouia, and Gaham 2020). Simulation
has been also used in tandem with analytical models
to improve their performance and scope (Shanthikumar
and Sargent 1983). Horng and Lin (2013) use an arti-
ficial neural network surrogate model to improve the
performance of an optimisation procedure based on an
evolutionary algorithm and ordinal optimisation.

There are a number of studies that use Genetic Pro-
gramming to predict the throughput of a serial line (Can
and Heavey 2012; Boulas, Dounias, and Papadopou-
los 2017) with independent interarrival and service
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times. The performance of neural networks and genetic
programming has also been compared in three differ-
ent manufacturing systems (Can and Heavey 2012). De
Sousa Junior et al. (2020) consider a shop floor resource
allocation problem and adopt a solution method based
on a genetic algorithm where the offsprings in each gen-
eration can be evaluated using simulation with parallel
computing or using a surrogate model. De Sousa Junior
et al. (2020) give an extensive comparison of machine
learning methods for this task and shows the relative
advantage of using Gaussian Process Regression (GPR).
For a more detailed review of the application of machine
learning in various areas of manufacturing, the reader is
referred to Arinez et al. (2020).

These examples show the potential of supervised
learning methods in evaluating the performance of pro-
duction systems. However, they consider a given system
and the results cannot be used to analyse manufactur-
ing systems in a different configuration of machines.
Our objective is combining the generality of simulation
models with the computational efficiency of analytical
approximations by developing building blocks that give
the output parameters for the given inputs for open queu-
ing network models of manufacturing systems. By com-
bining these building blocks in flexible ways and feeding
the output of one block into the next one, open queueing
networks with correlated interarrival and service times
can be analysed. In this paper, we present our general
approach and results for open single-server queueing net-
works with delay, batching, split, and merge building
blocks. The results for queueing networks with parallel
servers and different sequencing and dispatching rules
will be given in a following study.

We contribute to the literature by introducing an
approximation method for single-server open queueing
network models of manufacturing systems that are com-
posed of delay, batching, merge, and split blocks with
correlated interarrival and service times. The batching
andMarkov Chain split blocks have not been included in
other approximation methods. The building blocks are
built by deriving the functional relationships that relate
the input characteristics to the output characteristics by
using GPR that uses the simulation results as the train-
ing data. This approach yields the desired performance
measures more accurately and faster compared to the
alternative methods given in the literature.

3. Building blocks for constructing queuing
networks

In this study, the Delay, Batching, Binomial and Markov
Chain Split, and Merge building blocks are combined to

construct a queueing model of a manufacturing system.
These blocks are depicted in Figure 2.

These building blocks are simulated with correlated
interarrival and service time processes to obtain their
output characteristics (the mean, coefficient of variation,
and the first-lag autocorrelation of the inter-departure
times) depending on the buildingmodel parameters. The
simulations obtained for a wide range of system parame-
ters are then fed into a supervised learning algorithm as
the training data. Simulation of these building blocks is
discussed in the following part.

3.1. Delay, batching, split, andmerge building
blocks

3.1.1. Delay
The Delay block shown in Figure 2 can be used to rep-
resent a machine or the transportation time between the
stations in amanufacturing system. In order to determine
the output characteristics of theDelay building block that
processes the incoming parts on first come first serve
basis, we simulate the inter- arrival and service times.
Let Ya and Ys be the N × 1 vectors for the interarrival
and service times generated with the procedure outlined
in Section 2.1 with the given characteristics of the inter-
arrival and service times (μa, cva, ρa) and (μd, cvd, ρd),
respectively. Let Ta,i be the arrival time of the ith part,
Ts,i and Td,i be the time the service starts and the time
the part departs from the system. Starting with Ta,0 = 0,
and Ts,0 = 0,

Ta,i = Ya,i + Ta,i−1, i = 1, 2, . . . ,

Ts,i = max{Ts,i−1,Ta,i}, i = 1, 2, . . . ,

Td,i = Ys,i + Ts,1, i = 1, 2, . . . .

Then, the departure stream Yd = {Yd,i} is determined as

Yd,i = Td,i − Td,i−1, i = 2, 3, . . . , (3)

The total time part i spends in the delay block, cti is

cti = Td,i − Ta,i, i = 1, 2, . . . (4)

The stream Yd = {Yd,i} yields (cvd, ρd) and the stream
{ct2, ct2, . . .} yields (CT, cvCT).

Since there is no loss in the system, the output rate is
equal to the arrival rate. Therefore,

μd = μa. (5)

The supervised learning algorithmpresented in Section 4
is used to find the functions that give (cvd, ρd) and
(CT, cvCT) for given (μa, cva, ρa) and (μs, cvs, ρs).
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3.2. Batching

Many machines in manufacturing systems process parts
in batches. Since the size of the batches can be different
in different parts of a production system, there is a need
for a building block that models the change of a stream
due to a change in the batch size. We model this process
using the batching block. We assume the batching pro-
cess is instantaneous when all the parts required to form
a batch are available. However, the time to form a batch
will generate a delay for an arriving part.

The building block for modelling batching a corre-
lated input stream has not been implemented in other
queueing network analysis algorithms. The inputs to the
Batching block presented in this study are the incoming
stream characterised by (μa, cva, ρa) and the batch size
B. The output stream for the departing batches is charac-
terised by (μd, cvd, ρd). The mean and the coefficient of
variation of the delay are (CT, cvCT). Let Ya denote the
N × 1 vector of the interarrival times and let Td,i denote
the ith departure time from the batching block. Then

Td,i =
iB∑

j=(i−1)B+1
Ya,j, (6)

and the inter-departure times denoted by Yd,i can be
calculated using

Yd,i = Td,i − Td,i−1, i = 2, 3, . . . . (7)

The interdeparture process of the batching block is anal-
ysed by treating the parts collected into a batch as a single
part in the downstream. In otherwords, parts arrive at the
batching block as single units and the batches of these
parts are treated as a single part departing the batching
block. Therefore,

μd = Bμa. (8)

After arrival, each part has to wait until a batch is com-
pleted. Hence the cycle time for the batching block can
be calculated as

CT =
B∑
i=1

i− 1
B

1
μa
= B− 1

2μa
. (9)

Since μd and CT are given in closed form, the super-
vised learning algorithm presented in Section 4 is used to
find the functions that give (cvd, ρd) and cvCT for given
(μa, cva, ρa) and the batch size B.

3.2.1. Split
We consider two split blocks: the Binomial Split block
that routes an arriving stream to one of two routes based
on a given probability and the Markov chain Split block

where the routing process is governed by a first-order
Markov Chain.

In the binomial split, the probability of a part going to
each downstream route is independent from the routing
of the previous parts. In theMarkov chain block, the split
probability governing the route that a part takes depends
on the route of the part preceding it.

Split blocks can be used for modelling quality control
stations in a production system. The defects in the parts
might stem from various sources and be independent
from each other. However, the defects might stem from
malfunctions in the servers in which case the defective
parts might arrive in clusters. To model the first setting,
we use a binomial splitting process and for modelling
the second setting we use a Markov chain based splitting
process.

Binomial Split. In order to determine the output char-
acteristics of the Binomial Split building block shown in
Figure 2, an input arrival stream with the given char-
acteristics is simulated. Let Ys denote the split stream
obtained by routing an arrival stream Ya with character-
istics (μa, cva, ρa) with probability p.

LetTa,i be the time of the ith arrival of the input stream
and Ts,i be the time of the ith arrival to the split stream.
Ts,i will be equal toTa,i with probability p. In other words,
the inter-departure time of the split process will be the
random sum of interarrival times

Ys,j =
L∑

i=1
Ya,i, (10)

where L is a random variable that has the Geomet-
ric distribution with mean 1/p, i.e. Prob[L = n] = (1−
p)(n−1)p. Accordingly, themean departure rate to the first
split stream is equal to the portion of the arrival rate with
the split probability of p. Therefore,

μd = μa

p
. (11)

The coefficient of variation of the departure process can
be written as

cvd =
√
1− p(1− cv2a). (12)

The supervised learning algorithmpresented in Section 4
has been used to find the function that yields ρd for given
(μa, cva, ρa) and p, andμd and cvd are available in closed
form.

Markov Chain Split. TheMarkov Chain building block
for splitting a correlated input stream based on a Markov
chain that captures the dependence between the subse-
quent split routes has not been implemented in other
queueing network analysis algorithms. TheMarkov chain
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splitting process we propose is defined by two probabili-
ties p1 and p2. p1 is the probability of a part going to the
first downstream route if the previous part has gone to the
first downstream route and similarly p2 is the probabil-
ity of a part going to the second downstream route if the
previous part has gone to the second downstream route.
The inputs toMarkov chain splitting block are the incom-
ing stream characterised by (μa, cva, ρa) and the Markov
chain

[
p1 1−p1

1−p2 p2

]
. The Markov chain split is equivalent

to a binomial split block when p1 = p and p2 = 1− p.
The mean inter-departure time for the first split

stream is

μd = μa
2− p1 − p2

1− p2
. (13)

The supervised learning algorithmpresented in Section 4
has been used to find the functions that yield cvd and ρd
for given (μa, cva, ρa), p1, and p2.

Using a Markov chain split allows capturing the
dependence in the split process. Ignoring this depen-
dence yields errors in capturing the output stream char-
acteristics. FigureA2 inAppendix 3 shows the inaccuracy
caused by modelling a Markov chain split as a Bino-
mial split for a specific case. Strong dependencies in the
split process can introduce a considerable amount of
randomness with larger cvd values.

3.2.2. Merge
In order to determine the output characteristics of the
Merge building block shown in Figure 2, two input
arrival streams with the given characteristics are sim-
ulated. Let Ya1 and Ya2 be the N × 1 vectors for the
two interarrival time streams generated with the proce-
dure outlined in Section 2.1 with the given characteristics
(μa1, cva1, ρa1) and (μa2, cva2, ρa2) respectively. Let Ta1
and Ta2 be the corresponding arrival times and let Td
be arrival times of the merged stream. Then the arrival
times for the merged stream that will be processed based
on the first-come first-served basis will be the sorted
arrival times of {Ta1,Ta2} for the arrivals received in
min{max{Ta1}, max{Ta2}} time periods. The difference
between the consecutive arrival times of Td yields the
interevent times for the merged stream Yd. When two
streams merge, the total departure rate of the merged
stream will be equal to the sum of the two arrival rates.
Therefore,

1
μd
= 1

μa1
+ 1

μa2
. (14)

Similar to the cases for the delay and split blocks, the
supervised learning algorithm presented in Section 4 is
used to find the functions that yield (cvd, ρd) for given
(μa1, cva1, ρa1) and (μa2, cva2, ρa2).

4. Functional dependency between the output
and the input variables for the delay, batching,
merge, and split blocks

Determining the functional dependency between the
output and input variables for the delay, batching, merge,
and split blocks can be viewed as a supervised learning
problem. Given a training set, different supervised learn-
ing algorithms can be used to capture the relationship
between the inputs and the outputs. We use simulation
to generate the training data.

In principle, the training data generated for a wide
range of system parameters can also be used to approxi-
mate the response surface. Although this approximation
can also be used to determine the output characteristics
for the given input parameters, thememory requirements
for storing the response surface will be high. There-
fore, the computational requirement to use the prediction
of the building block many times in an approximation
method will limit using this direct approach.

4.1. Gaussian process regression

Since the training data is obtained by simulation and
therefore inherently noisy, the Gaussian Process Regres-
sion method has been selected as the most appropriate
supervised learning method to determine the functional
relationship between the outputs and the inputs of the
Delay, Batching, Merge, and Split blocks. Gaussian Pro-
cess Regression is a non-parametric kernel-based proba-
bilistic method that works well with noisy training data
(Rasmussen and Williams 2006).

In this part, we give a brief definition of GPR fol-
lowing (Quiñonero-Candela and Rasmussen 2005; Ras-
mussen and Williams 2006). For a given training set
D = {(xi, yi), i ∈ {1, . . . , n}} where n is the total number
of cases used for training, GPR approach assumes the
relationship

yi = f (x)+ εi (15)

between the inputs xi and outputs yi, where εi ∼
N (0, σ 2

n ). Here, εi represents the variance of the noise.
The goal is approximating f∗ = f (x∗), the response value
for a new observation x∗.

Each case given in Table 1 is an input for the cor-
responding building block. The output variables for
each building block are listed in Table 2. For exam-
ple, when the goal is predicting the cycle time value
for the delay block for the given input parameters, xi =
[μa cva ρa μs cvs ρs]T, and yi is the correspondingCT cal-
culated via simulation. Thematrix that stores the training
data points is denoted with X, the matrix that stores the
test data points is denoted with X∗, and the vector of
observed outputs is denoted with y.
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Table 1. Range of parameters and the number of cases used for
training.

Block type Parameter Range Number of cases

Delay μa {1/0.1, 1/0.2, . . . , 1/0.9} 142,884
cva {0.1, . . . , 1.4}
ρa {−0.4, . . . , 0.4}
μs {1}
cvs {0.1, . . . , 1.4}
ρs {−0.4, . . . , 0.4}

Batching μa {1} 2052
cva {0.1, . . . , 1.1} ∪ {1.4}
ρa {−0.4, . . . , 0.4}
B {2, . . . , 20}

Binomial split μa {1} 630
cva {0.1, . . . , 1.4}
ρa {−0.4, . . . , 0.4}
p {0.1, . . . , 0.9}

Markov Chain split μa {1} 10,206
cva {0.1, . . . , 1.4}
ρa {−0.4, . . . , 0.4}
p1 {0.1, . . . , 0.9}
p2 {0.1, . . . , 0.9}

Merge μa1 {1} 158,760
cva1 {0.1, . . . , 1.4}
ρa1 {−0.4, . . . , 0.4}
μa2 { 1

0.1 , . . . ,
1
0.9 , 1}

cva2 {0.1, . . . , 1.4}
ρa2 {−0.4, . . . , 0.4}

Table 2. The accuracy of GPR for the different parameters of the
different blocks.

Accuracy

Parameter MAE MAPE RMSE

Split cvd1 0.00062 0.0627 0.0010
ρd1 0.00054 2.6074 0.0008
cvd2 0.00067 0.0782 0.0012
ρd2 0.00042 0.4251 0.0007

MC split cvd1 0.00126 0.1246 0.0019
ρd1 0.00054 11.5859 0.0008
cvd2 0.00131 0.1303 0.0020
ρd2 0.00051 20.6185 0.0007

Merge cvd 0.00067 0.0973 0.0023
ρd 0.00091 0.6663 0.0056

Batching cvd 0.0049 2.1389 0.0080
ρd 0.0285 13.1764 0.0387

Delay cvd 0.00186 0.2660 0.0028
ρd 0.00286 0.7543 0.0054
CT 0.1224 3.61436 0.3229
cvCT 0.00889 1.1002 0.0186

Gaussian process regression is a Bayesian approach
that assumes a Gaussian process prior over functions. A
Gaussian process refers to a collection of random vari-
ables that any finite number of them follow a joint Gaus-
sian distribution. Let KA,B denote the kernel matrix for
the data matricesA and B defined as [KA,B]i,j = k(Ai,Bj),
where Ai and Bj are the vectors representing the ith and
jth data points inA and B respectively, and k(Ai,Bj) is the
covariance function.

Therefore,

p(f|x1, x2, . . . , xn) = N (0,KX,X), (16)

where f = [f (x1)f (x2) . . . f (xn)]T is the vector of latent
variables.

Bayesian rule yields the predictive distribution

p(f∗ | y) = N (KX∗,X(KX,X + σ 2
n I)
−1y,KX∗,X∗

− KX∗,X(KX,X + σ 2
n I)
−1KX,X∗), (17)

where I is the identity matrix. Since the predictive distri-
bution is Gaussian, the mean and the confidence interval
of the predicted value for given x∗ can be obtained from
the above distribution.

The computational cost for the matrix inversion step
for calculating the mean of this distribution increases
rapidly with the number of data points as given in
Equation (17). There are several methods to improve the
computational performance of this method (Quiñonero-
Candela and Rasmussen 2005). For allowing more flex-
ibility, a set of basis functions can be integrated into the
Gaussian process regression.With this approach, the best
fit amongst a number of kernel functions and a set of basis
functions can be selected.

The functional form resulting from Gaussian Process
Regression method cannot be interpreted. Our exper-
iments with Symbolic Regression yielded interpretable
functions but their overall predictive performance was
lower. Similarly, our experiments with neural networks
also gave prediction performance comparable to the
Gaussian Process Regression. GPR was chosen since it
is more accurate compared to other methods and the
uncertainty measurements on the predictions are avail-
able when GPR is used.

4.2. Training data

In order to generate the input–output data to train super-
vised learning algorithms, the ranges given in Table 1 are
used for each stream. The ranges of the coefficient of vari-
ations and the first-lag autocorrelation are in line with
our observations at Bosch Reutlingen plant. A total of
314,532 cases are simulated. For each simulation, 10,000
interevent times are used for each stream and replicated
100 times.

As described in Section 4.3.2, instead of generating
the traces of interevent times each time for different
parameters, the traces generated beforehand and stored
in the memory are retrieved whenever they are used.
This approach saves around 2min of processing time for
getting the results for the Delay and Merge blocks and
1min for the Split block for each case. Even with the
time saving obtained with this approach, generating the
training data on a personal computer with a Intel(R)
Core(TM) i5-3340M 2.7GHzCPUwould approx-
imately require 6 days for the Delay block, 1 h for the



6830 B. TAN AND S. KHAYYATI

Binomial split block, 11 h for the Markov chain split
block, 1 h for the Batching block, and 107 days for the
merge block on this computer. In order to speed up the
time to generate the training data, parallel simulation is
used on a computer cluster with 128 nodes to generate
the training data. Note that the training data is generated
only once to train the prediction models for the building
blocks.

4.3. Simulating correlated interevent time
sequences

In order to model non-negative interevent times with a
wide range of coefficient of variation values, the Weibull
distribution is usedwith the givenmeanμ and coefficient
of variation cv.

4.3.1. CorrelatedWeibull sequences
The density function of theWeibull distribution is deter-
mined by two parameters α and β :

f (x) = α

βα
xα−1e−(x/β)α , x > 0. (18)

The coefficient of variation of the Weibull distribution is
determined by α:

cv =
√√√√ �

(
1+ 2

α

)
�

(
1+ 1

α

)2 − 1, (19)

where �(·) is the gamma function. The parameter α for
a given cv is determined by solving the above equation.
Once α is determined for a given cv, β is determined as

β = μα

�(1/α)
. (20)

The kth lag autocorrelation of the sequence X1,X2, . . . is
expressed in terms of only the first-lag autocorrelation ρ1

as

ρk = ρk
1 , i = 1, 2, . . . . (21)

The autocorrelation function for N correlated Weibull
random variables can be expressed by a N × N correla-
tion matrix S with its (i, j)th element given as

Si,j = ρ
|i−j|
1 , i = 1, 2, . . . ,N, j = 1, 2, . . . ,N. (22)

For a Weibull sequence, the exponential approximation
for the autocorrelation function is an accurate repre-
sentation (Novak 1973). Figure 3 shows the autocorre-
lation function of the departure process from a single
stationwith correlated interarrival and service times. The
comparison between the simulation and the exponen-
tial approximation given in Equation (21) shows that
the autocorrelation function of the departure process can
be approximated accurately by using only the first-lag
autocorrelation.

4.3.2. Simulating correlated random variables
There are variousmethods to generate correlated random
variables, e.g. Novak (1973), Kriege and Buchholz (2011)
and Wang and Xin (2017). The methods developed for
this purpose also include using a shared random variable
and using Eigenvalue decomposition for generating auto-
correlation (Geist 1979; Magnussen 2004). The method
used in this study is based on generalising the approach
given by Novak (1973) and Wang and Xin (2017).

In order to generate a sequence of N Weibull random
variables with the kth lag autocorrelation given as ρk =
ρk
1 , k = 1, 2, . . ., first, a sequence of N multinomial nor-

mal random variables with mean 0, standard deviation
σ and correlation matrix S′ = {S′i,j} where S′i,j = ρ

|i−j|
in is

generated. The first-lag autocorrelation that is used to
construct S′, ρin is chosen appropriately to generate a
sequence with the desired correlation matrix S.

Figure 3. The simulated and the approximated autocorrelation function for the departure process of the Delay Block with correlated
interarrival and service times modelled as Weibull sequences.



INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 6831

LetX = {Xi} be aN × 1 vector with its ith element is a
normal random variable Xi and the sequence X1,X2, . . .
be independent. A correlated sequence Y = {Yi} is built
by using a linear transformation of the sequence X given
by

Y = ATX. (23)

In the above equation, the matrix A satisfies

AAT = S′ (24)

and it can be determined by using the Cholesky decom-
position. This transformation yields the sequence Y =
{Yi} where Yi is distributed according to the Normal dis-
tribution with the mean 0 and standard deviation σ and
the kth lag autocorrelation of the sequence is ρk = ρk

in.
Next, we generate N uniform random variables with

the correlation matrix S′ by using the standard normal
probability distribution function �(cdot):

Ui = �

(
Yi

σ

)
. (25)

Finally, a sequence ofN Weibull random numbers where
Wi withmeanμ, coefficient of variation cv, parameters α

andβ , correlationmatrix S is generated from the uniform
random variables Ui according to

Wi = β(−ln(Ui))
1/α , i = 1, 2, . . . (26)

Due to the nonlinear transformation given in
Equation (25), the resulting correlation matrix of Wi,
i = 1, 2, . . . is different from the correlation matrix ini-
tially used. However, there is a one-to-one relationship
between the input first-lag autocorrelation denoted with
ρin that is used to generate Ui and the first-lag autocor-
relation ofWi, ρ1. This function is uniquely determined
by the coefficient of variation of the random variable.
We determine the mapping function between ρin and
ρ1 by simulating correlated sequences for a wide range

of cv values and then fitting a fifth-degree polynomial
curve that yields ρin for a desired ρ1 when cv is given.
Since there are 14 different cv values used in the numeri-
cal experiments given in Table 1, 14 different (ρ1→ ρin)
mapping functions are determined. Figure 4 shows the
mapping functions that yield the input first-lag autocor-
relation (ρin) for the desired first-lag autocorrelation (ρ1)
for two different values of coefficient of variation.

As a summary, in order to generate N Weibull ran-
dom variables with mean μ, coefficient of variation cv,
and correlation matrix S = {Si,j} where Si,j = ρ

|i−j|
1 , first,

the input first-lag autocorrelation ρin is determined from
the predicted (ρ1→ ρin) mapping function for the given
cv. Then, N uniform numbers with 0 mean and corre-
lation matrix S′ are generated by using Equation (25).
Finally, N Weibull numbers with the mean μ, coefficient
of variation cv, and correlation matrix S are generated
by using Equation (26). Figure A1 in Appendix 1 shows
the histogram and autocorrelation function of simulated
uncorrelated and correlated Weibull random variables
generated by using the methodology presented in this
section.

In the above process, determining the matrix A
through the Cholesky decomposition given in
Equation (24) is computationally demanding for large
N. Since the matrix A is determined by the first-lag
autocorrelation, in order to increase the computational
efficiency, m replications of Y are generated by using
Equation (23) where A is calculated only once for a
given cv and ρ1 by using Equation (24). Furthermore,
for the delay and merge systems, replications generated
for one of the inputs, i.e. arrival and service for the delay
system and the two input streams for the merge sys-
tem are used in different permutations to obtain different
outputs.

We generate the traces for Weibull random variables
with mean 1, the coefficient of variation cv, and the first-
lag autocorrelation ρ1 and then rescale the traces for a

Figure 4. The input first-lag autocorrelation (ρin) for different values of the desired first-lag autocorrelation (ρout) and the polynomial fit
for the (ρ1 → ρin) mapping function for cv = 0.5 and cv = 1.5.
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given μ. Generating the traces for 1000 replications of
10,000 interevent times for a given cv and ρ1 takes about
1 minute on a personal computer with a Intel(R)
Core(TM) i5-3340M 2.7GHz CPU. In the numer-
ical experiments, we use the simulated traces for different
interarrival and service time processes given in Table 1.
Since there are 14 different cv values and 9 different ρ1
values used, 126 different tracematrices that contain 1000
replications of 10,000 correlated interevent times have
been generated and stored in the memory to be retrieved
later on whenever a correlated stream is needed. This
approach eliminates the need for generating correlated
traces for different cases repeatedly to obtain the train-
ing data for Delay, Batching, Merge, and Split building
blocks.

4.4. Accuracy of GPR

UsingGaussian Process Regressionwith the training data
yields accurate predictionmodels for the building blocks.
Table 2 gives the MAE, MAPE and RMSE values for
the output characteristics for the Delay, Batching, Split,
and Merge building blocks. For the Delay and the Merge
blocks, as a portion of the data points have been used
for training, we report the out-of-sample MAE, MAPE
and RMSE values in Table 2. However, given that we have
used all or nearly all of the data points in training GPR
for the other blocks, we report their in-sample accuracy
in Table 2. Additionally, the out-of-sample performances
of all the blocks were examined extensively as parts
of the networks we use for the numerical experiments

in Section 5. Figure 5 gives the predicted and simu-
lated coefficient of variation, first-lag autocorrelation,
and expected cycle time values for the building blocks.

4.4.1. Delay
TheGaussian Process Regression has been used to obtain
5 functions that yield (cvd, ρd) and (CT, cvCT , ρCT) for
given (μa, cva, ρa) and (μs, cvs, ρs) for the Delay building
block. In addition to the input parameters (μa, cva, ρa)
and (μs, cvs, ρs), the cycle time and the departure coef-
ficient of variation approximations for a G/G/1 system
with i.i.d. interarrival and service times, given by Equa-
tions (1) and (2), respectively, are also used as the addi-
tional input features to predict the cycle time and the
departure coefficient of variation for the delay block with
correlated interarrival and service times. 10,000 samples
have been selected randomly from the total of 142,884
cases for training GPR.

The results shown in Table 2 and Figure 5 show that
the prediction obtained by GRP is very accurate in the
whole range of parameters. The RMSE errors obtained
for prediction of cvd, ρd, CT are 0.0028, 0.0054, and 0.32,
respectively.

Comparison of the Single-Station Cycle Time Predic-
tion with the Analytical Approximations. The super-
vised learning approach yields more accurate cycle
time prediction compared to analytical approximations
(Kingman 1961; Krämer and Langenbach-Belz 1976;
Marchal 1976; Buzacott and Shanthikumar 1993) and the
robust queueing approximation (Whitt and You 2020).

Figure 5. Predicted (CT) and simulated (C̄T) cycle time values for the Delay block.
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Figure 6. Comparison of cycle time values predicted by GPR, Robust Queueing, and Kingman’s methods (CT) and simulation (C̄T) for the
Delay block.

Figure 6 shows the simulated cycle times for the delay
block with correlated interarrival and service times and
its approximated value obtained by using GPR, King-
man’s approximation given in Equation (1) that ignores
autocorrelation and the robust queuing approximation
that only incorporates the autocorrelation in the arrival
process for different interarrival and service time charac-
teristics given in Table 1.

As Figure 6 shows the approximation given in
Equation (1) yields results that can be quite differ-
ent from the actual results. The prediction obtained by
Kingman’s approximation given in Equation (1) can
be 100% longer or 75% shorter than the simulation
depending on the system parameters. The average abso-
lute error is 17% for all the cases with autocorrelated
interarrival and service times. When the service time
has no autocorrelation, but the interarrival time is cor-
related (ρs = 0) the average absolute error is 14.3% and
for the cases with no autocorrelation (ρa = 0, ρs = 0),
the average absolute error is 8%. Even for the case with
no autocorrelation, the performance of the analytical
approximation deteriorates significantly as the coeffi-
cient of variation of the service and interarrival time
increases.

Table A1 in Appendix 2 gives the mean absolute per-
centage errors of cycle times obtained by using approx-
imations Kingman (1961), Marchal (1976), Krämer and
Langenbach-Belz (1976), three different approximations
B&S 1, B&S 2, B&S 3 given in Buzacott and Shanthiku-
mar (1993) and the error obtained by the single-station
delay block of SLQNA. The results show that the aver-
age cycle time predicted by the delay block of SLQNA
is very accurate with a MAPE of 1% while all the other
approximations give a MAPE greater than 11%. In addi-
tion, as the accuracy of SLQNA is not affected by the
arrival coefficient of variation, the performances of all
the other methods deteriorates significantly for highly
variable arrivals.

Since these approximations are derived under the
assumption of i.i.d. interarrival and service times,
Table A2 in Appendix 2 gives the percentage errors
obtained by these approximations and SLQNA for
the cases with no autocorrelation, i.e.ρs = ρa = 0. The
results show that for the cases with no correlation,
SLQNA still gives the most accurate results with aMAPE
of 1%while the best approximations yield aMAPE of 2%.

The objective of using a supervised learning approach
is obtaining a functional relationship between the input
and output characteristics that is muchmore accurate for
all parameter ranges and also incorporates autocorrela-
tion in the interarrival and service times.

4.4.2. Batching
GPR is used to predict the output cvd and ρd for the
Batching building block based on the characteristics of
the input flow and the batch size (μa, cva, ρa,B). The
RMSE error for the output cvd is 0.0080 and for the out-
put ρd is 0.0387. Figure 5 gives the accuracy of GPR for
predicting these output parameters.

4.4.3. Split
Gaussian Process Regression has been used to find two
functions that yield (cvd, ρd) for given (μa, cva, ρa) and p
for the Binomial Split block.All of the 630 cases have been
used for training GPR. For theMarkov Chain Split block,
two functions that yield (cvd, ρd) for given (μa, cva, ρa)
and p1, p2 are also obtained by using GPR. The RMSE
errors obtained for prediction of cvd and ρd are 0.0010
and 0.0008 for the Binomial Split. The RMSE errors
for the interdeparture coefficient of variation from the
Markov Chain Split Block, cvd1 and cvd2 are 0.0019 and
0.0020 and the RMSE errors for the first-lag autocorrela-
tion of the interdeparture streams, ρd1 and ρd2 are 0.0008
and 0.0007, respectively.
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4.4.4. Merge
For the Merge building block, two functions that yield
(cvd, ρd) for given (μa1, cva1, ρa1) and (μa1, cva1, ρa1) are
determined by using GPR. 10,000 samples have been
selected randomly from the total of 158,760 cases for
training GPR. The RMSE errors obtained for prediction
of cvd and ρd are 0.0023 and 0.0056, respectively.

5. An approximationmethod for open
queueing networks: SLQNA

A given manufacturing system can be analysed by
decomposing the network into different Delay, Batching,
Merge, and Split components and determining the output
stream characteristics by using the input characteristics.
For example, Figure 7 shows a workcell with a worksta-
tion, a quality control point, and a rework station and its
decomposition into delay, merge, and split components.

The performance measures such as the average num-
ber of parts waiting in front of the workstation and for
rework, the average time for an arriving part to complete
its operation in this workcell with or without rework,
among others can be determined by using the method
presented in this study.

5.1. SLQNA algorithm

The SLQNA approximation uses the functions obtained
by using the approach given in Section 4 to determine the

mean, the coefficient of variation, and the first-lag auto-
correlation of the inter-departure time as functions of the
mean, coefficient of variation and first-lag autocorrela-
tions of the interarrival and service times for each Delay,
Merge, and Split Block.

Starting with the first station with its given interar-
rival time parameters, the departure process parameters
of each station obtained by the prediction functions are
used as the input arrival parameters at the following
building block in the network.

This process is repeated until all the stations in the net-
work are processed. The cycle times obtained at each sta-
tion are then combined to determine the total cycle time
of the system. This method also generates the departure
coefficient of variation and the first-lag autocorrelation of
the departure process at each node of the network. The
SLQNA algorithm is given in the Appendix.

Although the approach used in other approximation
methods such as QNA is similar since the parameters
describing the output processes are passed to the next
block as its input parameters, SLQNA differs from QNA
since it also passes information about the autocorrela-
tion structure of the process not only the distribution.
Although MAPQNA also passes the information about
the correlation structure, SLQNA is more accurate for
capturing the autocorrelation sequence. This improved
accuracy is due to capturing the autocorrelation struc-
ture of a Weibull sequence very accurately with the first-
lag autocorrelation that is passed between the blocks.

Figure 7. A workcell with two workstations, a batching station, and a quality control station and its decomposition into Merge, Delay,
Batching, and Markov Chain Split components with the inspection points for departure process characterisation.
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MAPQNA approximates a given autocorrelation struc-
ture by truncating the state space. The batching and
Markov chain split building blocks are not implemented
in QNA and MAPQNA.

5.2. Numerical experiments

In our experimental setup, we first investigate the accu-
racy of SLQNA in terms of predicting the departure pro-
cess coefficient of variation and the first-lag autocorrela-
tion at different points of a network that is constructed by
using Delay, Batching, Merge, and Split building blocks.

We then compare the performance of SLQNA with
simulation and with the other approximation methods
for two different network structures. Production lines
and a split-merge network with different number of sta-
tions (up to 25 stations for production lines and up to
12 stations for the split-merge network) are analysed for
a range of system parameters. The system parameters
include the number of stations, the mean, coefficient of
variation, and the first-lag autocorrelation of the inter-
arrival time process to the first station and the mean,
coefficient of variation, and the first-lag autocorrelation
of production time processes.

For the experiments with serial lines, we compare
the performance of SLQNA with QNA that does not
consider the interarrival and service time dependency,
Rob-QNA that considers correlated interarrival times but
i.i.d. service times, and MAPQNA that considers corre-
lated interarrival and service times. For the experiments
with the split-merge network, we compare the perfor-
mance of SLQNA with QNA and MAPQNA. We report
the computation times for each method.

The average total cycle time at the system level (from
the first station to the processing time completion at the
last station), denoted as CT is used as the main perfor-
mance measure in the numerical experiments. For serial
arrangement of stations, CT is the sum of the cycle times
of all the stations in the line. For a network, CT is cal-
culated as the weighted sum of all the cycle times of the
single-server stations on the routes connecting the first
station to the last station. The calculation of CT for a
network is given in Appendix A.2.

We focus on the accuracy of the cycle time predic-
tion measured as the mean absolute percentage error
with respect to the simulation result. That is,MAPEC̄T =
|CT−C̄T|

C̄T where C̄T is the actual cycle time (estimated by
using simulation) and CT is the cycle time prediction
obtained by using an approximation method. The 95%
confidence intervals for the total cycle time obtained by
using simulation are on average 0.2% of the average val-
ues and therefore can be used as a reliable estimate for
the actual cycle time. The average results as well as the

MAPE distribution for CT considering all the cases used
in the numerical experiments are reported. The effects of
the number of stations, arrival and service time coeffi-
cient of variations and first-lag autocorrelations, the sta-
tion utilisation, and the split probability on the accuracy
of SLQNA are also investigated through the numerical
experiments.

5.3. Accuracy of SLQNA to capture departure
process characteristics

The accuracy of a given approximation method depends
on how well the method captures the characteristics of
flows, the mean, coefficient of variation, and autocorrela-
tion, at different locations of a given queueing network.

To examine the accuracy of the SLQNA algorithm in
predicting the characteristics of the flows in a network,
we use the workcell depicted in Figure 7. This network
includes the Delay, Batching, Merge, and Split building
blocks.

In this setup, s1, . . . , s4 indicate the points where we
inspect the flow characteristics. These points are consec-
utive points along one of the four routes a part can take
in this system. Let (μa,i, cva,i, ρa,i) denote the parameters
of the arrival processes in the system, let (μs,i, cvs,i, ρs,i)
denote the parameters of the service processes in the
system.

Table 3 gives the parameter sets used in these exper-
iments. In total, 81 cases were considered. Table 4 and
Figure 8 give the accuracy of SLQNA for predicting
the characteristics of the flows in different locations
in the network. Based on these results, As a result,
we can conclude that SLQNA captures the flow pro-
cess characteristics accurately for the network shown in
Figure 7.

5.4. Numerical experiments for production lines

In this section, we present the results of the numerical
experiments for serial arrangement of workstations in

Table 3. Range of parameters used for the Workcell with delay,
batching, merge, and Markov Chain split blocks.

Parameter Range

cva,1 {0.1, 1, 1.4}
ρa,1 {−0.4, 0, 0.4}
B {2, 10, 20}
p1 {0.1, 0.5, 0.9}
p2 {0.5}
μa,1 {5/B}
μa,2 {5}
μs,1,μs,2 {1}
μs,3 {2}
cva,2, cvs,1, cvs,2, cvs,3, {1}
ρa,2 {0.4}
ρs,1, ρs,2, ρs,3 {0}
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Table 4. The accuracy of SLQNA for predicting the output characteristics at different locations in the Workcell network with Delay,
Batching, Merge, and Markov Chain Split building blocks.

cv ρ

s1 s2 s3 s4 s1 s2 s3 s4 CT

MAE 0.004 0.012 0.017 0.016 0.013 0.010 0.015 0.030 0.275
MAPE 0.821 1.463 2.073 1.886 168.432 29.163 79.652 228.448 4.080
RMSE 0.005 0.014 0.019 0.021 0.017 0.013 0.018 0.038 0.432

Figure 8. The accuracy of SLQNA in different locations in the Workcell network.

a production line with up to 25 stations and correlated
interarrival and processing times. Figure 9 depicts the
structure of the system analysed. Table 5 gives the range
of parameters used in the experiments. Accordingly, the
results based on 91,125 cases are reported.

5.4.1. Accuracy of SLQNA compared to othermethods
for production lines
In order to characterise the flows and predict the cycle
times in a production line, SLQNA andMAPQNAmeth-
ods allow incorporating autocorrelation in interarrival
times and service times while Rob-QNA incorporates
correlated interarrival times and i.i.d. service times and
QNA considers only i.i.d. interarrival and service times.
Accordingly, SLQNA can only be compared directly with
MAPQNA when both the interarrival and service times

are correlated. We include comparisons with MAPQNA,
Rob-QNA, and QNA in our numerical experiments to
report both the comparison of accuracy and also the
effect of autocorrelation on the accuracy of these meth-
ods.

Table 6 reports MAPE obtained predicting CT using
SLQNA, MAPQNA, Rob-QNA, and QNA in all cases
depending on the autocorrelation of interarrival and ser-
vice times. With a MAPE of 3.4%, SLQNA yields the
most accurate predictions among all the other methods.
The second most accurate approximation is MAPQNA
with a MAPE of 6.4%. The results indicate that the com-
parative advantage of MAPQNA over QNA depends on
the presence of autocorrelation in the system. When ser-
vice processes are i.i.d., the autocorrelation of the arrival
process vanishes in the downstream and in the instances
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Figure 9. The structure of the Production Line.

Table 5. Range of parameters used for production line experi-
ments with homogeneous stations.

Parameter Range

μa {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
μs {1}
cva , cvs {0.4, 0.6, 0.8, 1.0, 1.2}
ρa , ρs {−0.4,−0.3,−0.2,−0.1, 0, 0.1, 0.2, 0.3, 0.4}
N {5, 10, 15, 20, 25}

with a large number of stations this leads to a large por-
tion of the stations performing similar to an i.i.d. system.
In these cases, MAPQNA and QNA have comparable
performance. However, when the service process is cor-
related, all of the stations in the system can be affected
by autocorrelation and as a result MAPQNA outper-
forms QNA in these cases. The similarity between the
performance of Rob-QNA and QNA can be attributed
to the use of Weibull distribution in this work in that
while Rob-QNA is a distribution-free method, QNA has
been developed based ondistributions that can effectively
approximate the Weibull distribution.

Figure 10 depicts the histograms of MAPE obtained
predicting CT using SLQNA, MAPQNA, Rob-QNA,
QNA in all cases depending on the autocorrelation of
interarrival and service times. The figure shows that not
only SLQNA is more accurate on average, its predictions
aremore robust. The cycle time predictions for individual
stations follow a similar pattern.

The accuracy of SLQNA is affected by different sys-
tem parameters including the autocorrelations of inter-
arrival and service processes, the coefficient of variation
of interarrival and service times, the utilisation of indi-
vidual stations, and the number of stations. Our analysis
given in Appendix A.3 shows that service time coefficient
of variation affects the accuracy more compared to the

interarrival time variability. Furthermore, higher utilisa-
tion and the presence of autocorrelation in the system
decreases the accuracy of all the methods. However, the
presence of dependency in the system affects SLQNA less
compared toMAPQNA and Rob-QNAmethods. Finally,
the accuracy of SLQNA does not get affected negatively
with the increasing number of stations.

5.4.2. Computational performance of SLQNA
compared to othermethods for serial lines
SLQNA is a time-efficient method for queuing network
analysis as the computationally heavy tasks for SLQNA
have to be performed only once. Once the trained blocks
are available, predicting the performance measures for a
new network can be performed in seconds. MAPQNA is
a computationally expensive method. The main contrib-
utor to the computational effort to run MAPQNA is the
MAP fitting step during the execution of the algorithm.
QNA’s computational requirement is very low as it uses
closed-form approximations. Rob-QNA can be as fast as
QNA and SLQNA if the indices of dispersion for counts
for the processes in a given system are available. In this
work, we calculate the indices of dispersion for counts
for each set of flow parameters based on 1000 traces.
Figure 11 gives the effect of the network size on the
computational requirement for the methods based on a
sample of 400 instances selected randomly from the cases
studied for the production line experiments.

5.5. Numerical experiments for a networkwith
merge and split

In this section, we report the results of experiments with
a network that consists of a station that splits the arrival

Table 6. The accuracy of differentmethods in predicting the cycle time for the production line
experiments.

Mean absolute percentage error 100 |CT−C̄T|
C̄T

ρa ∈ {−0.4, . . . , 0.4} ρa = 0 ρa ∈ {−0.4, . . . , 0.4} ρa = 0
ρs ∈ {−0.4, . . . , 0.4} ρs ∈ {−0.4, . . . , 0.4} ρs = 0 ρs = 0

SLQNA 3.41 2.91 2.75 2.23
MAPQNA 6.43 4.14 5.60 2.72
Rob-QNA 11.51 10.23 5.38 4.87
QNA 10.86 9.86 4.55 2.52
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Figure 10. Histogram of the Mean Absolute Percentage Error (MAPE) of the cycle time predictions obtained by using different methods
for the production line experiments.

stream into two lineswith varying number of stations that
merge at the last station. The network analysed is shown
in Figure 12. By using this network, we compare the
performance of the SLQNA with QNA and MAPQNA
methods for a range of parameters.

Table 7 gives the set of parameters used for these
experiments, where λa = 1/μa, λs,1 = 1/μs,1 and λs,2 =
1/μs,2. 1178 cases have been examined in total. Each case
consists of 2l+ 2 stations.

5.5.1. Accuracy of SLQNA compared to othermethods
for the split-Merge network
Table 8 gives the mean absolute percentage error in the
cycle time predictions obtained by SLQNA, MAPQNA,
and QNA in 1178 cases given in Table 7.

The results indicate that SLQNA is twice more accu-
rate than the other methods for all cases. Even for the
cases where the interarrival and service times are not cor-
related, SLQNA is still more accurate than QNA that was
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Figure 11. Effect of number of stations on the average computa-
tional time of the methods for the production line experiments.

developed under the assumption of i.i.d. interarrival and
service times.

Figure 13 shows the histogram of MAPE values for
the cycle time obtained by using SLQNA,MAPQNA, and
QNA. The results show that SLQNA ismore accurate and
more robust compared to MAPQNA and QNA.

Our analysis given in Appendix A.4 investigates the
effect of system parameters that are the number of sta-
tions in the network, the split probability, arrival coeffi-
cient of variation, service time coefficient of variations of
two lines and the first-lag autocorrelations of the arrival
and service processes on the SLQNA accuracy for the
Split-MergeNetwork. The results show that that the accu-
racy of the approximationmethods increases as the num-
ber of stations in the network increases and the split
probability is varied. Furthermore, SLQNA is consider-
ably less sensitive to the changes in utilisation in the
system compared to the other methods.

5.5.2. Computational performance of SLQNA
compared to othermethods for the split-merge
network
Figure 14 gives the effect of the network size on the com-
putational time of the methods for 50 randomly selected

Table 7. The range of parameters used for the experiments with
the network with split and merge.

Parameter Range

λa {1}
λs,1, λs,2 {1.25, 1.75, 2.5}
cva , cvs,1, cvs,2 {0.4, 0.8}
ρa , ρs,1, ρs,2 {−0.3, 0, 0.3}
p {0.2, 0.5, 0.8}
l {1, 3, 5}

parameter sets. On average, evaluation of each case given
in Table 7 using SLQNA took 1 s while the evaluation of
each case byMAPQNA took 50 s on a personal computer
with a Intel(R) Core(TM) i5-3340M 2.7GHz
CPU. Due to computational time limits, the size of the
search space for approximate MAPs used by MAPQNA
was limited to 16 and cases where larger MAPs were
required for MAPQNA were dropped from further con-
sideration.

6. Conclusions

In this study, we propose a supervised learning based
approximation method to analyse single-server open
queueing network models of manufacturing systems
composed of delay, batching, split, and merge building
blocks with correlated interarrival and service times. We
determine the mean, coefficient of variation, and first-
lag autocorrelation of the output stream of the building
blocks as a function of the mean, coefficient of varia-
tion and first-lag autocorrelations of the input interevent
times by using a supervised learning approach. For the
output parameters that cannot be determined analyti-
cally, we simulate each block for a wide range of sys-
tem parameters in parallel in a multi-node computer
cluster and use the input-output sets as training sets
for the Gaussian Process Regression. Our results show
that the results obtained by using the Gaussian Process
Regression are very accurate and better than the avail-
able analytical approximations to determine the output
characteristics based on the input characteristics.

These building blocks are then used to build single-
server open queueing networks to evaluate the perfor-
mance of manufacturing systems in a computationally
efficient way. The method we propose in this study,

Figure 12. The structure of the network with merge and split.
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Table 8. The accuracy of differentmethods in predicting the cycle time for the networkwith split andmerge.

Mean absolute percentage error 100 |CT−C̄T|
C̄T

ρa ∈ {−0.3, 0, 0.3} ρa = 0 ρa ∈ {−0.3, 0, 0.3} ρa = 0
{ρs,1 ∈ {−0.3, 0, 0.3}} {ρs,1 ∈ {−0.3, 0, 0.3}} ρs,1 = 0 ρs,1 = 0
{ρs,2 ∈ {−0.3, 0, 0.3}} {ρs,2 ∈ {−0.3, 0, 0.3}} ρs,2 = 0 ρs,2 = 0

SLQNA 3.74 2.93 3.50 2.41
MAPQNA 8.19 5.25 6.73 3.64
QNA 8.30 5.94 6.95 3.58

Figure 13. Histogram of the mean absolute percentage error (MAPE) of the cycle times predicted by using different methods for the
network with split and merge.

SLQNA allows the analysis of new network structures
without having to train supervised learning models for
each structure. Our experiments show that SLQNA pre-
dicts the output stream mean, coefficient of variation
and the first-lag autocorrelation at different points in a
network accurately. SLQNA is compared to other approx-
imation methods when these methods are used to pre-
dict the cycle time in production lines and also in a
split-merge network. The results show that the accu-
racy of SLQNA is much better compared to the other
available methods, and it is computationally very effi-
cient. Furthermore, SLQNA with the trained functions

allows obtaining the results in one second on a personal
computer.

This work can be extended in several directions to
evaluate the performance of manufacturing systems with
different configurations. First, the functions that relate
inputs to outputs will be developed for different building
blocks. These new building blocks will include the build-
ing blocks for parallel stations, stations that processmate-
rial with different sequencing and dispatching rules, and
the building blocks with finite buffers. Next, a decom-
position method that will connect these building blocks
will be developed for configurations that involve loops.
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Figure 14. Effect of the size of the network with split and merge
on the computational time of the methods.

Similarly, analysing queueing networks subject to block-
ing requires a different approach to combine the output
characteristics of the building blocks. The approach pre-
sented in this study can also be used to predict the cycle
time distribution. Finally, combining exact results that
can be obtained for those systems that can be analysed
analytically with the simulation results can speed up the
time required to obtain the training set. These are left for
future research.

Our results show that combining the power of super-
vised learning approaches with the analytical approaches
yields a powerful tool to evaluate the performance of
manufacturing systems accurately in a computation-
ally efficient way. The regression-based approximation
method presented in this study allows us to analyse
single-server open queueing network models of manu-
facturing systems composed of delay, batching, split, and
merge building blocks with correlated interarrival and
service times accurately and efficiently.
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Appendices

Appendix 1. Comparison of the Simulation of
i.i.d. and correlatedWeibull random sequences

Figure A1 gives the histogram and the autocorrelation function
for a simulated i.i.d. stream and a simulated negatively corre-
lated stream. As depicted here, the method given here is able to
generate traces with the desired properties.

Appendix 2. Comparison of the single station
cycle time prediction with the analytical
approximations

The supervised learning approach yields more accurate cycle
time prediction compared to analytical approximations (King-
man 1961; Marchal 1976; Krämer and Langenbach-Belz 1976;
Buzacott and Shanthikumar 1993) and the robust queueing
approximation (Whitt and You 2020).

Table A1 gives the mean absolute percentage errors of cycle
times obtained by using approximations (Kingman 1961; Mar-
chal 1976; Krämer and Langenbach-Belz 1976), three different
approximations B&S 1, B&S 2, B&S 3 given in Buzacott and
Shanthikumar (1993) and the error obtained by the single-
station delay block of SLQNA. Table A2 gives the percentage
errors obtained by these approximations and SLQNA for the
cases with no autocorrelation, i.e. ρs = ρa = 0.

Appendix 3. Effect of approximating theMarkov
Chain Split with a Binomial Split

To motivate the modelling of a Markovian split process, we
study an isolated Markovian split block with p1 = p2 and its
binomial model. We have varied the parameters of the incom-
ing flow and p1, p2 for this purpose. Figure A2 depicts the
results of these experiments. These results show that ignoring

https://dx.doi.org/10.1080/00207543.2020.1790686
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Figure A1. Histogram and autocorrelation function of the simulated uncorrelated and correlated Weibull random sequences for a
specific case.

Table A1. Mean absolute % error (MAPE) of single-station CT approximations.

cva

Approx. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 < 1 Avg
Kingman 13 13 12 12 11 11 11 11 12 13 14 16 16 18 12 13
Marchall 7 8 8 8 9 9 10 11 12 13 14 15 16 17 9 11
K&L 9 9 10 11 13 14 16 17 19 21 24 26 28 31 13 18
B&S 1 7 8 8 8 9 9 10 11 12 13 14 15 16 17 9 11
B&S 2 7 8 8 8 9 9 10 11 12 13 14 15 16 17 9 11
B&S 3 13 14 15 16 17 17 17 16 14 13 17 25 35 49 16 20
SLQNA 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1

Table A2. Mean absolute % error (MAPE) of single-station CT approximations (ρs = ρa = 0).

cva

Approx. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 < 1 Avg
Kingman 11 10 10 9 8 6 5 3 2 1 2 3 4 5 71 6
Marchall 3 3 3 3 3 2 2 2 1 1 1 2 3 4 2 2
K&L 5 6 7 8 9 10 11 13 14 16 19 21 24 26 9 13
B&S 1 3 3 3 3 3 2 2 2 1 1 1 2 3 4 2 2
B&S 2 2 2 3 3 2 2 2 1 1 1 1 2 3 3 2 2
B&S 3 11 12 13 14 14 14 13 10 6 1 8 17 29 44 12 15
SLQNA 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 1

strong dependencies in the split process, i.e. higher p1, p2 values
can result in considerable underestimation of output CV. This
can be attributed to the fact that larger p1, p2 valueswould result
in long periods with no arrivals in each of the downstream
paths.

Appendix 4. Pseudo codes

In the following, we give a summary of the SLQNA,MAPQNA,
and QNA algorithms used in this work. For details on the

Rob-QNA algorithm for tree-structured networks, we refer the
reader to Whitt and You (2020).

A.1 SLQNA,MAPQNA, andQNA

In the following, we give general pseudocode for the SLQNA,
MAPQNA, and QNA methods. For analysing general net-
work structures, we use the following representation for the
networks. The network is defined by a set of nodes, and the
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Figure A2. Effect of approximating a Markov chain split with a Binomial split when p1 = p2. The solid line depicts the output of the
Markov chain split and the dashed line the output of its binomial model (p = 0.5).

probability matrix that governs the path of the parts in the sys-
tem. Let pi,j denote the probability of a part moving to node j
after leaving node i.

Let x̌i denote the value of characteristic x for the flow incom-
ing to node i and x̂i denote the value of characteristic x for
the flow leaving node i and −→x i,j value of the characteristic x
for the flow from node i to node j, e.g.−→ρ i,j being the first lag
autocorrelation of the flow from node i to node j. In addition,
let ε̌i, ε̂i,−→ε i,j ∈ {0, 1} denote binary variables indicating if the
characteristics of the corresponding flow/node is known/has
been calculated.

Hence, a network can be specified by {μ̌i}, {čvi}, {ρ̌i}, {μ},
{cvi}, {ρi}, {pi,j} where the values related to incoming flows are
only known for external arrivals. Without loss of generality, for
notational convenience, we give the pseudo codes for network
representations where the incoming flow to a node is either
external or internal. For node i with external inflows, the char-
acteristics of the incoming flows are given and ε̌i = 1 and for
node j with internal inflows, ε̌j = 0.

For MAPQNA, a network can be specified by {M̌0i}, {M̌1i},
{M0i}, {M1i}, {pi,j}. For QNA, a network can be specified by
{μ̌i}, {čvi}, {μ}, {cvi}, {pi,j}.

Let delaymethod({x̌}, {x}, y), splitmethod({x̌}, p, y),mergemethod
({x̌}, {x̌}, y) denote the block functions that give the char-
acteristic y for the output of the three blocks of the queu-
ing network analysis methods and let sojournmethod({x̌}, {x})
denote the cycle time prediction function, where method ∈
{SLQNA,MAPQNA,QNA}. For SLQNA, x ∈ {μ, cv, ρ}, for
MAPQNA, x ∈ {M0,M1} and for QNA, x ∈ {μ, cv}.
Algorithm 1 gives the generic pseudo code for these three
methods. The Batching block is incorporated into the SLQNA
algorithm in a way that is similar to the Delay block. The
inputs of the Batching block include the batch size B instead
of the characteristics of the service times for the Delay block.
Similarly, for incorporating the MC split block, in addition
to the characteristics of the input stream, p1, p2 are used as
inputs.

A.2 Total cycle time calculation based on the cycle
time for individual stations

For a production system with merge and split, the cycle time
distribution from the source to the sink is calculated as the
weighted summation of the cycle time distributions for differ-
ent routes that a part can take. Let r ∈ R denote a route of
length lr where rk denotes the kth node in the route r. The total
cycle time of the system can be calculated as

CT =
∑
r∈R

Prob(r)

⎛
⎝ lr∑

k=1
CTk

⎞
⎠ , (A1)

where

Prob(r) =
lr∏

k=2
prk−1,rk , (A2)

and CTk denotes the cycle time prediction for station k.

Appendix 5. Effect of system parameters on the
SLQNA accuracy

A.3 Effect of system parameters on the SLQNA
accuracy for production lines

Effect of interarrival and Service Time Variability. Table A3
shows the effect of cva and cvs on the accuracy of different
methods in predicting CT. The results show that service time
coefficient of variation affects the results more compared to the
interarrival time variability. This is partly due to the experimen-
tal setup where all the stations are homogeneous. As a result, a
change in cvs affects all the production time processes while a
change in cva affects the interarrival process to the first station.
A decrease in the value of cvs has a larger effect on decreasing
the accuracy of MAPQNA. This can be attributed to the fact
that representing processes with a lower coefficient of variation
requires larger MAPs.
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Table A3. The Effect of cva and cvs on the accuracy of the methods in predicting the cycle time for the production line experiments.

Mean absolute percentage error 100 |CT−C̄T|
C̄T

cva cvs

0.4 0.6 0.8 1 1.2 0.4 0.6 0.8 1 1.2

SLQNA 4.29 3.08 2.60 2.52 4.22 6.95 3.74 2.92 2.80 3.70
MAPQNA 7.49 5.53 5.69 2.93 7.60 10.83 8.88 8.31 5.11 5.26
Rob-QNA 17.24 14.34 10.79 9.17 11.61 5.31 7.97 10.23 13.98 11.76
QNA 19.76 15.22 11.23 9.13 9.56 5.83 6.22 9.29 13.36 11.39

Algorithm 1 Generic pseudo code for SLQNA,
MAPQNA and QNA.
1: while ∃i : ε̂i = 0 ∨ ε̌i = 0 do
2: for 1 ≤ i ≤ n do � Determining the characteristics of the flows

3: for 1 ≤ j ≤ n do
4: if pi,j > 0 ∧−→ε i,j = 0 ∧ ε̂i = 1 then
5: if pi,j = 1 then−→x i,j← x̂i∀x end if
6: if pi,j < 1 then −→x i,j←

splitm({ŷi∀y}, pi,j, x)∀x,−→ε i,j← 1 end if � Split
7: end if
8: end for
9: end for
10: for 1 ≤ i ≤ n do � Determining the characteristics of the

incoming flows to nodes

11: if ε̌i = 0 then
12: U = {j : pj,i > 0} � Identifying the immediate

upstream stations

13: if −→ε u,i = 1∀u ∈ U then
14: if |U| = 1 then x̌i←−→x u∈U,i∀x end

if
15: if |U| = 2 then x̌i←

mergem({−→y u,i∀y}∀u ∈ U, x)∀x end if �Merge
16: ε̌i← 1
17: end if
18: end if
19: end for
20: for 1 ≤ i ≤ n do � Determining the characteristics of the

outgoing flows from the nodes

21: if ε̂i = 0 ∧ ε̌i = 1 then x̂i←
delaym({y̌i∀y}, {yi∀y}, x)∀x, ε̂i← 1 � Delay

22: end if
23: end for
24: end while
25: for 1 ≤ i ≤ n do � Calculating the cycle times

26: CTi← sojournm({x̌i∀x}, {xi∀x})
27: end for

Effect of interarrival and Service Time Autocorrelations.
Table 6 and Figure 10 reported the effect of the existence of
interarrival time and service time dependency on the accuracy
of the methods in predicting the cycle time in a production
line. The presence of dependency in the system affects SLQNA
less than other methods. MAPQNA also remains relatively

accurate as the autocorrelation in the system increases. Rob-
QNAremains accuratewhen the service times are independent.
This is due to the fact that the Rob-QNA algorithm assumes
independent service times.

Tables A4 and A5 show the effect of the magnitude of ρa
and ρs on the accuracy of the cycle time predicts obtained by
different methods. These results indicate that the presence of
autocorrelation in the system decreases the accuracy of all the
methods, but this effect is less pronounced for SLQNA and
MAPQNA, e.g. |ρs| increasing from 0 to 0.4 almost triples
the inaccuracy of QNA but just less than doubles the inac-
curacies of SLQNA and MAPQNA. Unlike the effects of ρs,
the effect of ρa is less symmetrical for positive and nega-
tive values. Positive arrival autocorrelation affects SLQNA and
MAPQNAmore. This can be attributed to the zigzag pattern of
the negative ρa values that effects the total autocorrelation con-
tent of the processes |∑∞i=1(−0.4)i| = 0.28 < |∑∞i=1(0.4)i| =
0.66.

Effect of Utilisation. Table A6 shows the effect of utilisa-
tion on the total Cycle TimeMAPE obtained by using different
methods. For SLQNA, QNA and Rob-QNA, higher utilisation
values mostly imply lower accuracy. However, Rob-QNA and
QNA are more sensitive to this aspect of the system.MAPQNA
performs best for mid-level utilisation values and is less accu-
rate for very high-traffic and very low-traffic systems.

Effect of Number of Stations. Table A7 shows the effect of
the number of stations on the Cycle Time MAPE obtained by
using different methods for the whole range of parameters. The
results show that although the accuracy of QNA deteriorates
as the number of stations increases, the accuracy of SLQNA
does not get affected negatively with the increasing number of
stations.

A.4 Effect of the system parameters on the SLQNA
accuracy for the split-merge network

Table A8 shows that the accuracy of the approximation meth-
ods increase as the number of stations in the network increases
and the split probability is varied between 0.2 and 0.7. The
accuracy of the approximation methods are the worst when
the split probability is 0.5. The errors obtained by using
MAPQNA and QNA are more than twice the error obtained
by SLQNA.

Table A9 shows that an increase in the coefficient of vari-
ation of the interarrival and service times improves the per-
formance of MAPQNA. QNA under-performs in cases with
higher values of autocorrelation.

Table A10 shows the effect of service rates that increase the
utilisation of the stations.MAPQNAandQNAappear to be less
accurate in high traffic. However, SLQNA is considerably less
sensitive to the changes in utilisations in the system.



6846 B. TAN AND S. KHAYYATI

Table A4. Effect of ρa on the accuracy of the methods for predicting the cycle time in the production line experiments.

Mean absolute percentage error 100 |CT−C̄T|
C̄T

ρa

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

SLQNA 2.71 3.00 2.55 2.72 2.91 3.34 3.94 4.82 5.62
MAPQNA 5.19 5.30 4.31 4.37 4.14 5.52 6.61 10.57 15.68
Rob-QNA 10.80 12.03 10.23 10.19 10.23 11.25 11.85 11.97 16.79
QNA 12.81 13.97 11.18 10.24 9.86 9.80 9.63 9.10 10.58

Table A5. Effect of ρs on the accuracy of the methods for predicting the cycle time in the production line experiments.

Mean absolute percentage error 100 |CT−C̄T|
C̄T

ρs

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

SLQNA 5.75 3.53 3.01 2.88 2.75 2.88 2.91 2.97 3.33
MAPQNA 8.94 6.01 5.56 5.51 5.60 5.58 6.34 7.34 7.71
Rob-QNA 12.98 13.87 10.93 7.73 5.38 8.97 13.94 17.31 17.52
QNA 13.24 14.30 11.56 7.90 4.55 6.62 11.69 15.39 15.55

Table A6. Effect of utilisation on the accuracy of the methods for predicting the cycle time in the production line experiments.

Mean absolute percentage error 100 |CT−C̄T|
C̄T

Utilisation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SLQNA 2.69 2.97 2.44 2.91 2.51 2.91 3.85 5.26 6.02
MAPQNA 10.42 7.43 4.57 3.76 3.73 4.59 6.21 7.34 11.08
Rob-QNA 3.62 4.28 5.87 7.88 9.80 11.60 15.70 21.37 28.55
QNA 2.32 3.47 4.62 6.64 9.21 12.06 16.04 21.48 26.84

Table A7. Effect of number of stations on the accuracy of the methods for predicting the cycle
time in the production line experiments.

Mean absolute percentage error 100 |CT−C̄T|
C̄T

Number of stations

5 10 15 20 25

SLQNA 3.67 3.54 3.29 3.23 3.17
MAPQNA 8.77 6.48 5.53 5.22 5.01
Rob-QNA 10.39 11.15 11.79 12.16 12.75
QNA 10.43 10.70 10.88 11.12 11.48

Table A8. Effect of the number of stations and the split probability on the accuracy of the
methods for predicting the cycle time in the network with split and merge.

Mean absolute percentage error 100 |CT−C̄T|
C̄T

Number of stations p

4 8 12 0.2 0.5 0.7

SLQNA 4.40 3.47 2.87 3.10 5.01 2.99
MAPQNA 10.60 6.76 5.56 8.58 8.24 7.74
QNA 9.72 7.54 6.66 7.96 9.26 7.59
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Table A9. Effect of the interarrival and service time coefficient of variation and autocorrelation on the accuracy of the methods for
predicting the cycle time in the network with split and merge.

Mean absolute percentage error 100 |CT−C̄T|
C̄T

cva cvs,1 cvs,2 ρa ρs,1 ρs,2

0.4 0.8 0.4 0.8 0.4 0.8 −0.3 0 0.3 −0.3 0 0.3 −0.3 0 0.3

SLQNA 6.01 3.24 5.41 2.95 4.50 3.17 4.69 2.94 2.97 3.69 3.61 3.97 3.64 3.61 4.02
MAPQNA 8.17 8.20 7.83 8.36 8.61 7.87 7.29 5.26 12.96 9.06 7.07 8.45 8.22 7.77 8.62
QNA 12.09 7.46 6.36 9.23 8.50 8.15 10.89 5.95 6.39 9.82 6.99 7.96 8.59 8.20 8.09

Table A10. Effect of the parameters related to the utilisation of the stations on the accu-
racy of the methods for predicting the cycle time in the network with split and merge.

Mean absolute percentage error 100 |CT−C̄T|
C̄T

λs,1 λs,2

1.25 1.75 2.5 1.25 1.75 2.5

SLQNA 5.20 3.38 3.16 3.36 3.63 4.17
MAPQNA 17.47 6.50 3.98 8.25 8.31 8.03
QNA 15.04 7.29 5.06 8.49 8.27 8.18
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